
����������
�������

Citation: Sütő, J. An Improved Image

Enhancement Method for Traffic Sign

Detection. Electronics 2022, 11, 871.

https://doi.org/10.3390/

electronics11060871

Academic Editor: Abdeldjalil

Ouahabi

Received: 1 February 2022

Accepted: 7 March 2022

Published: 10 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

An Improved Image Enhancement Method for Traffic
Sign Detection
József Sütő

Department of IT Systems and Networks, University of Debrecen, H-4028 Debrecen, Hungary;
suto.jozsef@inf.unideb.hu

Abstract: Traffic sign detection (TRD) is an essential component of advanced driver-assistance
systems and an important part of autonomous vehicles, where the goal is to localize image regions
that contain traffic signs. Over the last decade, the amount of research on traffic sign detection and
recognition has significantly increased. Although TRD is a built-in feature in modern cars and several
methods have been proposed, it is a challenging problem due to the high computational demand, the
large number of traffic signs, complex traffic scenes, and occlusions. In addition, it is not clear how
can we perform real-time traffic sign detection in embedded systems. In this paper, we focus on image
enhancement, which is the first step of many object detection methods. We propose an improved
probability-model-based image enhancement method for traffic sign detection. To demonstrate the
efficiency of the proposed method, we compared it with other widely used image enhancement
approaches in traffic sign detection. The experimental results show that our method increases the
performance of object detection. In combination with the Selective Search object proposal algorithm,
the average detection accuracies were 98.64% and 99.1% on the GTSDB and Swedish Traffic Signs
datasets. In addition, its relatively low computational cost allows for its usage in embedded systems.

Keywords: color spaces; image enhancement; probability model; traffic sign detection

1. Introduction

In recent years, traffic scene analysis has become a hot topic due to the large invest-
ment into autonomous vehicles and advanced driver-assistance systems. Two of its key
components are traffic sign detection (TSD) and recognition (TSR). TSD is the process of
localizing signs on an input image. In other worlds, TSD methods generate candidate
regions of interest (ROIs) that are likely to contain traffic signs. Then, the detected image
regions are used to feed the traffic sign recognizer (or classifier), which tries to identify
the exact type of sign. Therefore, the efficiency of sign detection has a huge impact on the
output of the whole sign recognition process.

TSD is still a challenging problem. Although the industrial and academic research
community has achieved remarkable results in TSD, it is not a fully accomplished task yet.
The difficulty comes from complex traffic scenes, including weather conditions, variable
illumination, environmental noise, sign color fading, etc.

The information content of road signs is coded into their visual appearance. They are
designed to be unique and to have distinguishable features, such as color and shape. In
order to standardize traffic signs in different countries, an international agreement (Vienna
Convention of Road Signs and Signals) was accepted in 1968. The agreement was signed
by 52 countries, of which 31 are European countries [1]. The Vienna Convention classified
road signs into eight categories, such as danger, priority, mandatory, etc.

Typically, signs have a simple shape and eye-catching color. For example, the most
common colors of European traffic signs are red and blue. These features are the basis
of several earlier published TSD methods [2]. However, color and shape features are
vulnerable for various reasons. The original color slightly changes due to damage over the

Electronics 2022, 11, 871. https://doi.org/10.3390/electronics11060871 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11060871
https://doi.org/10.3390/electronics11060871
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics11060871
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11060871?type=check_update&version=1

Electronics 2022, 11, 871 2 of 13

years or moving cameras. In addition, color perception is sensitive to other factors, such as
distance from the sign, reflection, time of day, and weather conditions. Such effects make
the image segmentation process hard.

In order to overcome these difficulties, researchers have used different image en-
hancement techniques to suppress backgrounds and highlight traffic signs on images. In
some cases, image enhancement is based on color-channel thresholding in the RGB (red,
green, and blue channels) or other color spaces, such as HSI (hue, saturation, and intensity
channels) [3]. In this case, the efficiency of image enhancement strongly depends on a set
of thresholds defined by the researcher. In other cases, researchers have used color-channel
normalization or even machine learning methods for image enhancement. Since we have
more choices for image enhancement, a question may arise: which of these methods are the
most efficient?

In this paper, we are focus on image enhancement and propose an improved probability-
model-based method. Its efficiency was tested in the traffic sign detection problem. The
purpose of this method is to reject uninteresting regions (background) and keep the original
traffic sign shape. Our experimental results show that the proposed image enhancement
method improves the performance of an object detector.

2. Public Traffic Sign Detection Benchmarks

Freely available traffic sign detection databases provide information sources for TSD
system development. Some databases contain multimodal data acquired from different
types of sensors [4], but most of them include only road scene images. Such databases can
be used not just as data sources but also as benchmarks. All of them contain annotated
(labelled) images about driving scenes, which can be used to train and test detector models.
In recent years, most TSD algorithms have been developed with public databases because
doing so allows for objective comparison of TSD methods. As a data source, we used two
popular databases, namely the German Traffic Sign Detection Benchmark (GTSDB) and the
Swedish Traffic Signs database.

The GTSDB, made for a 2013 competition, is the most popular database on this
topic [5]. It was one of the first benchmarks of the traffic sign detection problem. The
dataset consists of natural traffic scenes captured during daytime and at night under
different weather conditions. It includes 900 images (stored in ppm format), which contain
1206 traffic signs. Out of the 900 images, 600 images constitute the training set, whereas
the remaining 300 images are the test set. All images have a 1360 × 800 pixel resolution
with zero to six traffic signs varying in size between 16 × 16 and 128 × 128 pixels. The
database and additional information about it are available on the official website: https:
//benchmark.ini.rub.de/gtsdb_dataset.html (accessed on 13 November 2021).

The Swedish Traffic Signs dataset was captured on Swedish highways and city
roads [6]. The image-capture device was a 1.3 megapixel color camera located on a car’s
dashboard. The whole dataset consists of 20,000 images, but only 20% of them are la-
belled. The labelled part is divided into two sets. In this work, we used the second set
as our test data. A detailed description of the Swedish Traffic Signs dataset can be found
at https://www.cvl.isy.liu.se/research/datasets/traffic-signs-dataset/ (accessed on 24
February 2022).

3. Related Work

In recent years, a large number of TSD approaches based on machine learning and
machine vision have been published. These approaches can be classified according to
the used region (or object) proposal algorithm. Several earlier methods use the sliding-
window approach, where a fixed-size “window” goes through horizontally and vertically
on different scaled versions of an image. For example, Wang et al. [7] used this region
proposal technique twice (coarse and fine filtering) to detect candidate image regions where
signs could be located. In the coarse-filtering step, the window size was 20 × 20 pixels,

https://benchmark.ini.rub.de/gtsdb_dataset.html
https://benchmark.ini.rub.de/gtsdb_dataset.html
https://www.cvl.isy.liu.se/research/datasets/traffic-signs-dataset/

Electronics 2022, 11, 871 3 of 13

whereas in the fine-filtering step, it was 40 × 40 pixels. Both steps were performed 22 times
on downscaled images with a scaling factor of 1.1.

In most sliding-window-based object localization approaches, the authors have not
used image enhancement; therefore, features have been extracted from the original image
regions. Although the sliding-window approach has high precision if both the window
and the step size are relatively low, its time requirement is high as a result of the huge
amount of image patches that need to be analyzed. As an example, a sliding window with
a 1.1 scale factor, 5 pixel step size, and 20 × 20 kernel generates 242,748 image patches on
a 1360 × 800 pixel image. Therefore, this is not the best option for real-time traffic sign
detection in today’s embedded systems.

On the other hand, the researchers have combined image enhancement method(s)
with shape matching, Maximum Stable Region (MSER), Selective Search, EdgeBox, or other
types of object proposal algorithms to filter out traffic signs from the image.

Other researchers have applied color-channel thresholding for image enhancement.
Berkaya et al. [8] applied different color thresholding for red and blue colors in the RGB
color space. Some researchers converted RGB images into other color spaces because the
RGB space is easily affected by lighting conditions. Yakimov [9] used three threshold values
in the HSV color space to filter out the red color of traffic signs. Other researchers used
thresholding in the HSI rather than the HSV color space [10]. Ellehyani et al. [11] defined
different threshold values to the red and blue colors for all channels of the HSI space. In
the below formulas, fh(x,y), fs(x,y), and fi(x,y) are the hue, saturation, and intensity values,
respectively, of a pixel in the HSI color space, whereas f *(x,y) is the output image.

f ∗(x, y) =


1, i f (0 ≤ fh(x, y) ≤ 10 ∪ 300 ≤ fh(x, y) ≤ 360) ∩

25 ≤ fs(x, y) ≤ 250 ∩ 30 ≤ fi(x, y) ≤ 200
0, otherwise

(1)

f ∗(x, y) =


1, i f 190 ≤ fh(x, y) ≤ 260 ∩ 70 ≤ fs(x, y) ≤ 250 ∩

56 ≤ fi(x, y) ≤ 128
0, otherwise

(2)

Another group of researchers think that simple thresholding is not effective and fixed
threshold values may cause failure in the ROI extraction step. Therefore, they applied
different color-channel normalization techniques in order to highlight the (typically red
and blue) colors of traffic signs.

The authors of [12,13] tested RGB normalization. In addition to RGB normalization,
Salti et al. [12] applied separated-channel normalization image enhancement approaches
with and without color stretching. In (3) and (4), fr(x,y), fg(x,y), and fb(x,y) are the red, green,
and blue intensities of a pixel.

f ∗(x, y) = max

(
0,

min
(

fr(x, y)− fb(x, y), fr(x, y)− fg(x, y)
)

fr(x, y) + fg(x, y) + fb(x, y)

)
(3)

f ∗(x, y) = max
(

0,
fb(x, y)− fr(x, y)

fr(x, y) + fg(x, y) + fb(x, y)

)
(4)

Contrast stretching was applied to all channels of an RGB image to deal with under-
or overexposure. In both cases, the RGB image was transformed into a single-channel
image where the suitable channel (that characterizes the sought signal) was enhanced (e.g.,
blue in the case of mandatory signs). The authors concluded that in the case of red and
white signs, color stretching is not necessary and both image enhancement techniques
have the same efficiency. However, in the case of mandatory signs, channel normalization
brought detection improvement. In their work, the enhanced image was the input for
MSER segmentation. MSER can detect stable regions or blobs on gray-valued images
wherein the distribution of pixel values has low variance.

Electronics 2022, 11, 871 4 of 13

The authors of [14,15] followed a similar approach as that used in [12], with an RB-
channel-normalized image as the input for the MSER segmentation algorithm. Since blue
and red are the two dominant background colors of traffic signs, Kurnianggoro et al. [15]
tried to leave only the maximum value of those color channels (5).

f ∗(x, y) = max
(

fr(x, y)
fr(x, y) + fg(x, y) + fb(x, y)

,
fb(x, y)

fr(x, y) + fg(x, y) + fb(x, y)

)
(5)

Some researchers have used more complex approaches for image enhancement, with
a shallow machine learning algorithm responsible for pixel categorization. Liang et al. [16]
and Wu et al. [17] transformed an original RGB color image to a grayscale image with a
Support Vector Machine (SVM). In their approach, positive colors (e.g., red in the danger
category) are mapped to high intensities, and negative colors (e.g., all colors except red in
the danger category) are mapped to low intensities. They categorized all colors as positive
or negative (binary classification). The colors of the traffic signs belong to the positive
category, labelled +1, whereas other colors belong to the negative category, labelled −1. In
the case of prohibitory and danger signs, the red border pixels are treated as the positive
color, whereas in the case of mandatory signs, the blue background pixels are treated as
positive pixels. The binary training data generated in this way was used to train an SVM.
After that, color pixel mapping was performed by the trained SVM according to (6), where
frgb(x,y) is the red, green, and blue intensities; and f *(x,y) is the gray intensity of a pixel at
coordinate (x,y).

f ∗(x, y) =


1 i f svm

(
frgb(x, y)

)
> 1

−1 i f svm
(

frgb(x, y)
)
< −1

svm
(

frgb(x, y)
)

, otherwise

(6)

This image enhancement method helped to them in the multiscale template matching
process. Our image enhancement algorithm also requires such a training dataset, but its
training and decision time is less than that of an SVM.

Beyond SVMs, other shallow machine learning methods are also used for pixel clas-
sification. For example, Ellahyani and Ansari [18] combined mean-shift (MS) clustering
and random forest. MS is used as an image preprocessing step because the direct usage
of random forest for all pixels would be a time-consuming process. Yang et al. [19,20]
defined a probability model to compute the likelihood that a pixel falls into a particular
color category. To construct the model, they manually collected training samples (pixel
values) and converted them into the Ohta space. Their probability model is based on the
Bayes rule, where the color class distribution is modelled by Gaussian distribution (7). In
(7), foh(x,y) is the normalized components of a pixel (features) in the Ohta space, and µi and
Σi are the mean vector and covariance matrix, respectively, of class Ci.

P(foh(x, y)|Ci) =
1

2π|Σi|1/2 exp
(
−1

2
(foh(x, y)− µi)Σ−1

i (foh(x, y)− µi)
T
)

(7)

Our proposed approach is a similar naïve Bayes model. However, in spite of [19,20],
we discretized all used features (color representation), and their distributions are modelled
by their probability mass function. In addition, used features are selected according to their
Kullback-Leibler (KL) divergence between classes.

A small group of researchers have focused only on specific traffic sign categories. For
example, Wang et al. [21] and Gudigar et al. [22] proposed specific image enhancement
methods for the detection of traffic signs with red rim. This condition covers prohibitory and
danger signs. The authors of [21] converted RGB images into the HSV color space, where
they exploited the color information of neighboring pixels. In the hue and saturation color
planes, they determined the red degree of a color (fd(x,y)) with the following calculation:

Electronics 2022, 11, 871 5 of 13

fd(x, y) =


fs(x, y) sin(fh(x,y)−300)

sin(60) , i f fh(x, y) ∈ [300, 360)

fs(x, y) sin(60)− fh(x,y)
sin(60) , i f fh(x, y) ∈ [0, 60]

0, otherwise

(8)

Thereafter, for each pixel, they have taken a square window wx,y centered on fd(x,y) with
radius Br and calculated the normalized red degree (fnd(x,y)) with the following formula:

fnd(x, y) =
fd(x, y)− µ

(
wx,y

)
σ
(
wx,y

) (9)

where µ(wx,y) and σ(wx,y) are the mean and variance of the red degrees of all the pixels
in wx,y. However, this method works only for a subset of traffic signs. Moreover, the
window-wise calculation slows down the image enhancement process. In this article, we
propose a generally usable image enhancement method.

4. Materials and Methods

In most images, the color of traffic signs is rather distinct from the background,
making it an intuitive feature for traffic sign detection. In order to highlight traffic signs
in images, we propose an improved probability model for image enhancement. Its task is
to compute the likelihood that a pixel falls into one of the N classes, where one of them is
the background.

The model requires a training set wherein image pixels are categorized into N classes.
To test the efficiency of the model, 150 training images of the GTSDB and 100 images from
the first labelled set of the Swedish Traffic Signs dataset were used as training data. All
images were manually annotated with the Labelme software. Figure 1 shows such an
annotated image with three classes (N = 3): red-colored traffic sign (c1), blue-colored traffic
sign (c2), and background (c3). As can be seen in the image, rectangular regions were
selected wherein all pixels belong to one of the three classes.

Electronics 2022, 11, x FOR PEER REVIEW 5 of 13

𝑓𝑑(𝑥, 𝑦) =

{

 𝑓𝑠(𝑥, 𝑦)

𝑠𝑖𝑛(𝑓ℎ(𝑥, 𝑦) − 300)

sin (60)
, 𝑖𝑓 𝑓ℎ(𝑥, 𝑦) ∈ [300, 360)

𝑓𝑠(𝑥, 𝑦)
𝑠𝑖𝑛(60) − 𝑓ℎ(𝑥, 𝑦)

sin (60)
, 𝑖𝑓 𝑓ℎ(𝑥, 𝑦) ∈ [0, 60]

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (8)

Thereafter, for each pixel, they have taken a square window wx,y centered on fd(x,y)

with radius Br and calculated the normalized red degree (fnd(x,y)) with the following for-

mula:

𝑓𝑛𝑑(𝑥, 𝑦) =
𝑓𝑑(𝑥, 𝑦) − 𝜇(𝑤𝑥,𝑦)

𝜎(𝑤𝑥,𝑦)
 (9)

where μ(wx,y) and σ(wx,y) are the mean and variance of the red degrees of all the pixels in

wx,y. However, this method works only for a subset of traffic signs. Moreover, the window-

wise calculation slows down the image enhancement process. In this article, we propose

a generally usable image enhancement method.

4. Materials and Methods

In most images, the color of traffic signs is rather distinct from the background, mak-

ing it an intuitive feature for traffic sign detection. In order to highlight traffic signs in

images, we propose an improved probability model for image enhancement. Its task is to

compute the likelihood that a pixel falls into one of the N classes, where one of them is the

background.

The model requires a training set wherein image pixels are categorized into N classes.

To test the efficiency of the model, 150 training images of the GTSDB and 100 images from

the first labelled set of the Swedish Traffic Signs dataset were used as training data. All

images were manually annotated with the Labelme software. Figure 1 shows such an an-

notated image with three classes (N = 3): red-colored traffic sign (c1), blue-colored traffic

sign (c2), and background (c3). As can be seen in the image, rectangular regions were se-

lected wherein all pixels belong to one of the three classes.

Figure 1. An annotated image (c1—light green rectangles, c2—green rectangles, c3—red rectangles).

Before training, all of the collected pixels were converted from the RGB color space

into other color representations for use as feature vectors. Formally, an frgb(x,y) pixel is

represented with an fx,y vector, where fi is the i-th feature:

Figure 1. An annotated image (c1—light green rectangles, c2—green rectangles, c3—red rectangles).

Before training, all of the collected pixels were converted from the RGB color space
into other color representations for use as feature vectors. Formally, an frgb(x,y) pixel is
represented with an fx,y vector, where fi is the i-th feature:

fx,y =
(

f 1, f 2, . . . , f m
)

(10)

Electronics 2022, 11, 871 6 of 13

Our probability model is actually a naïve Bayes machine learning algorithm. It calcu-
lates the probability that the fx,y feature vector belongs to class ci with the Bayesian rule:

P
(
ci
∣∣fx,y

)
=

P
(
fx,y
∣∣ci
)

P(ci)

P
(
fx,y
) , i = 1, 2, . . . , N (11)

In the above formula, the probability of a feature vector (P(fx,y)) is a constant value
in an image. Therefore, P(fx,y) can be eliminated. In addition, if we decompose vector
elements, (11) can be rewritten as:

P
(
ci
∣∣fx,y

)
∼ P(ci)

m

∏
k=1

P
(

f k
∣∣∣ci

)
, i = 1, 2, . . . , N (12)

In (12), P(ci) is the prior class probability, whereas P(fk|ci) is the class-conditional
density. The class-conditional density is approximated with the probability mass function
of fk for ci. P(ci) can be easily computed from the number of samples in classes n(ci):

P(ci) =
n(ci)

∑N
k=1 n(ck)

i = 1, 2, . . . , N (13)

This model generates twice as many probability maps (matrices with the same dimen-
sion as the original image) as classes other than the background if we use different features
in different classes. Since we used different features to separate red and blue colors from
background (Section 5), we have four probability maps. The class probability maps are
denoted with C0, C1, C2,0, C2,1, where C2,i is the background to class i. Those C values can
be calculated by a simple algorithm shown in Algorithm 1. It is important to note that
the above equations describe pixel-wise classification, whereas the algorithm below uses
matrix operations in order to speed up the execution time.

Algorithm 1: Get class probability map.

Require: Pci, Pfci
1 , Pfci

2 , . . . Pfci
m, image

Ensure: Ci
S0 ← image_space_conversion(image)
S1 ← image_space_conversion(image)
. . .
Sn ← image_space_conversion(image)
F1 ← image_space_conversion(S0)[0]
F2 ← image_space_conversion(S0)[1]
. . .
Fm ← image_space_conversion(Sn)[j]

Ci ← Pci
m
∏

k=1
Pfci

k [vectorize(Fk)]

Ci ← reshape_2d(Ci)

The elements of maps indicate the probability that a pixel at coordinate (x,y) belongs
to class ci. Therefore, we need to keep only those probability values in C0 and C1 that are
higher than the probability of background:

C∗0(x, y) =
{

C0(x, y) i f C0(x, y) > C2,0(x, y)
0, otherwise

(14)

C∗1(x, y) =
{

C1(x, y) i f C1(x, y) > C2,1(x, y)
0, otherwise

(15)

Electronics 2022, 11, 871 7 of 13

To construct the grayscale output image, we add the normalized forms of C*0 to C*1
and rescale the sum with the following formula, where ε is a very small number to avoid
division by zero:

C =

⌊
256
(

C∗0
C0 + C2,0 + ε

+
C∗1

C1 + C2,1 + ε

)⌋
(16)

5. Results and Discussion
5.1. Feature Vector Construction

The above-described probability model works properly if “good” features are used
for the representation of a color pixel. In order to find appropriate features, we tested the
color channels of the RGB, HSV, LAB, and LUV color spaces. Moreover, we introduced the
discretized version of the two normalized Ohta space components [23]:

f ∗(x, y) = 255
(

1 +
fr(x, y)− fb(x, y)

fr(x, y) + fg(x, y) + fb(x, y)

)
(17)

f ∗(x, y) = 255
(

1 +
fg(x, y)− fr(x, y)− fb(x, y)
fr(x, y) + fg(x, y) + fb(x, y)

)
(18)

To filter out less useful channels (the distribution of the feature in the color class is
similar to its background class), we used Kullback-Leibled (KL) divergence. With KL, the
dissimilarity of the class-conditional densities for a given color channel can be measured in
the following form:

KL
(

P(f
∣∣ci)
∣∣∣∣P(f

∣∣cj)
)
=

M

∑
k=1

P(f = k|ci)log2
P(f = k|ci)

P(f = k
∣∣cj)

(19)

In our case, those features with low divergence between C0, C2,0 and C1, C2,1 were
omitted. The results of this investigation are presented in Table 1.

Table 1. KL divergence of color channels.

Feature KL(P(f|c0)||P(f|c2)) KL(P(f|c1)||P(f|c2))

RGB–R channel 0.67 0.58
RGB–G channel 0.60 0.89
RGB–B channel 0.42 1.55
HSV–H channel 2.45 3.22
HSV–S channel 2.59 3.80
HSV–V channel 0.36 0.58
LAB–L channel 0.63 1.05
LAB–A channel 4.18 1.22
LAB–B channel 1.24 4.30
LUV–L channel 0.60 1.06
LUV–U channel 3.62 2.41
LUV–V channel 0.92 3.37

(17) 3.16 7.56
(18) 5.21 2.78

Some results in Table 1 can be explained by the properties of color spaces. For example,
the R, G, and B channels of the RGB color space show low dissimilarity between classes.
This can be explained by the fact that the RGB space is strongly affected by lighting
conditions because all channels carry brightness information.

The HSV color space consists of hue, saturation, and value channels. Here, the H
channel is used to set color, the S channel describes the amount of gray in a color, and the L
channel describes the brightness of the color. In the LAB color space, the L channel encodes
brightness information, whereas A and B encode color. Similarly, to the LAB space, the L
channel also carries brightness in the LUV space.

Electronics 2022, 11, 871 8 of 13

If we take a look at Table 1, we can conclude that those channels which carry infor-
mation about color brightness are not useful for our purpose. Moreover, it is clear that
the usefulness of a channel depends on the color. Consequently, we used only those color
channels as features for the pixel representation for which KL divergence is higher than
3 (bold values). Namely, the A, U, and the normalized Ohta space components in the case
of c0, and the H, S, B, V, and the first component of the Ohta space components for c1. The
flowchart in Figure 2 illustrates the feature selection process to construct probability maps.

Electronics 2022, 11, x FOR PEER REVIEW 8 of 13

encodes brightness information, whereas A and B encode color. Similarly, to the LAB

space, the L channel also carries brightness in the LUV space.

If we take a look at Table 1, we can conclude that those channels which carry infor-

mation about color brightness are not useful for our purpose. Moreover, it is clear that the

usefulness of a channel depends on the color. Consequently, we used only those color

channels as features for the pixel representation for which KL divergence is higher than 3

(bold values). Namely, the A, U, and the normalized Ohta space components in the case

of c0, and the H, S, B, V, and the first component of the Ohta space components for c1. The

flowchart in Figure 2 illustrates the feature selection process to construct probability

maps.

Figure 2. Flowchart of probability map construction.

Before investigating the efficiency of the proposed image enhancement method, we

wanted to visually illustrate its effect. For the illustration, a test image from the GTSDB

dataset was used (Figure 3).

Figure 2. Flowchart of probability map construction.

Before investigating the efficiency of the proposed image enhancement method, we
wanted to visually illustrate its effect. For the illustration, a test image from the GTSDB
dataset was used (Figure 3).

Electronics 2022, 11, x FOR PEER REVIEW 8 of 13

encodes brightness information, whereas A and B encode color. Similarly, to the LAB

space, the L channel also carries brightness in the LUV space.

If we take a look at Table 1, we can conclude that those channels which carry infor-

mation about color brightness are not useful for our purpose. Moreover, it is clear that the

usefulness of a channel depends on the color. Consequently, we used only those color

channels as features for the pixel representation for which KL divergence is higher than 3

(bold values). Namely, the A, U, and the normalized Ohta space components in the case

of c0, and the H, S, B, V, and the first component of the Ohta space components for c1. The

flowchart in Figure 2 illustrates the feature selection process to construct probability

maps.

Figure 2. Flowchart of probability map construction.

Before investigating the efficiency of the proposed image enhancement method, we

wanted to visually illustrate its effect. For the illustration, a test image from the GTSDB

dataset was used (Figure 3).

Figure 3. Cont.

Electronics 2022, 11, 871 9 of 13
Electronics 2022, 11, x FOR PEER REVIEW 9 of 13

Figure 3. A test image and its enhanced version (gray scale).

5.2. Efficiency Investigation of the Proposed Image Enhancement Method with Selective Search

To investigate the efficiency of the proposed method, we used the Selective Search

region proposal algorithm [24]. Selective Search is a widely used algorithm in object de-

tection research that examines an input image and then identifies where potential objects

might be located. As test data, the 300 test images of the GTSDB and the second labelled

set of the Swedish Traffic Signs dataset were used. All of the test images passed through

the Selective Search algorithm, and the proposed bounding boxes (image regions) were

evaluated with intersection over union (IoU) metrics. IoU is calculated as the area of over-

lap between the true and the predicted bounding boxes divided by the union of their area.

IoU is also widely used in object detection research to measure the localization accuracy

of an object detector [25]. In traffic sign and other object detection problems, a common

approach is that the detection is correct if the IoU > 0.5 between true (ground truth) bound-

ing box(es) and at least one predicted box [26]. Formally, it can be written as:

𝐴𝑐𝑐𝑑𝑒𝑡 =
1

𝑁
∑

1

𝑀𝑖
∑𝑑(𝑡𝑟𝑢𝑒_𝑏𝑜𝑥𝑖,𝑗 , 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑏𝑜𝑥𝑒𝑠𝑖)

𝑀𝑖

𝑗=1

𝑁

𝑖=1

 (20)

𝑑(𝑏𝑦, 𝒃) = {
1, 𝑖𝑓 ∃ [𝐼𝑜𝑈(𝑏𝑦, 𝑏𝑥) > 0.5], 𝑏𝑥𝜖 𝒃

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (21)

where N is the number of test images, Mi is the number of ground truth boxes on the i-th

test image, and d() is a function with binary output.

We measured the efficiency of the model on the danger, prohibitory, and mandatory

categories of the GTSDB and on the visible signs in warning, prohibitory, and mandatory

categories of the Swedish dataset. As references, we used three other image enhancement

methods [11,12,15]. In order to obtain a binary output from the different image enhance-

ment methods, a low threshold (0.1) was introduced in the two cases [12,15] where the

output was gray to convert it into binary. Since Selective Search requires color images, the

binary output was used as a mask. This means that only those pixel values of the original

image were kept where the mask contains a 1 value at that location. The results of this

investigation on the two databases can be found in Tables 2 and 3.

Table 2. Detection accuracy (20) of Selective Search on GTSDB data.

Method Danger Prohibitory Mandatory

Without enhancement 0.9206 0.9503 0.9184

HSI thresholding [9] 1.0 0.9068 0.6735

Single-channel norm. [13] 0.9206 0.9503 0.9184

Multichannel norm. [10] 0.9841 0.9876 0.9592

Figure 3. A test image and its enhanced version (gray scale).

5.2. Efficiency Investigation of the Proposed Image Enhancement Method with Selective Search

To investigate the efficiency of the proposed method, we used the Selective Search
region proposal algorithm [24]. Selective Search is a widely used algorithm in object
detection research that examines an input image and then identifies where potential objects
might be located. As test data, the 300 test images of the GTSDB and the second labelled
set of the Swedish Traffic Signs dataset were used. All of the test images passed through
the Selective Search algorithm, and the proposed bounding boxes (image regions) were
evaluated with intersection over union (IoU) metrics. IoU is calculated as the area of overlap
between the true and the predicted bounding boxes divided by the union of their area. IoU
is also widely used in object detection research to measure the localization accuracy of an
object detector [25]. In traffic sign and other object detection problems, a common approach
is that the detection is correct if the IoU > 0.5 between true (ground truth) bounding box(es)
and at least one predicted box [26]. Formally, it can be written as:

Accdet =
1
N

N

∑
i=1

1
Mi

Mi

∑
j=1

d
(
true_boxi,j, predicted_boxesi

)
(20)

d
(
by, b

)
=

{
1, i f ∃ [IoU

(
by, bx

)
> 0.5], bxε b

0, otherwise
(21)

where N is the number of test images, Mi is the number of ground truth boxes on the i-th
test image, and d() is a function with binary output.

We measured the efficiency of the model on the danger, prohibitory, and mandatory
categories of the GTSDB and on the visible signs in warning, prohibitory, and mandatory
categories of the Swedish dataset. As references, we used three other image enhancement
methods [11,12,15]. In order to obtain a binary output from the different image enhance-
ment methods, a low threshold (0.1) was introduced in the two cases [12,15] where the
output was gray to convert it into binary. Since Selective Search requires color images, the
binary output was used as a mask. This means that only those pixel values of the original
image were kept where the mask contains a 1 value at that location. The results of this
investigation on the two databases can be found in Tables 2 and 3.

Electronics 2022, 11, 871 10 of 13

Table 2. Detection accuracy (20) of Selective Search on GTSDB data.

Method Danger Prohibitory Mandatory

Without enhancement 0.9206 0.9503 0.9184
HSI thresholding [9] 1.0 0.9068 0.6735

Single-channel norm. [13] 0.9206 0.9503 0.9184
Multichannel norm. [10] 0.9841 0.9876 0.9592
Our probability model 1.0 1.0 0.9592

Table 3. Detection accuracy (20) of Selective Search on the Swedish dataset.

Method Warning Prohibitory Mandatory

Without enhancement 1.0 0.9739 0.9307
HSI thresholding [9] 0.8814 0.9596 0.6238

Single-channel norm. [13] 1.0 0.9739 0.9307
Multichannel norm. [10] 0.9492 0.9857 0.9406
Our probability model 1.0 0.9929 0.9802

As Tables 2 and 3 show, our proposed method achieved the highest detection accuracy
in the danger and prohibitory categories on the GTSDB dataset, whereas it produced the
same accuracy as the “multichannel normalization” in the mandatory category. In the case
of the Swedish dataset, it achieved the highest accuracy in both the prohibitory and the
mandatory categories.

Another interesting metric is the number of bounding boxes generated by Selective
Search, which can be found in Tables 4 and 5.

Table 4. The number of bounding boxes generated on GTSDB data.

Method Danger Prohibitory Mandatory

Without enhancement 4689 3787 4462
HSI thresholding [9] 977 777 1180

Single-channel norm. [13] 4689 2794 4461
Multichannel norm. [10] 2458 2792 3205
Our probability model 2001 2664 2858

Table 5. The number of bounding boxes generated on the Swedish dataset.

Method Warning Prohibitory Mandatory

Without enhancement 5421 36,944 20,464
HSI thresholding [9] 1729 12,553 6054

Single-channel norm. [13] 5424 36,986 20,477
Multichannel norm. [10] 11,757 79,765 30,952
Our probability model 2699 14,400 8046

As can be seen in Tables 4 and 5, the object proposal algorithm generated a smaller
number of bounding boxes with our method than in combination with single and mul-
tichannel normalization or without image enhancement. This indicates that our model
suppresses the background more efficiently than the abovementioned techniques.

Beyond detection accuracy, the average IoU value is also widely used to measure
the quality of object detection. In the work of Arcos-Garcia et al. [27], this metrics was
associated with to the most popular deep object detectors (with different feature extractors)
measured on GTSDB, namely Faster R-CNN, R-FCN, SSD, and YOLO v2. We used their
work as a reference to compare the average IoU value produced by the image enhancement
method in combination with Selective Search. The result can be found in Table 6. In [27],
the calculation only takes into consideration IoU values of true positive bounding boxes. In
our case, it means the most accurate box out of the proposed boxes.

Electronics 2022, 11, 871 11 of 13

Table 6. Average IoU values in percentage.

Method Danger Prohibitory Mandatory

Faster R-CNN Resnet 50 85.04 82.52 81.21
Faster R-CNN Resnet 101 87.05 87.29 85.58

Faster R-CNN Inception V2 85.62 82.73 79.66
Faster R-CNN Inception Resnet V2 90.11 91.37 89.16

R-FCN Resnet 101 86.95 87.93 85.37
SSD Inception V2 85.76 81.76 80.85

SSD Mobilenet 81.11 80.49 78.51
YOLO V2 75.82 73.96 74.66

Selective Search 78.33 78.49 77.50
Prob. model + Selective Search 84.75 84.23 81.07

As can be seen in Table 6, probability-model-based image enhancement increased
the average IoU value of Selective Search. Moreover, their combination achieved similar
average IoU to that of deep object detectors.

5.3. Time Requirement of the Proposed Method

Since the real-time operation is a very important requirement in many applications,
we need to take into consideration the time requirement of the image enhancement method.
Therefore, we measured the average runtime of our probability model on the test images
of the GTSDB dataset. The runtime was measured on a general computer with Intel(R)
Core(TM) i7-5200KF 3.6 GHz CPU. We used the Python development environment, where
implementation of the algorithm and test framework is strongly based on the Numpy and
OpenCV libraries.

We also measured the time requirement of the image enhancement method in another
device, which can be used as a controller in embedded systems. Beyond microcontrollers,
systems on chips (SoCs) can be used for this task. SoCs provide higher memory storage
and computational capacity than general microcontrollers; therefore, SoC-based devices
are a better choice for object detection in embedded systems. As our other test device, we
used a Raspberry Pi 4 (Raspberry Pi Foundation, Cambridge, UK), where the central unit is
a Broadcom BCM2711 Quad Core Cortex-A72 1.5 GHz SoC. Although the Raspberry Pi 4 is
a mini computer, it is can also be used as a controller in embedded systems owing to its
programmable pins [28,29]. The average processing time of the GTSDB test images on the
two test devices can be found in Table 7.

Table 7. Average image processing time on the two test devices.

Device Avg. Processing Time (s)

Computer 0.07
Raspberry Pi 4 1.48

The image enhancement method also works well on Raspberry Pi, but its execution
time is approximately 20 times slower than that on the test computer. Therefore, we can
conclude that real-time operation strongly depends on the application type in SoC-based
embedded systems.

6. Conclusions

In this paper, we proposed a probability-model-based image enhancement method
to further improve the precision of traffic sign detection. It is worth highlighting that the
presented method can be used not just for traffic sign detection but also for other object
detection problems.

In terms of image enhancement, the model requires a training phase wherein the used
feature probabilities are calculated on an annotated training dataset. In most cases, it is

Electronics 2022, 11, 871 12 of 13

better to perform the training phase in a general computer environment. If we transfer the
precalculated feature probability values to embedded systems, the image enhancement
process can also be performed on those devices due to the relatively low computation cost.

Compared to existing machine learning-based image enhancement methods, the
proposed probability model provides faster color image enhancement than other SVMs or
artificial neural network-based approaches and requires less training time. Since features
are discretized and modelled by their probability mass function, the model’s decision speed
is increased compared to those probability models where continuous feature distributions
are used.

To find “good” features for the preferred color and background separation, we mea-
sured the KL divergence of color-channel distributions between classes. This analysis
showed that the channels of the HSV, LAB, and LUV color spaces, as well as the discretized
Ohta space components, can be used with different efficiency for the separation of red and
blue colors of traffic signs from the background.

To measure the efficiency of the proposed image enhancement method, the Selective
Search algorithm was used as object proposal in combination with the IoU metric. Although
Selective Search is a relatively slow object proposal algorithm, it has high precision, which
is the main reason why we chose it. Our experimental results on the public datasets
demonstrate that the presented probability model can improve the precision of object
detection and efficiently eliminates background. The average detection accuracy was
98.64% and 99.1% on the GTSDB and Swedish Traffic Signs datasets, respectively.

Funding: Project no. TKP2020-NKA-04 was implemented with support provided by the National
Research, Development and Innovation Fund of Hungary, financed under the 2020-4.1.1-TKP2020
funding scheme. This work also has been supported by the NKFIH-OTKA PD 22 (143159) program.

Data Availability Statement: Data are available in a publicly accessible website that does not issue
DOIs. Publicly available datasets were analyzed in this study. Data can be found at https://
benchmark.ini.rub.de/gtsdb_news.html (accessed on 24 February 2022).

Conflicts of Interest: The author declares no conflict of interest.

References
1. Wali, S.B.; Abdullah, M.A.; Hannan, M.A.; Hussain, A.; Samad, S.A.; Ker, P.J.; Mansor, M.B. Vision-based traffic sign detection

and recognition systems: Current trends and challenges. Sensors 2019, 19, 2093. [CrossRef] [PubMed]
2. Saadna, Y.; Behloul, A. An overview of traffic sign detection and classification methods. Int. J. Multimed. Inf. Retr. 2017, 6, 193–210.

[CrossRef]
3. Liu, C.; Li, S.; Chang, F.; Wang, Y. Machine vision based traffic sign detection methods: Review, analysis, and perspectives. IEEE

Access 2019, 7, 86578–86596. [CrossRef]
4. Mimouna, A.; Alouani, I.; Ben Khalifa, A.; El Hillali, Y.; Taleb-Ahmed, A.; Menhaj, A.; Ouahabi, A.; Ben Amara, N.E. OLIMP: A

heterogeneous multimodal dataset for advanced environment perception. Electronics 2020, 9, 560. [CrossRef]
5. Houben, S.; Stallkamp, J.; Salmen, J.; Schlipsing, M.; Igel, C. Detection of traffic signs in real-word images: The German Traffic

Sign Detection Bechmark. In Proceedings of the 2013 International Joint Conference on Neural Networks, Dallas, TX, USA, 4–9
August 2013.

6. Larsson, F.; Felsberg, M. Using Fourier descriptors and spatial models for traffic sign recognition. In Proceedings of the 17th
Scandinavian Conference on Image Analysis, Lund, Sweden, 23–25 May 2011.

7. Wang, G.; Ren, G.; Wu, Z.; Thao, Y.; Jiang, L. A robust, coarse-to-fine traffic sign detection method. In Proceedings of the 2013
International Joint Conference on Neural Networks, Dallas, TX, USA, 4–9 August 2013.

8. Berkaya, S.K.; Gunduz, H.; Ozsen, O.; Akinlar, C.; Gunal, S. On circular traffic sign detection and recognition. Expert Syst. Appl.
2016, 48, 67–75. [CrossRef]

9. Yakimov, P. Traffic sign detection using tracking with prediction. In Proceedings of the International Conference on E-Business
and Telecommunications, Colmar, France, 20–22 July 2015; Springer: Cham, Switzerland, 2015; pp. 454–467.

10. Huang, S.C.; Li, C.Y.; Lin, H.Y.; Tai, W.L. Traffic sign detection and recognition using image features and convolutional neural
network. In Proceedings of the 2016 International Conference on Electronics, Information, and Communications, Danang,
Vietnam, 27–30 January 2016; pp. 1–4.

11. Ellehyani, A.; Ansari, M.E.; Jaafari, I.E. Traffic sign detection and recognition based on random forest. Appl. Soft Comput. 2016, 46,
805–815. [CrossRef]

https://benchmark.ini.rub.de/gtsdb_news.html
https://benchmark.ini.rub.de/gtsdb_news.html
http://doi.org/10.3390/s19092093
http://www.ncbi.nlm.nih.gov/pubmed/31064098
http://doi.org/10.1007/s13735-017-0129-8
http://doi.org/10.1109/ACCESS.2019.2924947
http://doi.org/10.3390/electronics9040560
http://doi.org/10.1016/j.eswa.2015.11.018
http://doi.org/10.1016/j.asoc.2015.12.041

Electronics 2022, 11, 871 13 of 13

12. Salti, S.; Petrelli, A.; Tombari, F.; Fioraio, N.; Di Stefano, L. A traffic sign detection pipeline based on interest region extraction. In
Proceedings of the 2013 International Joint Conference on Neural Networks, Dallas, TX, USA, 4–9 August 2013.

13. Luo, H.; Yang, Y.; Bei, T.; Wu, F.; Fan, B. Traffic sign recognition using a multi-task convolutional neural network. IEEE Trans.
Intell. Transp. Syst. 2017, 19, 1100–1111. [CrossRef]

14. Jang, C.; Kim, H.; Park, E.; Kim, H. Data debiased traffic sign recognition using MSERs and CNN. In Proceedings of the 2016
International Conference on Electronics, Information, and Communications, Danang, Vietnam, 27–30 January 2016; pp. 1–4.

15. Kurnianggoro, W.L.; Hariyono, J.; Jo, K.H. Traffic sign recognition system for autonomous vehicle using cascade SVM classifier.
In Proceedings of the 2014 International Conference on Multisensor Fusion and Information Integration for Intelligent Systems,
Dallas, TX, USA, 28–29 September 2014; pp. 4081–4086.

16. Liang, M.; Yuan, M.; Hu, X.; Li, J.; Liu, H. Traffic sign detection by ROI extraction and histogram features-based recognition. In
Proceedings of the 2013 International Joint Conference on Neural Networks, Dallas, TX, USA, 4–9 August 2013.

17. Wu, Y.; Liu, Y.; Li, J.; Liu, H.; Hu, X. Traffic sign detection based on convolutional neural networks. In Proceedings of the 2013
International Joint Conference on Neural Networks, Dallas, TX, USA, 4–9 August 2013.

18. Ellahyani, A.; Ansari, M.E. Mean shift and log-polar transform for road sign detection. Multimed. Tools Appl. 2017, 76, 24495–24513.
[CrossRef]

19. Yang, Y.; Luo, H.; Xu, H.; Wu, F. Towards real-time traffic sign detection and classification. IEEE Trans. Intell. Transp. Syst. 2015,
17, 2022–2031. [CrossRef]

20. Yang, Y.; Wu, F. Real-time traffic sign detection via color probability model and integral channel features. In Proceedings of the
Chinese Conference on Pattern Recognition, Changsha, China, 17–19 November 2014; pp. 545–554.

21. Wang, G.; Ren, G.; Jiang, L. Hole-based traffic sign detection method for traffic signs with red rim. Vis. Comput. 2014, 30, 539–551.
[CrossRef]

22. Gudigar, A.; Chokkadi, S.; Rakhavendra, U.; Acharya, U.R. Multiple thresholding and subspace based approach for detection and
recognition of traffic signs. Multimed. Tools Appl. 2017, 76, 6973–6991. [CrossRef]

23. Vertan, C.; Boujemaa, N. Color texture classification by normalized color space representation. In Proceedings of the 15th
International Conference on Pattern Recognition, Barcelona, Spain, 3–7 September 2000; pp. 580–583.

24. Uijlings, J.R.R.; Van de Sende, K.E.A.; Gevers, T.; Smeulders, A.W.M. Selective search for object detection. Int. J. Comput. Vis. 2013,
104, 154–171. [CrossRef]

25. Zhu, Y.; Zhang, C.; Zhou, D.; Wang, X.; Bai, X.; Liu, W. Traffic sign detection and recognition using fully convolutional network
guided proposals. Neurocomputing 2016, 214, 758–766. [CrossRef]

26. Sütő, J. Embedded system-based sticky paper trap with deep learning-based insect-counting algorithm. Electronics 2021, 10, 1754.
[CrossRef]

27. Arcos-Garcia, A.; Alvarez-Garcia, J.A.; Soria-Morillo, L.M. Evaluation of deep neural networks for traffic sign detection systems.
Neurocomputing 2018, 316, 332–344. [CrossRef]

28. Suto, J. Real-time lane line tracking algorithm to mini vehicles. Transp. Telecommun. J. 2021, 22, 461–470. [CrossRef]
29. Kunik, Z.; Bykowski, A.; Marciniak, T.; Dabrowski, A. Raspberry Pi based complete embedded system for iris recognition. In

Proceedings of the 2017 Signal Processing: Algorithms, Architectures, and Applications, Poznan, Poland, 22–24 September 2017;
pp. 263–268.

http://doi.org/10.1109/TITS.2017.2714691
http://doi.org/10.1007/s11042-016-4207-3
http://doi.org/10.1109/TITS.2015.2482461
http://doi.org/10.1007/s00371-013-0879-0
http://doi.org/10.1007/s11042-016-3321-6
http://doi.org/10.1007/s11263-013-0620-5
http://doi.org/10.1016/j.neucom.2016.07.009
http://doi.org/10.3390/electronics10151754
http://doi.org/10.1016/j.neucom.2018.08.009
http://doi.org/10.2478/ttj-2021-0036

	Introduction
	Public Traffic Sign Detection Benchmarks
	Related Work
	Materials and Methods
	Results and Discussion
	Feature Vector Construction
	Efficiency Investigation of the Proposed Image Enhancement Method with Selective Search
	Time Requirement of the Proposed Method

	Conclusions
	References

