
����������
�������

Citation: Kwon, H.-Y.; Kim, T.; Lee,

M.-K. Advanced Intrusion Detection

Combining Signature-Based and

Behavior-Based Detection Methods.

Electronics 2022, 11, 867. https://

doi.org/10.3390/electronics11060867

Academic Editor: Shinichi

Yamagiwa

Received: 24 January 2022

Accepted: 8 March 2022

Published: 9 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Advanced Intrusion Detection Combining Signature-Based and
Behavior-Based Detection Methods †

Hee-Yong Kwon 1 , Taesic Kim 2 , and Mun-Kyu Lee 1,*

1 Department of Electrical and Computer Engineering, Inha University, Incheon 22212, Korea;
heeyong.kr@gmail.com

2 Department of Electrical Engineering and Computer Science, Texas A&M University-Kingsville, Kingsville,
TX 78363, USA; taesic.kim@tamuk.edu

* Correspondence: mklee@inha.ac.kr; Tel.: +82-32-860-7456
† This paper is an extended version of our work presented at ICNGC 2021, entitled “Hee-Yong Kwon; Taesic

Kim; Mun-Kyu Lee. A Hybrid Intrusion Detection Method for Industrial Control Systems”, in which we
presented a hybrid intrusion detection method. In this full version, we conducted additional experiments
to fine-tune various parameters and anomaly detection criteria. Consequently, we further improved the
performance of anomaly detection. In addition, we also demonstrated the efficiency of the proposed method
in terms of execution time.

Abstract: Recently, devices in real-time systems, such as residential facilities, vehicles, factories,
and social infrastructure, have been increasingly connected to communication networks. Although
these devices provide administrative convenience and enable the development of more sophisticated
control systems, critical cybersecurity concerns and challenges remain. In this paper, we propose a
hybrid anomaly detection method that combines statistical filtering and a composite autoencoder to
effectively detect anomalous behaviors possibly caused by malicious activity in order to mitigate the
risk of cyberattacks. We used the SWaT dataset, which was collected from a real water treatment sys-
tem, to conduct a case study of cyberattacks on industrial control systems to validate the performance
of the proposed approach. We then evaluated the performance of the proposed hybrid detection
method on a dataset with two time window settings for the composite autoencoder. According to
the experimental results, the proposed method improved the precision, recall, and F1-score by up
to 0.008, 0.067, and 0.039, respectively, compared to an autoencoder-only approach. Moreover, we
evaluated the computational cost of the proposed method in terms of execution time. The execution
time of the proposed method was reduced by up to 8.03% compared to that of an autoencoder-only
approach. Through the experimental results, we show that the proposed method detected more
anomalies than an autoencoder-only detection approach and it also operated significantly faster.

Keywords: autoencoder; neural network; cybersecurity; industrial control system; intrusion detection

1. Introduction

Recently, a wide variety of devices have been connected to communication networks
in real-time control systems, such as residential facilities, vehicles, factories, and social
infrastructure. These devices or systems were physically controlled in the past, but ad-
ministrators can now manage and control them efficiently and remotely because of this
increased network connectivity. However, this convenience can also result in critical con-
cerns and challenges regarding cybersecurity. In this study, we considered the cybersecurity
of industrial control systems (ICSs). ICSs are used to control industrial processes, such
as manufacturing, product handling, production, and distribution. The majority of these
systems monitor complex industrial processes and critical infrastructure that deliver power,
water, transportation, manufacturing, and other essential services. Owing to this fundamen-
tal importance, ICSs are considered as major targets for cybercriminals. For example, many
attacks have been conducted targeting supervisory control and data acquisition (SCADA)

Electronics 2022, 11, 867. https://doi.org/10.3390/electronics11060867 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11060867
https://doi.org/10.3390/electronics11060867
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-1517-6925
https://orcid.org/0000-0001-6392-1446
https://orcid.org/0000-0003-4423-7467
https://doi.org/10.3390/electronics11060867
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11060867?type=check_update&version=2

Electronics 2022, 11, 867 2 of 19

systems. In 2010, Iran’s nuclear power plant was attacked with the Stuxnet worm [1] and
Ukraine’s Chernobyl nuclear power plant was attacked with Petya ransomware in 2016 [2].
In 2020, SolarWinds, Honda Motors, and the University of Vermont Health Network were
attacked with SUNBURST malware [3], Ekans ransomware [4], and Ryuk ransomware [5],
respectively. Recently, in 2021, Acer was attacked with ransomware by an affiliate of REvil,
also known as Sodinokibi [6], and Colonial Pipeline was attacked with ransomware by the
Darkside cybercriminal group [7]. In particular, attackers who compromise the system se-
curity of cyber-physical systems (CPSs) can potentially manipulate actuators, inject forged
or compromised data, and install malware to cause malfunctions that damage or destroy
the system by penetrating an ICS via a communication network. Furthermore, the rapid
implementation of the Internet of Things (IoT) in ICSs has significantly increased the attack
surfaces of typical systems. Due to these security concerns and challenges, the identification
of potential threats and the development of defense mechanisms to mitigate cyberattacks
targeting ICSs are critical to leverage the proliferation of Industry 4.0 transformations.
Therefore, cybersecurity is becoming an essential component of contemporary ICSs.

A wide variety of network security applications have been developed either to prevent
attacks on ICSs before they are launched or to simply defeat standard attacks by closing the
associated vulnerabilities. However, adversaries can perform attacks using vulnerabilities
that have not been previously disclosed publicly, i.e., zero-day attacks. Therefore, to protect
systems from attack, administrators cannot rely solely on network security solutions. To
enhance ICS security, the development of robust and effective anomaly detection systems
that are based on the live monitoring of operational system states is required. Intrusion
detection systems (IDS), which were designed to detect attacks by identifying potentially
harmful anomalies in sensor data or actuator behavior, are among the most efficient
security measures available. Typically, IDSs are categorized into two types based on
their detection methods: signature- and behavior-based methods. The signature-based
approach detects anomalies by comparing system data to the features of known attacks,
whereas the behavior-based approach detects and analyzes malicious or unusual patterns
of behavior. In general, as the amount of anomalous data is significantly less than that of
normal data, many anomaly detection methods extract features from normal data and use
them to detect anomalous behavior. Recently, autoencoder-based models have attracted
considerable attention as unsupervised methods that only require normal data to perform
training [8–12]. However, the use of autoencoder-based methods involving complex neural
networks can be an excessive approach for some obvious attacks that could have been
detected by simple statistical measures. Therefore, a lightweight signature-based method
can also be adopted to reduce the burden of the autoencoder by filtering obvious attacks
using predefined statistical rules.

The contributions of this study are as follows:

• We propose a hybrid anomaly detection method that combines signature- and behavior-
based methods to improve detection performance. For the signature-based detection,
we used the standard deviations computed from normal data as the classification
criteria;

• We evaluate the detection performance of the proposed method and present exper-
imental results demonstrating that it outperformed the existing autoencoder-only
method on the secure water treatment (SWaT) dataset. In addition, we compare the
performance of the proposed method to those of previous detection methods that
applied various machine learning approaches;

• We evaluate the execution time of the proposed method and demonstrate that it
significantly accelerated the detection task compared to the previous autoencoder-
only method. We proved the efficiency of the proposed method using a generalized
numerical analysis.

The present work is an extended version of a paper presented at ICNGC 2021 [13].
The new contributions of this extended version are threefold. First, we considered two time
window settings for the composite autoencoder to evaluate its performance, only one of

Electronics 2022, 11, 867 3 of 19

which was considered in [13]. Next, we analyzed the influence of various filtering bounds
on the proposed method and further improved its detection performance by selecting the
optimal threshold. Finally, we demonstrated the practical advantages of the proposed
method through the measurements of its execution time, which showed that it performed
faster than the existing method.

2. Related Works
2.1. Network Intrusion Detection

Depending on the installation location, IDSs can be classified as network-based
IDSs (NIDSs) and host-based IDSs (HIDSs) [14]. An NIDS is installed at a specific point in
the network, such as a gateway, where it can observe the network packets of a target system.
It then detects an attack, intrusion or abnormal behavior targeting the system by analyzing
the network packets generated by multiple devices in the system. In contrast, an HIDS is
individually installed on each device constituting the target system. It then detects attacks
by analyzing the status of the corresponding device. However, typical devices, such as
sensors or actuators equipped in ICSs, are too severely resource-constrained to effectively
perform as HIDSs. Therefore, we focus on NIDSs as a more realistic approach for ICS.

There has been extensive research on anomaly detection in the literature regarding
NIDSs. Liu et al. proposed a detection method based on isolation forests [15]. They
efficiently detected anomalies based on the natural observation that anomalies are easier to
isolate from others than from normal data points. In [16], the authors proposed a clustering
method based on Gaussian mixture models for denial of service (DoS) attack detection.
Experiments were performed to identify the differences between a normal operation data
point and the DoS-affected operation data points. In 2018, LinkedIn provided a lightweight
anomaly detection library for time series data [17]. For given time series data, the library
provides anomaly detection results and a time window during which an anomaly might
have occurred. In addition, it helps to find correlation coefficients for two time series
datasets. In 2021, Toldinas et al. proposed an NIDS using multistage deep learning image
recognition [18]. They transformed network traffic features into four-channel (red, green,
blue, and alpha) images and classified the images using a pre-trained ResNet50 model.
Another study [19] proposed a detection method based on long short-term memory (LSTM).
They used stacked LSTM networks for anomaly detection in time series data and validated
the method using four real-world datasets. Another study [20] in 2016 proposed an encoder–
decoder scheme for anomaly detection (EncDec-AD) that was based on LSTM. The method
encodes a multi-sensor time series input to a vector representation and then decodes this
vector representation to the original input data. Lee et al. proposed a zero-positive machine
learning system called Greenhouse that does not use anomalous data for training [21]. In
the study, the authors used differences between predicted and observed values and labeled
the observed data as an anomaly when the difference exceeded a threshold.

For ICS security, Marti et al. used a one-class support vector machine (OCSVM) to
detect anomalies in turbomachinery [22]. In that study, noisy, unreliable, and inconsistent
data were pruned for efficient anomaly detection using a time series segmentation algo-
rithm. When the difference between the input and predicted data was significant, alerts
were sent. Filonov et al. proposed a fault detection method for multivariate industrial
time series data [23]. The model architecture included two stacked LSTMs and it was
validated using a mathematical model of part of a real gas–oil plant. In 2019, Kim et al.
proposed an anomaly detection method using a sequence-to-sequence model (seq2seq) [24]
and validated its performance using the SWaT dataset [25]. This method encodes the input
data to a latent vector and predicts the future values of the input by decoding the latent
vector. Another study [14] proposed a CNN-based anomaly detection method for payloads
of ICS network traffic. They converted packet payloads into images and then performed
detection processes on single packet and packet sequence bases.

Electronics 2022, 11, 867 4 of 19

2.2. Network Intrusion Datasets

To support active ICS intrusion detection research, various network intrusion datasets
have been released to the public. KDD Cup 1999 is a dataset provided by MIT Lincoln
Labs [26]. This dataset provides nine weeks of raw transmission control protocol (TCP)
data dumps for a local area network (LAN) and includes a wide variety of intrusions that
are simulated in a military network environment, including DoS, unauthorized access
from a remote machine, unauthorized access to local superuser privileges, surveillance,
and other probing. Lemay and Fernandez provided a dataset that includes malicious and
non-malicious Modbus traffic for SCADA networks [27]. The dataset was generated in
a SCADA sandbox to provide a dataset that is more similar to the real environment. In
addition, they used electrical network simulators and employed real attack tools in the
Modbus networks. Another study [28] provided datasets that were generated from two
laboratory-scale systems: a gas pipeline and a water storage tank. The authors captured
network flow records using a network data logger to monitor the Modbus traffic and
process the measurement features. A set of 28 attacks was used to provide malicious
data, which were grouped into reconnaissance, response injection, command injection,
and DoS. Another study [29] shared a dataset of a laboratory-scale gas pipeline system.
The dataset includes labeled network transactions that were generated from the testbed,
encompassing normal situations and 35 cyberattacks. Shin et al. published a hardware-
in-the-loop (HIL)-based augmented ICS security (HAI) dataset (version 1.0) in 2020 [30].
The authors generated HAI 1.0 from a testbed composed of a GE turbine, an Emerson
boiler, and FESTO water treatment systems centered on an HIL simulator. The dataset was
collected over 15.5 days of continuous operation, where the data of 10 days recorded only
normal operations and the remaining 5.5 days included 38 attacks. In addition, data from
59 points in the testbed were gathered and the attacks were labeled using four attack tags.
However, the SWaT dataset [25] is one of the most referenced datasets in the literature of
ICS NIDSs [11,24,31–33]. The SWaT dataset was used in this study. The SWaT dataset is
explained in detail in the following subsection.

2.3. Water Treatment ICS

In this study, we validated the performance of the proposed method using the secure
water treatment (SWaT) dataset [25], which comprises data that are representative of those
collected by a water treatment ICS. The SWaT dataset was generated and is provided
by iTrust, of the Singapore University of Technology and Design, as a publicly available
cyber-physical system (CPS) dataset. They constructed a testbed reflecting a real-world
environment for water treatment systems, from which they collected the data.

Figure 1 presents the overall process of the SWaT testbed, which consists of six stages
numbered from P1 to P6. The details of each stage are as follows:

• P1: (Water storage) Raw water is collected and stored in a tank;
• P2: (Chemical dosing) When the quality of the water is not within acceptable limits,

chemical dosing is performed;
• P3: (Fine filtration) Undesirable materials are removed using fine filtration mem-

branes;
• P4: (Dechlorination) The remaining chlorine is largely destroyed using ultraviolet

lamps;
• P5: (Reverse osmosis) Inorganic impurities are reduced using a reverse osmosis sys-

tem;
• P6: (Ready for distribution) Potable water is stored in a specialized tank and is then

ready for distribution.

Electronics 2022, 11, 867 5 of 19

Figure 1. The whole process of the SWaT testbed [25]. Reproduced with permission from Springer
Nature Customer Service Centre GmbH: Springer, Cham, Critical Information Infrastructures Security
2016, “A dataset to Support Research in the Design of Secure Water Treatment Systems,” Jonathan
Goh, Sridhar Adepu, Khurum Nazir Junejo, and Aditya Mathur, © Springer International Publishing
AG 2017 (2017).

Throughout the whole process, data from 24 sensors, 27 actuators, and an internal
network were gathered. The data from sensors and actuators were measured every second,
along with about 350 samples of network traffic data. The SWaT dataset was collected
over 11 days of continuous operation, of which the data from the first 7 days recorded only
normal operations, whereas the remaining 4 days included attack data. In addition, each
record in the dataset was labeled as representing either a normal or an attack condition. In
total, 36 attacks were launched on the SWaT testbed, which were classified into four types,
as shown below:

1. Single Stage Single Point (SSSP): an attack on a single sensor/actuator value in any
single stage (e.g., Attack 1 on LIT101 in P1 stage);

2. Single Stage Multi-Point (SSMP): an attack on multiple sensor/actuator values in any
single stage (e.g., Attack 16 on MV101 and LIT101 in P1 stage);

3. Multi-Stage Single Point (MSSP): an attack on a single sensor/actuator value over
multiple stages (e.g., Attack 21 on P101 in P1 stage and LIT301 in P3 stage);

4. Multi-Stage Multi-Point (MSMP): an attack on multiple sensor/actuator values over
multiple stages (e.g., Attack 17 on UV401 in P4 stage and AIT502, P501 in P5 stage).

For SSSP, SSMP, MSSP, and MSMP, there were 26, 4, 2, and 4 attacks, respectively.
In general, an ICS is maintained by various process control loops (PCLs). Figure 2

presents a simple diagram of the SWaT ICS testbed, including the six processes, P1
through P6, where each process is controlled by a corresponding programmable logic
controller (PLC) that is connected to a system administrator through a communication
network. First, the system administrator sets the target values based on their ICS operation
plan using a human–machine interface (HMI). For example, they can set a target for the
amount of water treated per unit of time. Then, these target values are transferred to a
system controller, such as a PLC or a distributed control system (DCS), through a communi-
cation network between the HMI and PLCs/DCSs. Second, the controller inputs calculated
values for actuators in the ICS that are based on the target values. The actuators are set by
received values. Then, the ICS operates the system and measures the current values using
embedded sensors. Third, these measured sensor values are transferred to the system con-
troller and the controller calculates the actuator values again to achieve the target values. In

https://link.springer.com/book/10.1007/978-3-319-71368-7

Electronics 2022, 11, 867 6 of 19

the second and third steps, the values of the actuators and sensors are transferred through
a communication network between the PLCs/DCSs and the actuators/sensors (see the
blue and red lines in Figure 2.) Finally, the recalculated actuator values are transferred to
the ICS and this process loop is iterated continuously during the operation of the ICS. The
SWaT dataset includes attacks targeting both sensors and actuators. As an example of a
sensor attack, the dataset includes an incident in which attacks set the FIT-401 sensor value
to 0, which stops the ultraviolet dechlorination process. In an actuator attack recorded in
the dataset, attackers shut off the P-302 pump, which in turn stops the water supply to the
T-401 water tank.

Figure 2. An example of the feedback loops in an ICS (the SWaT testbed example).

As the SWaT dataset is publicly available, many researchers have used it to perform
case studies for methods involving ICS technologies. In 2017, Goh et al. used this dataset
to conduct research on anomaly detection based on a LSTM learning architecture [31].
Although they showed that LSTM is useful for detecting anomalies, they only focused on
data collected from stage P1 and omitted the remaining five stages. Lin et al. proposed a
method in 2018 that combined timed learning automata and Bayesian network inference
to perform anomaly detection and then evaluated it using the SWaT dataset [32]. Their
method, TABOR, showed better performance than deep neural network (DNN) and SVM
learning models. In 2020, Mieden et al. proposed a method to detect anomalies that was
tested on the SWaT dataset using only the network traffic data [33]. They used 16 network
features out of 19 in total and implemented an LSTM as an anomaly detection model. In
this study, following on from many previous works [11,31,32,34,35], we used the time series
data of the sensors and actuators.

2.4. Composite Autoencoder

An autoencoder (AE) is a representative unsupervised learning architecture. Typically,
this type of neural network encodes input data to a lower-dimensional vector (i.e., less
latent variables) and decodes latent variables to restore the input data. Due to this structure,
AE networks are trained to generate latent variables that represent the features of input
data well. With this property, AEs have been typically used to perform dimensionality
reduction [36,37]. Although they typically perform well at decoding data that are similar to
training data, AEs tend to produce poor reconstruction outputs when the input data differ
significantly from the training data. Therefore, anomaly detection models are generally
trained only on normal data, assuming that normal and attack data are different. Then,
the agent passes newly received data to the model to determine the extent to which it is

Electronics 2022, 11, 867 7 of 19

anomalous. Detection models are designed to output a small test error for normal data and
to output a large test error otherwise. By setting an appropriate threshold to distinguish
normal input from attack input, the agent can effectively detect anomalies. As a result
of this functionality, AEs have been considered in many studies on anomaly detection.
In 2017, Aminanto et al. proposed a fully unsupervised method to detect impersonation
attacks in a Wi-Fi network [8]. Their proposed method was composed of a stacked AE that
was designed to extract features and a k-means clustering method that was used to detect
malicious data. In 2020, Park et al. used an AE to identify attacks targeting an unstaffed
aerial vehicle [9]. The authors trained an AE to reconstruct an original input vector as an
output and they recognized DoS and GPS spoofing attacks by measuring reconstruction
loss.

For ICS security, An et al. proposed an anomaly detection method based on variational
AEs in 2015 [10]. The authors evaluated their method using the MNIST [38] and KDD Cup
1999 network intrusion dataset [26]. Similarly, in [11], Wang et al. proposed a composite
autoencoder (CAE) model for anomaly detection in ICSs. This model was evaluated
using the SWaT dataset [25]. In addition, Chang et al. proposed an anomaly detection
method combining k-means clustering and a convolutional AE [12]. Their method was
evaluated using two ICS log datasets based on data representing a gas pipeline [29] and
a water storage tank [28]. In 2020, Jones et al. used both signature-based and behavior-
based methodologies independently to monitor and detect anomalous traffic between an
aggregator and a single photovoltaic inverter caused by network-based cyberattacks [39].
In this research, the authors considered an autoencoder as a behavior-based detection
method.

In this study, we adopted the CAE model proposed in [11], in which an LSTM was
used as a building block. The whole model is shown in Figure 3. A CAE is a neural
network incorporating a single encoder and two decoders. This model can overcome the
shortcomings that occur when running a reconstruction or prediction model alone [40]. The
first decoder of a CAE is designed to learn to reconstruct the input data, whereas the second
decoder learns to predict the data for the next step. This combination of overlapping time
steps renders a CAE particularly useful for anomaly detection for time series data, such as
the SWaT dataset.

Figure 3. An example of a composite autoencoder.

For example, let Xt = (xt, xt+1, . . . , xt+w−1) ∈ Rn×w be an input data point, which is
the time series data at time t. Each xi is composed of n features and Xt is composed of w

Electronics 2022, 11, 867 8 of 19

consecutive xi’s, where w is the time window size. Xt+w is the next time step data following
Xt. By modifying the equation for the general autoencoder in [41], the three components of
a CAE can be defined as follows:

φ : Rn×w → Rl×w,

ψ1 : Rl×w → Rn×w,

ψ2 : Rl×w → Rn×w,

where φ is an encoder, ψ1 is a decoder for reconstruction, and ψ2 is a decoder for prediction.
For an input data point Xt, the CAE encodes Xt to the latent variables
Ut = (ut, ut+1, . . . , ut+w−1) = φ(Xt), where each ui is composed of l features. Next, it
decodes Ut, producing two outputs: Yt = (yt, yt+1, . . . , yt+w−1) = ψ1 ◦ φ(Xt) for recon-
struction and Zt+w = (zt+w, zt+w+1, . . . , zt+2w−1) = ψ2 ◦ φ(Xt) for prediction. Then, φ, ψ1,
and ψ2 are optimized to satisfy:

argmin
φ,ψ1,ψ2

(Loss(Xt, ψ1 ◦ φ(Xt)) + Loss(Xt+w, ψ2 ◦ φ(Xt))),

where Loss is the loss function, which is explained in detail in Section 4.

3. Proposed Method

In this section, we detail the proposed hybrid anomaly detection method in which
anomalous data are first filtered by a statistical analysis unit before a CAE is used to
reduce false negatives. Figure 4 presents the overall flow of the proposed hybrid anomaly
detection method when a sensor in Process 1 of the water treatment ICS is attacked. The
water treatment system treats water and collects the values transmitted by the sensors
and actuators. Then, a security gateway gathers the values generated by the system
and sends them to a cloud server, i.e., a water treatment system monitoring and control
system, which then reports the system data via the industrial supervisory control and data
acquisition (SCADA) network. The cloud server stores the system data gathered from the
water treatment system and performs analytics based on the measured amount of treated
water to improve the system plan. Sophisticated attackers in possession of extensive
knowledge of these systems, e.g., advanced persistent threats (APT) [42] and insider
threats [43], may persist in attempting to attack the ICS system, aiming to compromise
its security and gain the ability to damage or destroy the system or to forge its data. To
take these advanced attackers into account, we assume that an attacker has already gained
the ability to control the sensors and actuators. The detection process is performed in the
security gateway. After receiving the data values from the water treatment system, the
gateway determines whether the state of the system is interpreted as normal using the
proposed hybrid detection method.

When the gateway receives the data from the system, the anomaly detection process
begins. In the process, the data are classified by a signature-based anomaly detection
method in which a statistical analysis is performed. When the data are labeled as normal,
they are passed to a behavior-based anomaly detection model; we adopted the CAE model
proposed in [11] as the behavior-based anomaly detection model. After the detection
processes are performed, the security gateway labels the data. When the data sample is
labeled as normal, it is sent to the cloud server; otherwise, the security gateway reports
that an attack has been detected to the system administrator.

Electronics 2022, 11, 867 9 of 19

Figure 4. The overall flow of the proposed hybrid anomaly detection method.

In the signature-based anomaly detection process, the input data are filtered based on
statistical features. To filter malicious data, we use the standard deviation of the normal
data, comprising a time series sequence (d1, d2, . . .) where each di is sampled at one-second
intervals. Each di is composed of n elements, vi,1, vi,2, . . . , vi,n, where n is the number
of sensors and actuators in the dataset. Let D = (dt, dt+1, . . . , dt+w−1) be the length w
of a segment of the data beginning at a specific time t, where w is the window size. In
the training stage, n standard deviations SD

1 , SD
2 , . . . , SD

n are computed for each possible
segment D of normal data, where SD

j = σ
(
vt,j, vt+1,j, . . . , vt+w−1,j

)
is the standard devia-

tion of w consecutive values vt,j, vt+1,j, . . . , vt+w−1,j for the j-th sensor or actuator. Then,
MinSj = min

D
SD

j and MaxSj = max
D

SD
j are computed over all possible segments D. For

example, we can consider D = (d1, d2, . . . , dw), (d6, d7, . . . , dw+5), (d11, d12, . . . , dw+10), . . .
so that the windows overlap every 5 s. The dataset is explained in detail in the next section.
MinSj and MaxSj are the lower and upper bounds of the standard deviation of the w
consecutively reported normal values for sensor/actuator j, respectively.

When a test input segment composed of w consecutive samples
Xi = (di, di+1, . . . , di+w−1) is processed, the method computes P1, P2, . . . , Pn, where Pj is a
boolean predicate such that Pj = True when MinSj ≤ σ

(
vi,j, vi+1,j, . . . , vi+w−1,j

)
≤ MaxSj ,

otherwise Pj = False. The input is labeled as normal when P1 ∩ P2 ∩ · · · ∩ Pn = True, i.e.,
the standard deviations of all sensors/actuators are within the normal range; otherwise, it
is filtered as an attack. When the input is labeled as normal, it is forwarded to the CAE for
the next intrusion detection process to further reduce false negative rates. Then, when the
output error of the CAE is greater than a threshold, it is labeled as an attack; otherwise, it is
labeled as normal.

Electronics 2022, 11, 867 10 of 19

4. Implementation and Validation

In this section, we validate the performance and evaluate the execution time of the pro-
posed method. We also compare them to those of the CAE-only method. The experimental
environment used to implement the proposed method primarily comprised a machine with
an Intel Xeon Gold 6242 CPU @ 2.8 GHz with 256 GB RAM and an NVIDIA TITAN RTX
GPU with 24 GB of GDDR6 memory, which was used to train and validate the proposed
model. The CAE model was implemented on the Keras library version 2.4.3 and scikit-learn
version 0.22.2.post1.

Before training the model, the data preprocessing was performed as follows. First, as
in [11], we removed unstable data columns with markedly different distributions between
the training and testing datasets, including AIT201, P201, FIT601, P601, P602, and P603.
Second, the training dataset was scaled to the interval (0, 1) using the MinMaxScaler class
of the scikit-learn library and the testing dataset was also scaled using the minimal and
maximal values of each column obtained from the training dataset. Third, we divided the
dataset using a sliding window. For the training dataset, we overlapped the windows to
maximize the performance as presented in Figure 5, but the test dataset was simply divided
without an overlap. In this experiment, we set the window size w to 120 with an overlap
size of 115, following the setup in [11].

Figure 5. The division of the training dataset using a sliding window.

We implemented the CAE model based on an LSTM building block, which is consid-
ered to be a suitable architecture for time series data. Although we referred to the model
from [11], we implemented our own model that was as similar as possible to that described
in [11] because the code of [11] was not publicly available. With a trial and error approach,
the hyperparameters used for the model were selected as follows:

• #Neurons in encoder layers 1 and 2: 64 and 32, respectively;
• #Neurons in latent variables: either 8 or 16 (we provided two versions.);
• #Neurons in decoder layers 1 and 2: 32 and 64, respectively;
• Activation function: hyperbolic tangent;
• Loss function: mean squared error;
• Optimizer: Adam optimizer.

A CAE model outputs two decoding results for a single input segment: one for
reconstruction and the other for prediction. Therefore, we calculated two errors from the
results. We let Xt be a test input segment starting at time t, i.e., Xt = (dt, dt+1, . . . , dt+w−1),
where each di was composed of n elements, vi,1, vi,2, . . . , vi,n. For the input segment Xt, the
CAE outputted a reconstruction result Yt =

(
d′t, d′t+1, . . . , d′t+w−1

)
and a prediction result

Zt =
(
d′′t , d′′t+1, . . . , d′′t+w−1

)
.

Then, we could calculate two errors erecon
t and epred

t at time t from the outputs of the
CAE and the overall error Et as follows:

erecon
t = (|vt,1 − v′t,1|, |vt,2 − v′t,2|, . . . , |vt,n − v′t,n|),

epred
t = (|vt,1 − v′′t,1|, |vt,2 − v′′t,2|, . . . , |vt,n − v′′t,n|),

Et = erecon
t + epred

t . (1)

Electronics 2022, 11, 867 11 of 19

We note that we previously set the time windows for the reconstruction and prediction
errors to different periods in the preliminary version of this work [13]. That is, the overall
error E′t used in [13] was calculated by:

E′t = erecon
t + epred

t+w. (2)

To set the threshold for attack detection, we applied an exponentially weighted moving
average method (EWMA) and a power technique according to [11]. Then, the smoothed
error SEt and p-power error PEt were calculated as follows:

SEt =

{
0, if t = 0,
αEt + (1− α)SEt−1, otherwise,

α = 1− exp
ln(0.5)

H ,

PEt =
1
n

n

∑
j=1
|SEj

t|
p,

where SEj
t is the j-th element in the n-dimensional vector SEt and we set the half-life period

H = w and the parameter of p-powered error as p = 4, according to [11]. When the
calculated p-powered error PEt was greater than or equal to the threshold Vthre, the data at
time t were classified as anomalous, where the Vthre was the maximal PEt determined in
the training stage. That is, the anomaly flag At was defined by:

At =

{
1, PEt ≥ Vthre,
0, otherwise.

As the input segment Xt was the time series data for w seconds, we obtained w labels
for Xt. Finally, when there was at least one attack label in the input, it was classified as an
attack.

We adopted True Positive (TP), True Negative (TN), False Positive (FP), and False
Negative (FN) rates as performance metrics, as presented in Table 1. We also adopted
the commonly used representative metrics of precision = TP

TP+FP , recall = TP
TP+FN , and

F1-score = 2×Precision×Recall
Precision+Recall .

Table 1. The confusion matrix.

True Class Classified as Anomaly Classified as Normal

Anomaly True Positive (TP) False Negative (FN)

Normal False Positive (FP) True Negative (TN)

Figure 6 shows the confusion matrices for the hybrid methods with 8 and 16 dimen-
sions of latent variables. The precision, recall, F1-score, and accuracy were computed based
on these matrices. Table 2 presents the experimental results of the performances of the
CAE-only method, the hybrid method in [13] with the error E′t (Equation (2)), and the
hybrid method with the error Et (Equation (1)). The rows labeled “CAE-only method”
demonstrate the results when the anomaly detection was performed using only a CAE. As
mentioned above, the code for the CAE-only model in [11] was not available. Therefore,
we tried to implement the CAE model as closely as possible to the description in [11]. Then,
we compared the performance of this implementation to that of the proposed approach.
We validated the performance in comparison to two CAE models with 8 and 16 different
dimensions of latent variables. In addition, we applied the proposed hybrid method to each
model and measured their performance. According to the results, the recall and F1-score
for the hybrid method 1 improved by up to 0.078 and 0.025, respectively, and the precision

Electronics 2022, 11, 867 12 of 19

decreased by up to 0.067 compared to those of the CAE-only method. For example, when
the dimension of latent variables was 8, the increase in the recall was 0.856 − 0.778 = 0.078.
On average, the recall and F1-score increased by 0.076 and 0.016, respectively, while the
precision decreased by about 0.048.

(a) (b)

Figure 6. The confusion matrices for our hybrid method. (a) The confusion matrix for the case with 8
latent variables. (b) The confusion matrix for the case with 16 latent variables.

Table 2. The measured performances of the various methods.

#Neurons of Layers Anomaly Detection Method Precision Recall F1-Score

(64, 32), 8, (32, 64)

CAE-only method 0.833 0.778 0.805

Hybrid method 1 [13] 0.805 0.856 0.830

Hybrid method 2 0.841 0.844 0.843

(64, 32), 16, (32, 64)

CAE-only method 0.879 0.762 0.817

Hybrid method 1 [13] 0.812 0.836 0.824

Hybrid method 2 0.886 0.829 0.856

In contrast, when the hybrid method 2 was applied, all of the precision, recall, and
F1-score results improved by up to 0.008, 0.067, and 0.039, respectively. On average,
the precision, recall, and F1-score increased by approximately 0.008, 0.067, and 0.039,
respectively. In addition, the results showed that the accuracy was 0.962 and 0.967 when the
dimensions of latent variables were 8 and 16, respectively. As demonstrated in the results,
it can be clearly observed that the hybrid method detected anomalies that might not have
been detected by the CAE-only approach. However, for hybrid method 1, a slightly higher
number of false alarms were observed compared to the CAE-only method. It is conjectured
that the precision decreased because some normal data were filtered as an attack when
the filtering of hybrid method 1 was applied. These experimental results demonstrate that
the model with 8 dimensions of latent variables exhibited a slightly better performance in
terms of F1-score for hybrid method 1, whereas the model with 16 dimensions of latent
variables showed a better performance for hybrid method 2. In summary, the proposed
filtering method improved the overall anomaly detection performance and the proposed
hybrid method performed better than the CAE-only method.

Comparing the two hybrid methods, hybrid method 2 showed better precision and
F1-score by up to 0.074 and 0.032, respectively, whereas the recall decreased by up to 0.012.
On average, the precision and F1-score increased by 0.055 and 0.023, respectively, while the
recall decreased by 0.01. According to the comparison between the two methods, an ICS
administrator could use hybrid method 1 to detect more anomalies, which allowed more
false alarms. Alternatively, they could also apply hybrid method 2 for a more balanced and
reliable detection system that generated fewer false alarms.

Figure 7 depicts the receiver operating characteristic (ROC) curves of the proposed
hybrid detection method. The curves were derived from the observed results by setting

Electronics 2022, 11, 867 13 of 19

Vthre from the minimal to maximal values, where Vthre is the threshold used to determine
whether the data sample is an anomaly or not. The figure demonstrates that the proposed
method guaranteed high detection performance with area under curves (AUCs) of 0.955
and 0.952 for the methods with 8 and 16 dimensions of latent variables, respectively.

Figure 7. The ROC curves for the hybrid method with 8 and 16 dimensions of latent variables.

To verify the performance improvement of the proposed method, we compared its
performance to the experimental results for other machine learning models presented
in [32]. Table 3 presents the comparison of the performance of the proposed method and
those of DNN, SVM, and TABOR in [32]. The precision of the proposed method was lower
than those of DNN and SVM, but higher than that of TABOR. However, the proposed
method showed the best recall and F1-score of all of the methods.

Table 3. A performance comparison between the proposed method and DNN, SVM, and TABOR
in [32].

Method Precision Recall F1-Score

Hybrid Method 2 (Latent variables: 16) 0.886 0.829 0.856

Deep Neural Network (DNN) 0.983 0.678 0.803

Support Vector Machine (SVM) 0.925 0.699 0.796

TABOR 0.862 0.788 0.823

We conducted an additional experiment to examine the influence of standard devi-
ation bounds in the first stage (i.e., signature-based anomaly detection) on the overall
performance. In Section 3, we set the lower and upper bounds of the standard deviation for
sensor/actuator j as simply MinSj and MaxSj , respectively. In the additional experiment,
we evaluated the performance by changing the lower and upper bounds. After trying
various combinations, we were able to obtain a slightly better performance when we used
larger upper bounds than MaxSj with the original lower bound MinSj unchanged. Table 4
shows the experimental results in detail, where the upper bound was set to MaxSj × β and
β was 1.0, 1.2 or 1.5. According to the experimental results, the precision and F1-score
increased by up to 0.006 and 0.003, respectively. This indicates that a generous upper bound
was able to slightly reduce false alarms.

Electronics 2022, 11, 867 14 of 19

Table 4. The performance of larger upper bound.

#Neurons of Layers Multiplier β Precision Recall F1-Score

(64, 32), 8, (32, 64)

1.0 0.841 0.844 0.843(Baseline)

1.2 0.844 0.844 0.844

1.5 0.844 0.844 0.844

(64, 32), 16, (32, 64)

1.0 0.886 0.829 0.856(Baseline)

1.2 0.892 0.829 0.859

1.5 0.890 0.829 0.858

Finally, we analyzed the execution times of the CAE-only and hybrid methods. Table 5
presents the measured average times to classify one input segment for each method. Initially,
it may be expected that the hybrid detection method would take longer as it includes a
filtering method before the CAE. Interestingly, however, the hybrid detection method was
faster than the CAE-only method according to our results. The execution time of the hybrid
method with 8 latent variables was 141.812 ms, whereas the CAE-only method required
150.082 ms on average. For the other model, the execution times of the hybrid method and
the CAE-only method were 137.163 ms and 149.143 ms, respectively. Consequently, the
hybrid model reduced the time required by approximately 5.51% and 8.03%, respectively.

Table 5. The measured times for anomaly detection.

#Neurons of Layers Anomaly Detection Method Average Time (ms)

(64, 32), 8, (32, 64)
CAE-only method 150.082

Hybrid method 141.812

(64, 32), 16, (32, 64)
CAE-only method 149.143

Hybrid method 137.163

To consider why the hybrid method was able to reduce the execution time, let us recall
that an anomaly could be detected in two different ways for the hybrid method. The first
is the case in which the filtering method classifies the input segment as an anomaly. In
this case, the hybrid detection method can skip the second stage, i.e., the behavior-based
detection process. The second case corresponds to the situation where the filtering method
classifies the input as normal, but the CAE in the second stage classifies the input segment
as an anomaly. Let N, n, TS, and TB be the total number of input segments to be analyzed,
the number of segments classified as anomalous, the execution time of the filtering stage,
and the execution time of the CAE, respectively. Then, we can estimate the execution times
of the CAE-only and hybrid methods using the following equations:

CAE-only method = TB × N.

Hybrid method = TS × n + (TS + TB)(N − n)

= TS × N + TB × N − TB × n.

That is, the hybrid detection method performs anomaly detection faster than the CAE-
only method when TS × N < TB × n, i.e., n/N > TS/TB. For example, according to the
experimental results with 8 dimensions, the hybrid method took 0.215 ms on average when
it detected an anomaly in the signature-based anomaly detection process, i.e., TS = 0.215 ms.
According to Table 5, TB = 150.082 in this setting. When both stages were performed by the
hybrid method, the computation had a duration of 156.355 ms according to the experimental
result. This was slightly larger than TS + TB, which could be due to the additional overheads

Electronics 2022, 11, 867 15 of 19

in the experiment. In this case, the hybrid detection method would have performed faster
than the CAE-only method if n

N > 0.215
156.355 = 0.00138, which was the case for the SWaT

dataset. By analyzing the proposed method in terms of the operation time, we showed that
the hybrid detection method could reduce detection overheads by decreasing the number
of CAE operations.

In summary, the experimental results show that the proposed hybrid detection method
performed anomaly detection better than the CAE-only method and reduced the detection
overheads by decreasing the number of CAE operations. Based on these results, we expect
that existing anomaly detection methods that only use behavior-based detection can be
improved by applying the proposed hybrid approach and that the proposed method can
be considered a suitable option for resource-constrained environments.

5. Discussion and Limitations

In this paper, we proposed a hybrid anomaly detection method that combines
signature-based and behavior-based methods. The signature-based method uses statistical
filtering based on the standard deviation of time series data and the behavior-based method
uses a CAE. According to our experimental results, the proposed method outperformed
the CAE-only method and other machine learning-based methods, such as DNN, SVM,
and TABOR.

Although the proposed method showed excellent performance in detecting anoma-
lies, a few interesting research topics need to be addressed in future work. First, the
proposed method suffers from the same limitation as [31] in that it only detects the fact that
an anomaly occurred but does not determine which sensors or actuators were attacked.
Therefore, we will pursue research to provide more precise detection in future work.

Second, we only used conventional metrics, such as precision, recall, F1-score, and
accuracy, to evaluate the performance in this paper. However, several alternative metrics
may be more suitable for time series data, such as the measured values of the sensors and
actuators. For example, Tatbul et al. proposed range-based precision and recall that consider
partial overlaps between the real and predicted ranges and their relative positions [44].
Hwang et al. also considered partially overlapped ranges and proposed time series aware
precision (TaP) and time series aware recall (TaR) [45]. They also considered the ambiguous
period in which the data were still affected by the precedent anomaly even after the attack
ceased. Therefore, the evaluation of the proposed method using these metrics would be an
interesting research topic.

Third, we used a trial and error approach to search for the optimal dimension of the
latent variables and the optimal activation function for the CAE because they were not
explicitly described in the original proposal of CAE-based anomaly detection [11]. However,
extensive research has been conducted to systematically find optimal neural network
architectures and hyperparameters. In 2018, Kaspersky proposed genetic algorithms (GAs)
to find the best neural network architecture for anomaly detection [46]. In 2019, Jin et
al. proposed an efficient neural architecture search framework [47]. They used Bayesian
optimization to guide the search space and published Auto-Keras, an open-source AutoML
system that is based on this method. In 2021, Alharbi et al. proposed a neural network-based
optimized method called the local global best bat algorithm for neural network (LGBA-
NN) [48]. The method selects both feature subsets and hyperparameters to efficiently detect
botnets and was tested using an N-BaIoT dataset that included extensive real traffic data. It
would be a promising research direction to apply these neural network architecture search
techniques to improve the proposed hybrid detection method.

6. Conclusions

In this study, we proposed a hybrid anomaly detection method combining signature-
based and behavior-based methods for a real-time control system using statistical filtering
and a CAE, respectively. To validate the performance of the proposed method, we con-
ducted experiments using the SWaT dataset for a real water treatment system. The results

Electronics 2022, 11, 867 16 of 19

show that the proposed hybrid detection method outperformed the CAE-only method in
terms of detection accuracy, as measured by the precision, recall, and F1-score. According to
the experimental results, the proposed method improved the precision, recall, and F1-score
by up to 0.008, 0.067, and 0.039, respectively, compared to an autoencoder-only approach.
It also reduced the time required to execute the detection process by up to 8.03% compared
to the autoencoder-only method. As the proposed method is universal, it can be applied to
any other ICSs, such as electric power grids and smart factories. We expect that existing
anomaly detection methods that only use behavior-based detection can be improved by
applying the proposed hybrid detection approach and that the proposed method can be
considered as a suitable option for resource-constrained environments.

Author Contributions: Conceptualization, M.-K.L.; funding acquisition, M.-K.L.; investigation,
H.-Y.K. and T.K.; project administration, M.-K.L.; supervision, M.-K.L.; validation, H.-Y.K.; writing—
original draft, H.-Y.K.; writing—review and editing, T.K. and M.-K.L. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported in part by the MSIT, Korea, under the High-Potential Individuals
Global Training Program (grant number: 2020-0-01540) and supervised by the IITP, also in part
by the IITP grant funded by the Korean government (MSIT) (2020-0-01389, Artificial Intelligence
Convergence Research Center (Inha University)), and in part by the Inha University Research Grant.

Data Availability Statement: Restrictions apply to the availability of these data. Data were obtained
from iTrust and are available at https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/ (ac-
cessed on 23 February 2022) with the permission of iTrust, Centre for Research in Cyber Security,
Singapore University of Technology and Design.

Acknowledgments: This work was conducted in part while Hee-Yong Kwon was visiting Texas
A&M University Kingsville, Kingsville, TX, USA.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AE Autoencoder
APT Advanced Persistent Threats
AUC Area Under Curve
CAE Composite Autoencoder
CPS Cyber-Physical System
DCS Distributed Control System
DNN Deep Neural Network
DoS Denial of Service
EWMA Exponentially Weighted Moving Average
FN False Negative
FP False Positive
GA Genetic Algorithms
HIDS Host-based Intrusion Detection System
HIL Hardware-in-the-Loop
HMI Human–Machine Interface
ICS Industrial Control System
IDS Intrusion Detection system
IoT Internet of Things
LAN Local Area Network
LSTM Long Short-Term Memory
MSMP Multi-Stage Multi-Point
MSSP Multi-Stage Single Point
NIDS Network-based Intrusion Detection System

https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/

Electronics 2022, 11, 867 17 of 19

PCL Process Control Loop
PLC Programmable Logic Controller
ROC Receiver Operating Characteristic
SCADA Supervisory Control and Data Acquisition
SSMP Single Stage Multi-Point
SSSP Single Stage Single Point
SVM Support Vector Machine
SWaT Secure Water Treatment
TCP Transmission Control Protocol
TN True Negative
TP True Positive

References
1. Farwell, J.P.; Rohozinski, R. Stuxnet and the future of cyber war. Survival 2011, 53, 23–40. [CrossRef]
2. Greenberg, A. The untold story of NotPetya, the most devastating cyberattack in history. Wired, 22 August 2018. Available online:

https://www.wired.com/story/notpetya-cyberattack-ukraine-russia-code-crashed-the-world/ (accessed on 6 January 2022).
3. Nardozza, A. Unpacking an Unprecedented Cyberattack: What Is the SolarWinds Breach and How Did It Happen? Available

online: https://jost.syr.edu/unpacking-an-unprecedented-cyberattack-what-is-the-solarwinds-breach-and-how-did-it-happen/
#_ftn3 (accessed on 6 January 2022).

4. DRAGOS. EKANS Ransomware and ICS Operations. Available online: https://www.dragos.com/blog/industry-news/ekans-
ransomware-and-ics-operations/# (accessed on 6 January 2022).

5. Constantin, L. Ryuk Ransomware Explained: A Targeted, Devastatingly Effective Attack. Available online: https:
//www.csoonline.com/article/3541810/ryuk-ransomware-explained-a-targeted-devastatingly-effective-attack.html (accessed
on 6 January 2022).

6. Weston, S. Evidence Suggests REvil Behind Harris Federation Ransomware Attack. Available online: https://www.itpro.co.uk/
security/ransomware/359161/evidence-suggests-revil-behind-harris-federation-ransomware-attack (accessed on 6 January
2022).

7. Cybersecurity & Infrastructure Security Agency. DarkSide Ransomware: Best Practices for Preventing Business Disruption from
Ransomware Attacks. Available online: https://www.cisa.gov/uscert/ncas/alerts/aa21-131a (accessed on 6 January 2022).

8. Aminanto, M.E.; Kim, K. Improving detection of Wi-Fi impersonation by fully unsupervised deep learning. In Proceedings of the
International Workshop on Information Security Applications, Jeju Island, Korea, 11–13 August 2021; Springer: Berlin/Heidelberg,
Germany, 2017; pp. 212–223.

9. Park, K.H.; Park, E.; Kim, H.K. Unsupervised Intrusion Detection System for Unmanned Aerial Vehicle with Less Labeling Effort.
In Proceedings of the International Conference on Information Security Applications, Jeju Island, Korea, 26–28 August 2020;
Springer: Berlin/Heidelberg, Germany, 2020; pp. 45–58.

10. An, J.; Cho, S. Variational autoencoder based anomaly detection using reconstruction probability. Spec. Lect. IE 2015, 2, 1–18.
11. Wang, C.; Wang, B.; Liu, H.; Qu, H. Anomaly detection for industrial control system based on autoencoder neural network. Wirel.

Commun. Mob. Comput. 2020, 2020, 8897926. [CrossRef]
12. Chang, C.P.; Hsu, W.C.; Liao, I.E. Anomaly detection for industrial control systems using k-means and convolutional autoencoder.

In Proceedings of the 2019 International Conference on Software, Telecommunications and Computer Networks (SoftCOM), Split,
Croatia, 19–21 September 2019; pp. 1–6.

13. Kwon, H.Y.; Kim, T.; Lee, M.K. A Hybrid Intrusion Detection Method for Industrial Control Systems. In Proceedings of the 7th
International Conference on Next Generation Computing 2021 (ICNGC 2021), Jeju, Korea, 26–27 March 2021; pp. 95–99.

14. Song, J.Y.; Paul, R.; Yun, J.H.; Kim, H.C.; Choi, Y.J. CNN-based anomaly detection for packet payloads of industrial control
system. Int. J. Sens. Netw. 2021, 36, 36–49. [CrossRef]

15. Liu, F.T.; Ting, K.M.; Zhou, Z.H. Isolation forest. In Proceedings of the 2008 Eighth IEEE International Conference on Data
Mining, Pisa, Italy, 15–19 December 2008; pp. 413–422.

16. Kiss, I.; Haller, P.; Bereş, A. Denial of service attack detection in case of tennessee eastman challenge process. Procedia Technol.
2015, 19, 835–841. [CrossRef]

17. LinkedIn. LinkedIn’s Anomaly Detection and Correlation Library. Available online: https://github.com/linkedin/luminol
(accessed on 17 February 2022).

18. Toldinas, J.; Venčkauskas, A.; Damaševičius, R.; Grigaliūnas, Š.; Morkevičius, N.; Baranauskas, E. A novel approach for network
intrusion detection using multistage deep learning image recognition. Electronics 2021, 10, 1854. [CrossRef]

19. Malhotra, P.; Vig, L.; Shroff, G.; Agarwal, P. Long short term memory networks for anomaly detection in time series. In
Proceedings of the 23rd European Symposium on Artificial Neural Networks, ESANN 2015, Bruges, Belgium, 22–24 April 2015;
Volume 89, pp. 89–94.

20. Malhotra, P.; Ramakrishnan, A.; Anand, G.; Vig, L.; Agarwal, P.; Shroff, G. LSTM-based encoder-decoder for multi-sensor
anomaly detection. arXiv 2016, arXiv:1607.00148.

http://doi.org/10.1080/00396338.2011.555586
https://www.wired.com/story/notpetya-cyberattack-ukraine-russia-code-crashed-the-world/
https://jost.syr.edu/unpacking-an-unprecedented-cyberattack-what-is-the-solarwinds-breach-and-how-did-it-happen/#_ftn3
https://jost.syr.edu/unpacking-an-unprecedented-cyberattack-what-is-the-solarwinds-breach-and-how-did-it-happen/#_ftn3
https://www.dragos.com/blog/industry-news/ekans-ransomware-and-ics-operations/#
https://www.dragos.com/blog/industry-news/ekans-ransomware-and-ics-operations/#
https://www.csoonline.com/article/3541810/ryuk-ransomware-explained-a-targeted-devastatingly-effective-attack.html
https://www.csoonline.com/article/3541810/ryuk-ransomware-explained-a-targeted-devastatingly-effective-attack.html
https://www.itpro.co.uk/security/ransomware/359161/evidence-suggests-revil-behind-harris-federation-ransomware-attack
https://www.itpro.co.uk/security/ransomware/359161/evidence-suggests-revil-behind-harris-federation-ransomware-attack
https://www.cisa.gov/uscert/ncas/alerts/aa21-131a
http://dx.doi.org/10.1155/2020/8897926
http://dx.doi.org/10.1504/IJSNET.2021.115440
http://dx.doi.org/10.1016/j.protcy.2015.02.120
https://github.com/linkedin/luminol
http://dx.doi.org/10.3390/electronics10151854

Electronics 2022, 11, 867 18 of 19

21. Lee, T.J.; Gottschlich, J.; Tatbul, N.; Metcalf, E.; Zdonik, S. Greenhouse: A zero-positive machine learning system for time-series
anomaly detection. arXiv 2018, arXiv:1801.03168.

22. Martí, L.; Sanchez-Pi, N.; Molina, J.M.; Garcia, A.C.B. Anomaly detection based on sensor data in petroleum industry applications.
Sensors 2015, 15, 2774–2797. [CrossRef] [PubMed]

23. Filonov, P.; Lavrentyev, A.; Vorontsov, A. Multivariate industrial time series with cyber-attack simulation: Fault detection using
an lstm-based predictive data model. arXiv 2016, arXiv:1612.06676.

24. Kim, J.; Yun, J.H.; Kim, H.C. Anomaly detection for industrial control systems using sequence-to-sequence neural networks. In
Computer Security; Springer: Berlin/Heidelberg, Germany, 2019; pp. 3–18.

25. Goh, J.; Adepu, S.; Junejo, K.N.; Mathur, A. A dataset to support research in the design of secure water treatment systems. In
Proceedings of the International Conference on Critical Information Infrastructures Security, Paris, France, 10–12 October 2016;
Springer: Berlin/Heidelberg, Germany, 2016, pp. 88–99.

26. Hettich, S.; Bay, S.D. The UCI KDD Archive. 1999. Available online: http://kdd.ics.uci.edu (accessed on 6 January 2022).
27. Lemay, A.; Fernandez, J.M. Providing SCADA network data sets for intrusion detection research. In Proceedings of the 9th

Workshop on Cyber Security Experimentation and Test (CSET 16), Austin, TX, USA, 8 August 2016.
28. Morris, T.; Gao, W. Industrial control system traffic data sets for intrusion detection research. In Proceedings of the International

Conference on Critical Infrastructure Protection, Arlington, VA, USA, 17–19 March 2014; Springer: Berlin/Heidelberg, Germany,
2014; pp. 65–78.

29. Morris, T.H.; Thornton, Z.; Turnipseed, I. Industrial control system simulation and data logging for intrusion detection system
research. In Proceedings of the 7th Annual Southeastern Cyber Security Summit, Huntsville, AL, USA, 3–4 June 2015; pp. 3–4.

30. Shin, H.K.; Lee, W.; Yun, J.H.; Kim, H. HAI 1.0:HIL-based Augmented ICS Security Dataset. In Proceedings of the 13th USENIX
Workshop on Cyber Security Experimentation and Test (CSET 20), Boston, MA, USA, 10 August 2020.

31. Goh, J.; Adepu, S.; Tan, M.; Lee, Z.S. Anomaly detection in cyber physical systems using recurrent neural networks. In
Proceedings of the 2017 IEEE 18th International Symposium on High Assurance Systems Engineering (HASE), Singapore, 12–14
January 2017; pp. 140–145.

32. Lin, Q.; Adepu, S.; Verwer, S.; Mathur, A. TABOR: A graphical model-based approach for anomaly detection in industrial control
systems. In Proceedings of the 2018 on Asia Conference on Computer and Communications Security, Incheon, Korea, 4 June 2018;
pp. 525–536.

33. Mieden, P.; Beltman, R. Network Anomaly Detection in Modbus TCP Industrial Control Systems. Available online: https:
//dreadl0ck.net/papers/RP1_paper.pdf (accessed on 6 January 2022).

34. Li, D.; Chen, D.; Jin, B.; Shi, L.; Goh, J.; Ng, S.K. MAD-GAN: Multivariate anomaly detection for time series data with generative
adversarial networks. In Proceedings of the International Conference on Artificial Neural Networks, Munich, Germany, 17–19
September 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 703–716.

35. Kravchik, M.; Shabtai, A. Detecting cyber attacks in industrial control systems using convolutional neural networks. In
Proceedings of the 2018 Workshop on Cyber-Physical Systems Security and PrivaCy, Toronto, ON, Canada, 15–19 October 2018;
pp. 72–83.

36. Wang, Y.; Yao, H.; Zhao, S. Auto-encoder based dimensionality reduction. Neurocomputing 2016, 184, 232–242. [CrossRef]
37. Fournier, Q.; Aloise, D. Empirical comparison between autoencoders and traditional dimensionality reduction methods. In

Proceedings of the 2019 IEEE Second International Conference on Artificial Intelligence and Knowledge Engineering (AIKE),
Sardinia, Italy, 3–5 June 2019; pp. 211–214.

38. LeCun, Y.; Cortes, C. MNIST Handwritten Digit Database. 2010. Available online: http://yann.lecun.com/exdb/mnist (accessed
on 6 January 2022).

39. Jones, C.B.; Chavez, A.R.; Darbali-Zamora, R.; Hossain-McKenzie, S. Implementation of intrusion detection methods for
distributed photovoltaic inverters at the grid-edge. In Proceedings of the 2020 IEEE Power & Energy Society Innovative Smart
Grid Technologies Conference (ISGT), Washington, DC, USA, 17–20 February 2020; pp. 1–5.

40. Srivastava, N.; Mansimov, E.; Salakhudinov, R. Unsupervised learning of video representations using lstms. PMLR 2015, 37,
843–852.

41. Bank, D.; Koenigstein, N.; Giryes, R. Autoencoders. arXiv 2020, arXiv:2003.05991.
42. Huang, L.; Zhu, Q. A dynamic games approach to proactive defense strategies against advanced persistent threats in cyber-

physical systems. Comput. Secur. 2020, 89, 101660. [CrossRef]
43. Xiang, Y.; Ding, Z.; Zhang, Y.; Wang, L. Power system reliability evaluation considering load redistribution attacks. IEEE Trans.

Smart Grid 2016, 8, 889–901. [CrossRef]
44. Tatbul, N.; Lee, T.J.; Zdonik, S.; Alam, M.; Gottschlich, J. Precision and recall for time series. Adv. Neural Inf. Process. Syst. 2018,

31, 1924–1934.
45. Hwang, W.S.; Yun, J.H.; Kim, J.; Kim, H.C. Time-series aware precision and recall for anomaly detection: considering variety of

detection result and addressing ambiguous labeling. In Proceedings of the 28th ACM International Conference on Information
and Knowledge Management, Beijing, China, 3–7 November 2019; pp. 2241–2244.

46. Shalyga, D.; Filonov, P.; Lavrentyev, A. Anomaly detection for water treatment system based on neural network with automatic
architecture optimization. arXiv 2018, arXiv:1807.07282.

http://dx.doi.org/10.3390/s150202774
http://www.ncbi.nlm.nih.gov/pubmed/25633599
http://kdd.ics.uci.edu
https://dreadl0ck.net/papers/RP1_paper.pdf
https://dreadl0ck.net/papers/RP1_paper.pdf
http://dx.doi.org/10.1016/j.neucom.2015.08.104
http://yann.lecun.com/exdb/mnist
http://dx.doi.org/10.1016/j.cose.2019.101660
http://dx.doi.org/10.1109/TSG.2016.2569589

Electronics 2022, 11, 867 19 of 19

47. Jin, H.; Song, Q.; Hu, X. Auto-keras: An efficient neural architecture search system. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 1946–1956.

48. Alharbi, A.; Alosaimi, W.; Alyami, H.; Rauf, H.T.; Damaševičius, R. Botnet attack detection using local global best bat algorithm
for industrial internet of things. Electronics 2021, 10, 1341. [CrossRef]

http://dx.doi.org/10.3390/electronics10111341

	Introduction
	Related Works
	Network Intrusion Detection
	Network Intrusion Datasets
	Water Treatment ICS
	Composite Autoencoder

	Proposed Method
	Implementation and Validation
	Discussion and Limitations
	Conclusions
	References

