
����������
�������

Citation: Fradkov, A.L.;

Kovalchukov, A.; Andrievsky, B.

Parameter Estimation for

Hindmarsh–Rose Neurons.

Electronics 2022, 11, 885. https://

doi.org/10.3390/electronics11060885

Academic Editors: Juan M. Corchado

and Prasan Kumar Sahoo

Received: 7 February 2022

Accepted: 9 March 2022

Published: 11 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Parameter Estimation for Hindmarsh–Rose Neurons

Alexander L. Fradkov 1,2 , Aleksandr Kovalchukov 1,2 and Boris Andrievsky 1,2,*

1 Control of Complex Systems Lab., Institute of Problems in Mechanical Engineering, Russian Academy of
Sciences (IPME RAS), 61 Bol’shoy pr. V.O., 199178 Saint Petersburg, Russia; fradkov@mail.ru (A.L.F.);
aleksandr.kovalchukov@mail.ru (A.K.)

2 Faculty of Mathematics and Mechanics, Saint-Petersburg State University, 198504 Saint Petersburg, Russia
* Correspondence: boris.andrievsky@gmail.com; Tel.: +7-812-321-4776

Abstract: In the paper, a new adaptive model of a neuron based on the Hindmarsh–Rose third-order
model of a single neuron is proposed. The learning algorithm for adaptive identification of the neuron
parameters is proposed and analyzed both theoretically and by computer simulation. The proposed
algorithm is based on the Lyapunov functions approach and reduced adaptive observer. It allows
one to estimate parameters of the population of the neurons if they are synchronized. The rigorous
stability conditions for synchronization and identification are presented.
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1. Introduction

The human brain is one of the most complex systems existing on Earth. Many re-
searchers have been working hard for many years in order to understand how the human
brain is functioning, to create its model, and to redesign its construction [1,2]. Recently,
the study of the whole brain dynamics models has started [3,4]. However, the overwhelm-
ing complexity demands a variety of simplified models of different complexity degrees.
The simplest models are represented as the networks of biological neuron models connected
by couplings. Typical models of this class are based on the celebrated Hodgkin–Huxley
model and its simplifications: FitzHugh–Nagumo (FHN), Morris–Lecar (ML), Hindmarsh–
Rose (HR), etc. New models still appear in the literature, e.g., [5]. The HR model is the
simplest one that can exhibit most of the biological neuron’s behavior, such as spiking
or bursting.

Chong et al. [6] studied the activity of neurons at the macroscopic level, known in the
literature as “neural mass models”. To estimate the neurons’ activity, a robust circle criterion
observer was proposed, and its application to estimate the average membrane potential
of neuron populations in the single cortical column model was demonstrated. Further
steps were based on using network models. However, well-understood linear network
models [7,8] are not suitable for modeling networks of biological neurons. A number
of approaches to state estimation for neural populations are based on synchronization;
see [9,10] and the references therein.

An important part of brain network modeling is the identification of the model pa-
rameters. Its first step is the identification of the building blocks—the models of the single
neurons or their subpopulations. Ideally, it should be performed based on the neuron state
measurements. However, there exists the problem of uncertainty and incomplete measure-
ments. A number of such approaches based on adaptation and learning are described in
the literature. Dong et al. [11] dealt with an identification of the FHN model dynamics,
employing the deterministic learning and interpolation method. For global identification,
the FHN model was transformed in [11] into a set of ordinary differential equations (ODEs),
and the dynamics of the approximation system were then identified by employing de-
terministic learning. In [12], an approach to solving the problem of identifying topology
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and parameters in HR neural networks was proposed. For this purpose, the so-called
generalized extremal optimization (GEO) was introduced, and a heuristic identification
algorithm was employed. Identifying HR neural networks’ topology was also considered
by Zhao et al. [13], who employed the sinusoidal disturbance to identify the topology at
the stage when the complex network achieves synchronization. It was demonstrated by the
simulations that, compared with the disturbance of all the nodes, the disturbance of the key
nodes alone can achieve a very good effect. In [14], an adaptive observer for asymptotical
estimation of the parameters and states of a model of interconnected cortical columns was
presented. The model adopted is capable of realistically reproducing the patterns seen on
(intracranial) electroencephalograms (EEGs). The assessment of the parameters and status
allows a better understanding of the mechanisms underlying neurological phenomena
and can be used to predict the onset of epileptic seizures. Tang et al. [15] studied the
effect of electromagnetic induction on the electrical activity of neurons, and the variable
for magnetic flow was used to improve the HR neuron model. By the simulations, it was
demonstrated that the neuron model, proposed in [15], can show multiple modes of electri-
cal activity, which is dependent on the time delay and external forcing current. In [16], an
approach based on adaptive observers was developed for partial identification HR model
parameters. Malik and Mir [17] studied the synchronization of HR neurons, demonstrating
that the coupled system shows several behaviors depending on the parameters of the HR
model and coupling function. Recently, Xu [18] proposed to use an impulse response
identification experiment with dynamical observations with an increasing data length
for capturing the real-time information of systems and serving for online identification.
In Xu [18], a separable Newton recursive parameter estimation approach was developed,
and its efficacy was demonstrated by the Monte Carlo tests.

The models of biological neural networks and single neurons have many applications,
e.g., in brain–computer interfaces [19–21]. A practical application of coupled HR neural
networks was also discussed in [17]. In particular, it was demonstrated that the spiking
network successfully encodes and decodes a time-varying input. Synchronization of the
artificial HR neurons was also studied in [22,23]. An adaptive controller that provides
synchronization of two connected HR neurons using only the output signal of the reference
neuron was suggested in [22]. Andreev and Maksimenko [24] considered synchronization
in a coupled neural network with inhibitory coupling. It was shown in [24] that in the case
of a discrete neuron model, the periodic dynamics are manifested in the alternate excitation
of various neural ensembles, whereas periodic modulation of the synchronization index of
neural ensembles was observed in the continuous-time model.

In this paper, the problem of HR neuron model parameters’ identification is consid-
ered. To solve this, the reduced-order adaptation algorithm based on the speed gradient
(SG) method and feedback Kalman–Yakubovich lemma (FKYL) [25,26] is proposed. A rig-
orous statement about the convergence of the parameter estimates to the true values was
formulated, and the proof is given. The performance of the identification procedure was
analyzed by computer simulation.

The remainder of the paper is organized as follows. The problem statement is pre-
sented in Section 2. Section 3 presents the design of the adaptation algorithm. The main
results are given in Section 4. Computer simulation results are described in Section 5.
Concluding remarks and the future work intentions of Section 6 finalize the paper.

2. Problem Statement

Consider the classical Hindmarsh–Rose (HR) neuron model [27]:

ẋ1(t) = x2(t)− ax3
1(t) + bx2

1(t)− x3(t) + I
ẋ2(t) = c− dx2

1(t)− x2(t)
ẋ3(t) = εsx1(t)− εsr− εx3(t)

(1)
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The variable x1(t) is the membrane potential, while x2(t), x3(t) are the fast and slow ionic
currents, respectively. Variables x1(t), x2(t), x3(t) represent the state vector x(t). The values
a, b, c, d, ε, s, r, I are model parameters. We considered all quantities to be dimensionless.

Assume that x1(t), x2(t), x3(t) can be measured. In some cases (e.g., in in vitro
experiments), this assumption is quite realistic. In order to estimate the state and parameters
of the HR neuron model (1), introduce an auxiliary system—adaptive model—as follows:

ż1(t) = z2(t)− âx3
1(t) + b̂x2

1(t)− z3(t) + Î − k(x1(t)− z1(t))
ż2(t) = ĉ− d̂x2

1(t)− z2(t)
ż3(t) = εsx1(t)− εsr− εz3(t)

(2)

The variables z1(t), z2(t), z3(t) represent the state vector z(t) of the adaptive model (2).
The term k1(x1(t)− z1(t)) is the stabilizing term, typical for observers.

In this study, we assumed for simplicity that the value ε characterizing the relative
rate of fast and slow currents is known. Then, one may denote the vector of tunable
parameters θ = [θ1, . . . , θ7]

T, where θ1 = â, θ2 = b̂, θ3 = Î, θ4 = ĉ, θ5 = d̂, θ6 = ε̂s, θ7 = ε̂sr.
The problem is to design the adaptation/learning algorithm for θ ensuring the goals:

lim
t→∞
‖z(t)− x(t)‖ = 0, (3)

lim
t→∞
‖θ(t)− θ∗‖ = 0, (4)

where θ∗ = [a, b, I, c, d, εs, εsr]T.

3. Adaptation/Learning Algorithm Design

The equations for the state estimation error e(t) = x(t)− z(t) are as follows:

ė = Ake + B1(θ1(−x3
1) + θ2x2

1 + θ3 · 1) + B2(θ4 + θ5(−x2
1)) + B3(θ6x1 + θ7(−1)), (5)

where Ak =

−k 1 −1
0 −1 0
0 0 −ε

, B1 =

1
0
0

, B2 =

0
1
0

, B3 =

0
0
1


For the design of the adaptation/learning algorithm, we used the speed gradient

method [28], suggesting to change the tunable vector θ(t) in the direction of the gradient in
θ of the speed of changing the goal function Q(e), where e = x− z along the trajectories of
the system (1), (2). It is suggested to choose quadratic goal function Q(e) = eTPe, where
P = PT > 0 is a positive-definite matrix to be determined later. Since Q(e) depends only
on e, the error model (5) can be used instead of (1), (2) at this stage. Applying the SG
methodology [25,28] yields the following algorithm:

˙̂θ1 = −γeTPB1 · (−x3
1)

˙̂θ2 = −γeTPB1 · x2
1

˙̂θ3 = −γeTPB1 · 1
˙̂θ4 = −γeTPB2 · 1
˙̂θ5 = −γeTPB2 · (−x2

1)
˙̂θ6 = −γeTPB3 · x1
˙̂θ7 = −γeTPB3 · (−1)

(6)

4. Main Results

The following proposition concerning the convergence of the adaptive model to the
true one holds.

Theorem 1. Let the parameter ε of the HR neuron model be known. Let k1 > 0 and γ > 0. Then,
the goals (3), (4) are achieved for any initial conditions of the system (1), (2), (6).
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The proof is based on exploiting the Lyapunov function:

V(e) = eTPe + ‖θ‖2/(γ) (7)

Evaluating the derivative of (7) along the system (1), (2), (6), one obtains:

V̇(e) = eT(AT
kP + PAk)e + 2eTPB1

(
−θ1x3

1 + θ2x2
1 + θ3

)
+2eTPB2

(
θ4 − θ5x2

1
)
+ 2eTPB3(θ6x1 − θ7) +

7
∑

i=1
θi θ̇i/γ

(8)

Applying (6) to (8) yields V̇(e) = eT(AT
kP + PAk)e. Condition V̇(e) < 0 is fulfilled

∀e : e 6= 0 when:
AT

kP + PAk = −Q, (9)

where Q = QT > 0. Since the eigenvalues of Ak have a negative real part, P, introduced
before, is the solution of Lyapunov Equation (9). The fact that V(e(t)) is bounded is
obtained from [29]. It is shown that the solutions of the system (1) are bounded, and
the synchronization error is also bounded.

Definition 1. Time-varying vector function f : [0,+∞]→ Rm is persistent excitation (PE) if it
is bounded and there exists T > 0 and α > 0 such that ∀ t > 0:

t+T∫
t

f (s) f (s)T ds > αE. (10)

Theorem 5.1 in Fradkov [25], the conditions for achieving goal (4) are derived. His
theorem is reformulated below for the problem of interest.

Theorem 2. If trajectories of the systems (1), (2) are bounded as far as e(t), θ(t) are bounded,
all roots of det(λE− Ak) have a negative real part, and functions f1(t) = [−x3

1 x2
1 1]T, f2(t) =

[1 − x2
1]

T, f3(t) = [x1 − 1]T are PE, then the tunable parameters converge to the regulator,
achieving the goals (3), (4).

Persistent excitation of vector Φ(t) is equivalent to the existence of α > 0, T >
0, t0 > 0 such as ∀h ∈ R (|h| = 1), t > t0 satisfying max

[t,t+T]
|ΦTh| > α [28]. The

proof of PE for the signals mentioned before is quite simple. Let at some moment t,
[−x1(t)3 x1(t)2 1]t = 0 ⇐⇒ −x1(t)3h1 + x1(t)2h2 + h3 = 0. This equation has no more
then three separate solutions. Then, for an arbitrary close moment, t + ∆t equation does
not hold. The PE of the rest of the equations is proven similarly.

Remark 1. The identification algorithm (6) requires the measurement of all state system variables.
It is aimed at studying real neural cells “in vitro”, i.e., during real experiments with single cells
where the measurement of all auxiliary variables can be implemented.

5. Computer Simulation
5.1. Neuron Modeling

For the systems (1), (2) and algorithm (6), we conducted mathematical modeling to
ensure that the approach adequately meets the formulated problem. We built the neuron
model (1) and observed different dynamical behaviors, which are presented in Figures 1–3.

We chose numerical values of quantities a, b, c, d, e, s, r, I from [30] where the bifurcation
analysis of the HR neuron was performed. a = 1, c = 1, d = 5, s = 4, r = −1, and
parameters b, r, ε, and I are in the figure captions.
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Figure 1. Regular bursting, b = 3, r = −1, ε = 0.003, I = 0.

Figure 2. Irregular bursting b = 2.8, r = −1.6, ε = 0.01, I = 3.7.

Figure 3. Regular spiking, b = 3, r = −1, ε = 0.003, I = 2.
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5.2. Regular Neuron Modeling

Secondly, we modeled the difference of the systems (1) and (2) in order to perform the
identification process by Algorithm (6). The parameters of the observer were calculated just
in time by the adaptation algorithm. One can see the identification process in Figure 4. It is
seen that the observer parameters converge to the reference neuron parameters. However,
synchronization error converges to zero, which is shown in Figure 5

Figure 4. Identification process, γ = 1.

Figure 5. Synchronization error for bursting, γ = 1.

Further simulations showed that the convergence depends on the small parameter ε,
and too small values may result in the divergence of the identification process. The reason
is the liner part of error Equation (5). One may subtract regularization term ke3 from the
third equation of (2). The linear part of ė will take the form:

A′k =

−k −1 1
0 −1 0
0 0 −ε− k

 (11)
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After this modification, convergence becomes faster. You may see the accelerated
identification process in Figures 6 and 7. The synchronization error for irregular bursting is
shown on Figure 8.

Figure 6. Identification process for bursting regime, γ = 1.

Figure 7. Identification process for irregular bursting regime, γ = 1.

Figure 8. Synchronization error.
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5.3. Robustness of Identification with Respect to Noise

Suppose time-varying ultimately bounded disturbance v(t). Let us propagate v(t) in
the first equation on Model (1). If vmax is small enough [31], then the adaptive system will
have globally bounded solutions. The identification process for the system with disturbance
is presented in Figure 9.

Figure 9. Identification with bounded Gaussian disturbance (µ = 4, σ2 = 0.01).

6. Conclusions

A new algorithm for Hindmarsh–Rose neuron model parameter estimation based on
the Lyapunov functions approach and reduced adaptive observer was proposed. It allows
one to estimate the parameters of the population of the neurons if they are synchronized.
The rigorous stability conditions for synchronization and identification were presented.
Future work will be aimed at taking into account disturbances and measurement noises.
It would be also interesting to use the Hindmarsh–Rose model instead of the FitzHugh–
Nagumo model for studying gamma oscillation activity in the brain [32]. In future research,
it is also planned to apply the results of the works [33], where the state filter for a time
delay state-space system with unknown parameters from noisy observation information
was proposed, and [34], where a gradient approach for the adaptive filter design based on
the fractional-order derivative and a linear filter was developed.
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Abbreviations
The following abbreviations are used in this manuscript:

EEG electroencephalogram
FHN FitzHugh–Nagumo
FKYL feedback Kalman–Yakubovich lemma
HR Hindmarsh–Rose
LTI linear time-invariant
ML Morris–Lecar
ODE ordinary differential equation
PE persistent excitation
SG speed gradient
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