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Abstract: Cyber-attacks are becoming progressively complicated; hence, the functional issues of
intrusion-detection systems (IDSs) present ever-growing challenges. Failing to detect intrusions may
jeopardize the trustworthiness of security services, such as privacy preservation, authenticity, and
accessibility. To fight these risks, different organizations nowadays use a variety of approaches, tech-
niques, and technologies to safeguard the systems’ credibility. Establishing policies and procedures,
raising user awareness, implementing firewall and verification systems, controlling system access,
and building computer-issue management groups are all examples of safeguarding methods. There is
a lack of sufficient emphasis on the effectiveness of intrusion-detection systems. In enterprises, IDS is
used to analyze the potentially dangerous activities taking place within the technological settings. The
selection of efficient IDS is a challenging task for organizations. This research evaluates the impact of
five popular IDSs for their efficiency and effectiveness in information security. The authors used the
fuzzy analytical hierarchy process (AHP) and fuzzy technique for order performance by similarity
to ideal solution (TOPSIS)-based integrated multi-criteria decision-making (MCDM) methodology
to evaluate the efficacy of the popular IDSs. The findings of this research suggest that most of the
IDSs appear to be highly potential tools. Even though Snort is extensively deployed, Suricata has
a substantial advantage over Snort. Suricata uses multi-threading functionality in comparison to
Snort to boost the processing performance.

Keywords: intrusion-detection systems; threat; cyber-attacks; MCDM; fuzzy logic

1. Introduction

Communication networks are an integral part of our lives in the digital age. They are
a privilege to the digital world. They introduce the rest of the world relatively close to all
of us. The challenge of intrusion became much more prevalent with the network. Hackers
are always present in the virtual environment. Business organizations could be vulnerable
to cyber-attacks. It is necessary to take significant action to analyze network attacks and
return them to normal. As a result, intrusion-detection systems (IDS) are important in
a network security solution. IDS is a solution that detects network attacks. IDS assists
anyone in detecting network traffic. IDS can further initiate an immediate alert. This
will assist the IT workforce in dealing with such challenges. However, it would not stop
a threat from impacting system applications. It analyzes daily network activities by using
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the guidelines. The security management system receives an alert through IDS in case
any malicious activity is detected over the network. As a result, it is easier for the security
expert to identify such suspected activities. The traffic information is moved in bulk and
then analyzed for any unusual behavior in the data. The team explores threats by using
known attack signatures, as well as trends [1–6].

IDS is a mechanism that detects discrepancies in capturing attackers before they
cause serious damage to the network system. On the user’s computer, a host-based
IDS is installed. The network is monitored by a network-based IDS. During the normal
assignment, IDSs search for signatures from attack patterns. These abnormalities are
reported to the knowledge base and, after that, analyzed at the guidelines and application
layers based on the policy and procedures. IDS could be used as software or as a network
security device. Since the IDSs only need to identify the risks, these systems are positioned
outside of band on the communications infrastructure, indicating that the transmitter and
the recipient of data do not communicate in real-time. IDS systems commonly use a Test
Access Point (TAP) or Switch Port Analyzer (SPAN) port for the analysis of a copy of the
Inline Traffic Stream, so that IDS does not affect the performance of the Inline Network. This
has been established initially by IDS, since the required intrusion analysis at the time cannot
be conducted at a pace that is consistent with the elements on the network infrastructure’s
direct communication line [7–10]. Figure 1 shows the general architecture of IDS.
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An efficient IDS and mitigation systems are important for an organization’s normal
system functioning. Traditional defense technology has become increasingly inefficient
as a result of attacker tactics, such as obfuscation techniques, metamorphism, and poly-
morphism, which increase malware’s resistance. Discrepancies are detected by the IDSs
to capture attackers that can cause significant harm to the organization. They could be
a network or even a host. Due to new attacks developing almost daily, IDSs are crucial
in identifying and responding to potential system intrusions. IDSs should change and
continually adjust to all of these new threats and assault techniques. The challenge on
which scholars have been researching for decades is how to construct effective, efficient,
and responsive IDSs [11–15].

The evaluation of IDSs is a popular and challenging task in research at present. Choos-
ing an efficient IDS to secure a business network must not be undertaken lightly, rapidly, or
without a thorough grasp of the technology, solutions, and potential consequences. The
decision-making process can be broken down into several stages, which include deter-
mining the requirement, gaining a broad awareness of IDSs, more in-depth knowledge
of the network, and also determining policy and processes by evaluating various IDS
solutions [16]. This paper evaluates the effectiveness of different IDSs, using the integrated
fuzzy analytical hierarchy process (AHP) technique for order performance by similarity to
the ideal solution (TOPSIS) model.
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The remainder of this paper is structured as follows: The study outlines relevant
research efforts in this domain in Section 2. Section 3 discusses the overview of several
types of popular IDSs. Section 4 discusses the integrated fuzzy AHP-TOPSIS technique.
Section 5 of this work contains the findings, comparisons of the findings, and a sensitivity
analysis. Section 6 closes with the summary and conclusions.

2. Related Research Studies

Upendran and Gopinath [16] proposed an improved entropy-based TOPSIS approach
to recommend one or more options from a large set of alternatives. To decrease the number
of the network traffic sample, they applied five feature selection strategies. To measure
the calculation time, as well as intrusion-detection time, classification techniques, such as
Artificial Neural Network (ANN), Naive Bayes, and Support Vector Machine (SVM) are
employed. Their suggested TOPSIS approach is used to monitor the effectiveness of feature
selection in order to improve intrusion detection.

Hu et al. [17] evaluated two well-known open-source intrusion-detection systems,
Snort and Suricata, as well as their comprehensive comparative standards, to develop
a better understanding of drop rates, as well as identification efficiency on 100 Gb/s
networks. Furthermore, they investigated critical parameters (such as system resource
utilization, packet processing power, packet drop frequency, and identification accuracy)
which constrain IDSs’ application to high-speed networks. Moreover, they also discussed
a complete investigation to demonstrate the effectiveness of IDSs utilizing various setups,
traffic levels, and flows. They outlined the difficulties of utilizing open-source IDSs in
strong networks, offered solutions to assist network managers in addressing identified
concerns, and also presented some suggestions for establishing novel IDSs that may be
employed in high-speed networking.

Imoize et al. [18] suggested an expansive and cost-based intrusion-detection system.
Based on this approach, an objective metric driven by information theory is introduced,
and a package for determining the intrusion-detection capabilities of an intrusion-detection
system (IDS), given specified input parameters, is constructed in Java. For each operational
IDS, the decision-making methodology is applied to evaluate the projected costs and the
capacity to detect false-positive rates.

Saber et al. [19] developed a testing method to monitor the effectiveness of the IDS
elements and their impacts on the whole system. The assessment is based on several tests.
In addition, the effect of the implementation parameters of IDS was studied. They also
developed the IDS SNORT on systems with various technical features, and they have
constructed a network to produce a series of experiments to evaluate the performance of
a higher bandwidth network deployment.

Shiaeles et al. [20] introduced a DDoS detection technique based on developing a fuzzy
estimator for the mean packet inter-arrival rate. They separated the task into two concerns:
the first was detecting the DDoS incident in progress, and the second was identifying the
offender’s IP addresses. They set strong real-time limits on the first assignment and more
flexible restrictions on address recognition. They also demonstrated through practical
assessment that the identification can be accomplished within better real-time restrictions
and by utilizing fuzzy estimators rather than crisp statistical classifiers.

Schrötter et al. [21] developed a standard set for assessing intrusion-detection systems
in IPv6 settings. This standard is used to compare the popular intrusion-detection systems,
such as Snort, Zeek, and Suricata. Furthermore, an IPv6 Plugin Suite was also provided
and assessed, which improved Snort by detecting stateful attacks. Their evaluation results
indicated the current ability to identify IPv6 connection attacks.

As intrusion-detection systems are particularly built to function on specific systems
and situations, they are challenging to implement. Therefore, there is a significant need
to evaluate the effectiveness of different IDSs based on their approaches and rules that
are present in the most recent version of the IDSs. This fundamental challenge is more
succinctly expressed as the intrusion-detection-assessment challenge, and its solution is
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typically dependent on a number of parameters in a hierarchical structure. Prior studies,
however, suggested that no single model was ideal for all issues. Using a highly integrated
fuzzy-based strategy may yield greater results than other approaches. To the extent of
our knowledge, our work is the first study that examines several IDSs systematically em-
ploying an integrated fuzzy multi-criteria decision-making (MCDM)-based technique. The
effectiveness of five major intrusion-detection systems, including Zeek, Suricata, Security
Onion, OSSEC, and Snort, is examined in this research. The effectiveness is evaluated by
using a hierarchical structure based on the MCDM solution.

3. Different Types of Intrusion-Detection Systems
3.1. Zeek

Zeek [22,23] is a network intrusion-detection system that runs on Unix (IDS). Zeek
analyzes network traffic and recognizes intrusion attempts, depending on the type and
substance of the traffic. Zeek IDS was previously known as Bro. Zeek identifies intrusions
by matching network traffic to rules that describe undesirable events. These rules may
define activities (for example, certain hosts interacting to specific services), what actions
warrant alerting (for example, attempts to a particular number of distinct hosts constitute
a “scan”), or signatures characterizing known attacks or exposure to security issues. If
Zeek discovers anything of interest, the direction could be to either write a log entry or
run an operating system function. Zeek is designed for high-speed (Gbps) and increased
intrusion detection. Zeek IDS can perform competently while operating on commercially
accessible PC hardware by intelligently exploiting packet filtering methods, and so can
provide an economically efficient way of monitoring a site’s Internet communication.

3.2. Suricata

Suricata was designed in 2010 by the OISF (Open Information Security Foundation),
with funding from the US Department of Homeland Security [24]. Suricata’s design is quite
close to snort’s, except that, instead of using a single thread to process packets, Suricata
uses many threads [25]. This enables Suricata’s distinctive feature, which is to maximize the
capacity to obtain packets. Snort was single-threaded; therefore, when packets exceeded
the capacity to obtain bandwidth, Snort disregarded them. Thus, multi-threading is a useful
capability of Suricata. Suricata has many detection algorithm threads.

3.3. Security Onion

Security Onion [26] is a Linux-based intrusion-detection approach that includes several
IDS that are both host-oriented (HIDS) and network-oriented (NIDS). Security Onion can
collect and analyze an extensive range of data. This comprises information on the host,
connection, session, resource, alerting, and standards. Security Onion can be deployed
as a solo implementation with a server and detector, or with a master server and many
detectors that allow the platform to be expanded as needed. Numerous gateways and
tools are present for system management and information analysis, including Sguil, Snorby,
Squert, and Enterprise Log Search and Archive (ELSA). It offers host-based identification
in the form of OSSEC HIDS, as well as network-based detection via Snort, Suricata, and
Zeek NIDS. Security Onion is particularly customizable because it may be set as a master
server with numerous sensors or as an independent or hybrid installation. The information
gathered by Security Onion is saved in log files and also in a Sguil database, which includes
a new interface for recording and analysis.

3.4. OSSEC

OSSEC is an open-source intrusion-detection system built by Daniel B. Cid, who sold
the product to Trend Micro in 2008 [27]; however, the project remained a free and open
source. The most recent stable release is 2.9.3. It is made up of numerous services and
modules, each of which has its own distinct set of intrusion-detection capabilities. HIDS
has numerous elements, and OSSEC combines them all to provide certain fundamental
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advantages. OSSEC ensures that security compliance standards are met. Many consumers,
primarily corporate clients, demand that the companies with whom they do business
have particular security compliances, including Payment Card Industry Data Security
Standard (PCI DSS), Health Insurance Portability and Accountability Act (HIPAA), and so
on. Analyzing logs and evaluating them for suspicious activity is a one-way OSSEC that
helps firms comply with various security standards [28].

3.5. Snort

Snort fills an essential “ecological niche” in network security by serving as a cross-
platform lightweight network intrusion-detection program that can be used to monitor
tiny TCP/IP networks, as well as discover a wide range of abnormal network traffic
and also explicit cyberattacks. It can offer controllers adequate information to make
informed judgments on how to proceed in the event of suspicious behavior. Snort could
also be quickly implemented to cover any gaps in a network’s protection measures, such
as when a big threat occurs and corporate security companies take their time releasing
new attack identification signatures. Snort is beneficial when it is not cost-effective to
install commercial NIDS sensors. Current commercialized intrusion-detection systems
cost thousands or tens of thousands, or perhaps even hundreds of thousands of dollars in
extreme situations [29,30]. Snort was created to encounter the requirements of a typical
compact network intrusion-detection system. It has progressed into a compact, versatile,
and high-performing technology that is used on both large and small networks around
the globe. It has met its initial design aims and is a perfectly capable solution to corporate
intrusion-detection systems in locations where installing standard production systems
would be prohibitively expensive.

Table 1 shows the comparison of the five popular intrusion-detection methods.

Table 1. Comparison of the five intrusion-detection methods.

IDS
Techniques Provider Type Operating

System License Network
Traffic

Zeek Vern Paxson NIDS Unix/Linux/Mac BSD License IPv4

Suricata OISF NIDS Win/Unix/Mac
GNU General
Public License

(version 2)
IPv4/IPv6

Security
Onion

Security Onion
Solutions, LLC

NIDS,
HIDS Linux

GNU General
Public License

(version 2)
IPv4/IPv6

OSSEC Daniel B. Cid
et al. HIDS Win/Unix/

Linux/Mac

GNU General
Public License

(version 2)
IPv6

Snort Cisco System NIDS Win/Unix/Linux
GNU General
Public License

(version 2)
IPv4/IPv6

4. Methods
4.1. Identification of Evaluation Criteria and Alternatives

MCDM is a discipline of combinatorial optimization in which the alternatives are eval-
uated to identify the best alternative that meets a set of various and frequently contradictory
parameters. MCDM is a critical component of the decision-making principle and opera-
tional investigation. It is frequently regarded as trustworthy. It is a set of strategies and
techniques for integrating various and contradictory parameters into a decision-making
process. Furthermore, MCDM might be regarded as a systematic approach for evaluating
and selecting between possibilities. It seeks to divide an issue into smaller components,
analyze and evaluate each part, and then aggregate those components to determine the
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appropriate reasonable alternative from a range of options based on a stated set of parame-
ters. In uncertain, unclear, fuzzy, or risky contexts, MCDM tries to help decision-makers
to tackle contradictory real-world statistical and/or qualitative subjective multi-criteria
challenges, and to select best-fit options from a group of options. Figure 2 shows the
hierarchy for the assessment of some popular intrusion-detection systems (IDS) in this
research study. Based on an analysis of the relevant literature, as well as insight from
seventy-seven security experts, the four considerable factors at level one, as well associated
sub-factors at level two, in the current method that make a significant contribution to
the assessment of multiple IDSs were evidently identified and designed. The four main
criteria to evaluate the different popular IDSs are Types, Audit source location, Targets, and
Protected system denoted as M1, M2, M3, and M4 respectively. The significant criterion
Types contain the different types of IDSs. The IDSs may be open-source, closed-source,
or freeware, denoted by M11, M12, and M13, respectively. Different IDSs are classified
by the type of input data they evaluate at the audit source location. Audit procedures on
a host log file, network packets, application log files, or sensor alerts denoted by M21, M22,
M23, and M24, respectively, produced by other IDSs can all be used as input data. The
targets’ criterion shows the IDS capability to detect potential attacks against specific targets.
These targets may be application, network, or host, as denoted by M31, M32, and M33,
respectively. The protected system criteria show the approach of intrusion detection. It can
be HIDS, NIDS, or hybrid types denoted by M41, M42, and M43, respectively. The five
alternatives, namely Zeek, Suricata, Security Onion, OSSEC, and Snort, are represented by
S1, S2, S3, S4, and S5, respectively.
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4.2. Fuzzy AHP-TOPSIS Methodology

Problems with decision-making are likely a consequence of putting too much emphasis
on analogical reasoning that has worked previously. When attempting to make a judgment
or decision, researchers use a predictive model, which is a heuristic algorithm or guiding
principle. These strategies can help in making better decisions by reducing our cognitive
strain, and they can also lead to mistakes. However, AHP is unable to resolve the funda-
mental uncertainty and inaccuracies in a decision-maker’s response to genuine statistical
information. Because the real world is so indistinct, researchers noted that experts have
combined the fuzzy theory with AHP to investigate obscure real-world problems [31–33].
Furthermore, while the AHP method is typically based on a highly volatile scale of de-
cisions, the fuzzy AHP does have deficiencies [23,24]. As a result, a combined AHP and
TOPSIS fuzzy method is a special process that could aid in the efficacious evaluation of
options. Moreover, the fuzzy AHP-TOPSIS technique is as follows:

Fuzzy AHP: Fuzzy AHP is a popular methodology for resolving difficult selection
challenges. Every complicated topic can be investigated by using remarkable categorized
ranges of objectives, i.e., hierarchy. With the help of fuzzy AHP, the problem is differentiated
into a tree form to describe it. Figure 2 shows how to make a tree shape. This tree shape
was created with the help of experts’ opinions [34]. The triangular fuzzy number (TFN) is
then constructed from the hierarchical structure. A pair-wise comparison of each group of
categorized goals is critical because of the impact of one criterion on other criteria.

Transforming linguistic numbers into crisp numbers, as well as TFN, is the next
step. The TFN is used in this research, and it ranges from 0 to 1 [35]. The quantitative
simplification of TFN membership functions, as well as their capabilities to handle with
fuzzy data, is driving this implementation [23]. In addition, linguistic values are categorized
as equally important or weakly important, and crisp values are categorized as 1, 2, . . . , 9.
Furthermore, if the membership functions of a fuzzy number M on F are recognized, it is
referred to as TFN:

µa (x) = a→ [0, 1] (1)

µa(x) =
{

x
mi− l

− l
mi− l

x ∈ [l, mi]
x

mi− u
− u

mi− u
x ∈ [mi, u] (2)

In the triangular membership function, l, mi, and u represent the lower, middle, and
upper limits, respectively. A TFN is shown in Figure 3.
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A TFN can be written as (l, mi, u). Specialists assigned numerical scores to the elements
that influence the values using a measure that is highlighted in Table 2.
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Table 2. TFN scale.

Saaty Scale Definition Fuzzy Triangle Scale

1 Equally important (1, 1, 1)
3 Weakly important (2, 3, 4)
5 Fairly important (4, 5, 6)
7 Strongly important (6, 7, 8)
9 Absolutely important (9, 9, 9)
2

Intermittent values between two adjacent scales

(1, 2, 3)
4 (3, 4, 5)
6 (5, 6, 7)
8 (7, 8, 9)

The numerical methods (3–6) are used to convert numeric values into TFNs that are
identified as (lij, miij, and uij), where lij is lower significance, miij is middle significance, and
uij is uppermost significance events. Moreover, TFN (
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ij) is represented as follows:

Φij =
(
lij, miij, uij

)
(3)

where lij ≤ miij ≤ uij

lij = min
(

Jijd

)
(4)

miij =
(

Jij1, Jij2, Jij3
) 1

x (5)

and uij = max
(

Jijd

)
(6)

In Equations (3)–(6), Jijd specifies the proportional position of the values among two el-
ements that is quantified by specialist d, where i and j indicate a pair of elements being
decided by specialists. Φij is calculated according to the geometric mean of a specialist’s
observations for a particular assessment. The geometric mean is capable of appropri-
ately joining and demonstrating the consent of specialists and designates the lowest and
highest marks, respectively, for the relative consequence among the two elements. Addi-
tionally, Equations (7)–(9) provide the joint TFN values. Take into account the two TFNs,
M1 = (l1, mi1, u1) and M2 = (l2, mi2, u2). The procedures of actions on them are as follows:

(l1, mi1, u1) + (l2, mi2, u2) = (l1 + l2, mi1 + mi2, u2 + u2) (7)

(l1, mi1, u1)× (l2, mi2, u2) = (l1 × l2, mi1 ×mi2, u1 × u2) (8)

(l1, mi1,u1)
−1 =

(
1
u1

,
1

mi1
,

1
l1

)
(9)

With the support of the equation, a fuzzified pair-wise comparative matrix in the
state of n × n matrix is formed after acquiring the TFN variables for every pair of compar-
isons (10).

Ãd =
[
k̃d

11k̃d
12 . . . k̃d

1n k̃d
21k̃d

22 . . . k̃d
2n . . . . . . . . . k̃d

n1k̃d
n2 . . . k̃d

nn

]
(10)

where k̃k
ij symbolizes the dth decision-makers’ priority of the ith standards over the jth

criteria. If more than one responsible party is prevalent, the equation is used to calculate
the average of every judgment-maker’s priorities (11).

k̃ij = ∑d
d=1 .̃kd

ij (11)
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The next step is to use the equation to modify the pair-wise comparative matrixes for
all elements in the hierarchical order based on the averaged priorities (12).

Ã =

⌊
k̃11 . . . k̃1n . . .

. . . . . . k̃n1 . . . k̃nn

⌋
(12)

The fuzzy geometrical mean and fuzzy weights of each element are then described by
using the geometrical mean method, as demonstrated in Equation (13).

p̃i =
(
∏n

j=1 .̃kij

) 1
n , i = 1, 2, 3 . . . , n (13)

The next step is to use the equation to calculate the identified element’s fuzzy weight (14).

w̃i = p̃i ⊗ ( p̃1 ⊕ p̃2 ⊕ p̃3 . . . ⊕ p̃n)
−1 (14)

Equations are also used to determine the average and normalized weight criteria (15–16).

Mi =
w̃1 ⊕ w̃2 . . . ⊕ w̃n

n
(15)

Nri =
Mi

M1 ⊕M2 ⊕ . . . ⊕Mn
(16)

Additionally, the Centre of Area (COA) method is used to estimate the BNP (best
non-fuzzy performance) number of the fuzzy weights of each quantity with the support of
Equation (17).

BNPwD1 =
[(uw1− lw1 ) + (miw1− lw1 )]

3
+ lw1 (17)

Fuzzy TOPSIS: TOPSIS sees multi-standard decision-making problems, with m op-
tions as a geometrical configuration with m points inside the n-dimensional problem area.
The strategy used in this article for TOPSIS is principally founded on the notion that a des-
ignated possibility is the relatively short and farthest range from the positive-ideal solution,
as well as the negative-ideal solution, correspondingly, for best possible and lowest ideal
solutions [36]. Specialists have a difficult time assigning a particular performance rating
to an alternative based on criteria. TOPSIS uses fuzzy numbers rather than precise nu-
merals to demonstrate the relative importance of criteria in order to be consistent with
the actual fuzzy situation. Furthermore, the fuzzy AHP-TOPSIS method is most suitable
for handling group decision-making issues in fuzzy settings. The following is the fuzzy
AHP-TOPSIS methodology:

The first step is to determine the weights of the evaluation criteria. With the support
of equations, this research utilized fuzzy AHP to arrive at fuzzy choice weights (1–16).
Moreover, with support of Equation (18), as well as Table 3, the researcher designed the
fuzzy decision matrix and selected the best linguistic aspects as criteria possibilities.

C1 . . . . . . Cn K̃ =
A1
. . .
Am

 x̃11 · · · x̃1n

· · · . . . · · ·
x̃m1 · · · x̃mn

 (18)

where x̃ij =
1
D

(
x̃1

ij . . . ⊕ x̃d
ij ⊕ . . . x̃D

ij

)
, and x̃d

ij is the assessment of the alternative Ai in

terms of factor Cj effectiveness estimated by the dth specialist, as well as x̃d
ij= (ld

ij, mid
ij, ud

ij).
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Table 3. Linguistic scales for the rating.

Linguistic Variable Corresponding Triangular Fuzzy Number

Very poor (VP) (0, 1, 3)
Poor (P) (1, 3, 5)
Fair (F) (3, 5, 7)

Good (G) (5, 7, 9)
Very good (VG) (7, 9,10)

The subsequent step is to use an expression to normalize the fuzzy decision matrix (19).
The normalized fuzzy assessment matrix denoted by P̃ is represented as follows.

P̃ =
[
p̃ij
]

m×n (19)

After that, using equations, one may complete the normalizing procedure by using
Equation (20).

p̃ij =

(
lij
u+

j
,

miij
u+

j
,

uij

u+
j

)
, u+

j = max
{

uij, i = 1, 2, 3 . . . , n
}

(20)

Otherwise, we can establish the highest anticipated level, u+
j , and j = 1, 2, . . . , n is

equivalent to 1; or else, the worst is 0. Furthermore, the normalized p̃ij remains to be TFNs.
For TFNs, the normalization procedure can be achieved in an analogous way. The subjective
fuzzy normalized assessment matrix (Q̃) is measured with the support of Equation (21).

Q̃ =
[
q̃ij
]

m×ni = 1, 2, . . . , m; j = 1, 2, 3 . . . , n (21)

where q̃ij = p̃ij⊗ w̃ij also, at that point, describes the Fuzzy Positive-Ideal Solution (FPIS), as
well as Fuzzy Negative-Ideal Solution (FNIS). The subjective normalized fuzzy assessment
matrix specifies that the components q̃ij are normalized positive TFN and their choices fit
in to the closed interval [0, 1]. Afterward, we can designate the FPIS A+ (aspiration levels)
and FNIS A− (the worst levels), as presented in Equations (22) and (23).

A+ =
(

q̃∗1, ... ... q̃∗j, ... ... q̃∗n,

)
(22)

A− =
(

q̃∗1, ... ... q̃∗j, ... ... q̃∗n,

)
(23)

where q̃∗1 = (1, 1, 1) ⊗ w̃ij =
(

Lwj, Mwj, Hwj
)

and q̃−ij = (0, 0, 0), j = 1, 2, 3 . . . , n. For
computing the space of every alternative solution from FPIS, as well as FNIS, the spaces
(d̃+i and d̃−i ) of every alternative solution from A+ and A− can be assessed with the area
compensation procedure, as presented in Equations (24) and (25).

d̃+i =
n

∑
j=1

.d
(

q̃ij, q̃∗ij
)

i = 1, 2, . . . , m; j = 1, 2, 3 . . . , n (24)

d̃−i =
n

∑
j=1

.d
(

q̃ij, q̃∗ij
)

i = 1, 2, . . . , m; j = 1, 2, 3 . . . , n (25)

The next stage is to identify the closeness coefficients (absolute gaps’ degree) and
construct the alternative solutions for achieving the aspiration degrees in each element.
Ying-Chyi Chou et al. recommended that CC̃i is cleared to estimate the point of the fuzzy
gap based on the fuzzy closeness coefficients to increase the alternatives solution [37].
Once the d̃+i and d̃−i of every alternative solution is assessed, the comparisons to the ideal
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clarification are computed. This procedure resolves the equation’s similarity to the best
choice (26).

CC̃i =
k̃−i

k̃+i + k̃−i
= 1−

k̃+i
k̃+i + k−i

, i = 1, 2, . . . , m (26)

where k̃−i
k̃+i +k̃−i

is demarcated as the fuzzy satisfaction amount in the ith alternative solution,

and k̃+i
k̃+i +k̃−i

is the fuzzy-gap amount in the ith alternative solution. Based on the ranks of

alternatives, the solution is accomplished. The subsequent step is to evaluate the various
IDSs by using their contributing qualities.

5. Numerical Data Analysis
5.1. Statistical Findings

It should be necessary to evaluate the effectiveness of different intrusion-detection
systems [33,34]. A condition that is hard to ascertain is unsuitable for the job. Prohibitively
expensive evaluations still would not yield the anticipated outcomes. The gap of cost-
benefit analysis is advantageous toward a better assessment, as long as it includes the
necessary standards for reliability and bias. A common method for estimating effective-
ness is to evaluate the IDS numerous times and then determine a “significance level of
measurement”. An independent evaluation is better than one that is biased. Measuring
bias, on the other hand, is challenging. In this research, we used an integrated fuzzy AHP-
TOPSIS based methodology to evaluate the different popular IDSs. First, seventy-seven
researchers and cybersecurity specialists with different IDS experiences were consulted for
each parameter set and relevant technologies. These 77 decision-makers are composed of
30 cybersecurity specialists with more than 12 years of experience and 47 researchers from
various security organizations with 10 years of IDS research experience. The specialists
were required to submit and assess their viewpoints in a collaborative online setting, and
they were given information on the degree of the variables in relation to the various groups,
as well as linguistic standards. To begin, the decision-maker creates a pair-wise comparison
matrix containing the parameters. The decisions are considered valid, since the consistency
ratio (CR) is less than 0.1 or near to it. Table 4 demonstrates the combined fuzzify pair-wise
assessment matrix at the initial first level. The fuzzy-aggregated pair-wise comparison
matrix at the second level for Types, Audit Source Location, Targets, and Protected System
is presented in Tables 5–8. For every second-level phase, the global weights were calcu-
lated. The statistical findings were tabularized in Tables 9–13. Table 14 shows the overall
weights and ranking of different factors. Table 15 shows the evaluators’ subjective intel-
ligence findings in linguistic terminology, and Table 16 shows the fuzzy-decision matrix
with normalized decisions. Furthermore, Table 17 demonstrates the fuzzy-decision matrix
with weighted normalization. In addition, with the support of the hierarchical structure,
Table 18 and Figure 4 illustrate the comprehensive and the ultimate relative closeness of
the different alternatives.

Table 4. Level 1 fuzzify consolidated pair-wise comparative matrix.

M1 M2 M3 M4

M1 1.000000, 1.000000,
1.000000

1.000000, 1.515700,
1.933100

0.489600, 0.637200,
1.000000

0.415200, 0.574300,
1.000000

M2 - 1.000000, 1.000000,
1.000000

0.574300, 0.665700,
0.802200

0.303900, 0.393600,
0.566100

M3 - - 1.000000, 1.000000,
1.000000

1.000000, 1.319500,
1.551800

M4 - - - 1.000000, 1.000000,
1.000000
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Table 5. Pair-wise fuzzy multi-criteria decision comparative matrix for types.

M11 M12 M13

M11 1.000000, 1.000000, 1.000000 0.237552, 0.287963, 0.367526 0.342154, 0.447785, 0.824763
M12 - 1.000000, 1.000000, 1.000000 0.661454, 1.172563, 1.693686
M13 - - 1.000000, 1.000000, 1.000000

Table 6. Pair-wise fuzzy multi-criteria decision comparative matrix for audit source location.

M21 M22 M23 M24

M21 1.000000, 1.000000,
1.000000

0.694154, 0.895356,
1.112485

0.234596, 0.287864,
0.364168

0.711256, 0.954163,
1.351257

M22 - 1.000000, 1.000000,
1.000000

0.493154, 0.642362,
1.241435

0.271354, 0.351565,
0.521635

M23 - - 1.000000, 1.000000,
1.000000

1.085484, 1.329762,
1.558235

M24 - - - 1.000000, 1.000000,
1.000000

Table 7. Pair-wise fuzzy multi-criteria decision comparative matrix for targets.

M31 M32 M33

M31 1.000000, 1.000000, 1.000000 0.665365, 1.172384, 1.697465 1.157663, 1.447254, 1.704365
M32 - 1.000000, 1.000000, 1.000000 1.007762, 1.524765, 1.934368
M33 - - 1.000000, 1.000000, 1.000000

Table 8. Pair-wise fuzzy multi-criteria decision comparative matrix for protected system.

M41 M42 M43

M41 1.000000, 1.000000, 1.000000 1.197856, 1.588385, 2.156465 0.491541, 0.642285, 1.009958
M42 - 1.000000, 1.000000, 1.000000 0.224165, 0.295684, 0.427969
M43 - - 1.000000, 1.000000, 1.000000

Table 9. Pair-wise comparative matrix with defuzzification and local weight of parameters at level 1.

M1 M2 M3 M4 Weights

M1 1.000000 1.491200 0.691000 0.641000 0.214422
M2 0.670600 1.000000 0.677000 0.414300 0.159049
M3 1.447200 1.477100 1.000000 1.297700 0.312280
M4 1.560100 2.413700 0.770600 1.000000 0.314249

C.R.= 0.015241

Table 10. Defuzzified pair-wise comparative matrix with parameter local weight for types.

M11 M12 M13 Weights

M11 1.000000 1.173540 0.494564 0.275854
M12 0.852550 1.000000 1.172547 0.328627
M13 2.024340 0.853545 1.000000 0.395519

C.R. = 0.0488003
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Table 11. Defuzzified pair-wise comparative matrix with parameter local weight for audit source location.

M21 M22 M23 M24 Weights

M21 1.000000 0.892654 1.173554 0.994547 0.246313
M22 1.121242 1.000000 0.691526 0.372546 0.182575
M23 0.852562 1.447256 1.000000 1.298541 0.272112
M24 1.006624 2.688354 0.770435 1.000000 0.299000

C.R. = 0.034904

Table 12. Defuzzified pair-wise comparative matrix with parameter local weight for targets.

M31 M32 M33 Weights

M31 1.000000 1.172541 1.363652 0.388975
M32 0.853345 1.000000 1.491224 0.355978
M33 0.733754 0.670725 1.000000 0.255047

C.R. = 0.002506

Table 13. Defuzzified pair-wise comparative matrix with parameter local weight for protected system.

M41 M42 M43 Weights

M41 1.000000 1.633244 0.691844 0.322565
M42 0.612477 1.000000 0.303457 0.356224
M43 1.447247 3.300347 1.000000 0.321211

C.R. = 0.0052045

Table 14. Overall weights and level of different factors.

Level 1
Methods

Local Weights
of Level 1

Level 2
Methods

Local Weights
of Level 2

Overall
Weights

Overall
Ranks

M1 0.214422
M11 0.275854 0.059149 9
M12 0.328627 0.070465 8
M13 0.395519 0.084808 6

M2 0.159049

M21 0.246313 0.039176 12
M22 0.182575 0.029038 13
M23 0.272112 0.043279 11
M24 0.299000 0.047556 10

M3 0.312280
M31 0.388975 0.121469 1
M32 0.355978 0.111165 3
M33 0.255047 0.079646 7

M4 0.314249
M41 0.322565 0.101366 4
M42 0.356224 0.111943 2
M43 0.321211 0.100940 5

Table 15. Evaluators’ subjective intelligence findings in linguistic terminology.

S1 S2 S3 S4 S5

M11 5.3600,
7.3006, 8.7300

5.5500,
7.5500, 8.9100

0.6400,
2.2700, 4.2700

5.3600,
7.3600, 8.7300

4.1800,
6.0900, 7.6400

M12 3.7300,
5.5500, 7.2700

4.4500,
6.4500, 8.1800

1.6400,
3.5500, 5.5500

3.5500,
5.5500, 7.3600

5.0000,
7.0000, 8.4500

M13 2.3600,
4.2700, 6.2700

5.3600,
7.3006, 8.7300

5.5500,
7.5500, 8.9100

0.6400,
2.2700, 4.2700

5.3600,
7.3600, 8.7300

M21 4.8200,
6.8200, 8.5500

3.7300,
5.5500, 7.2700

4.4500,
6.4500, 8.1800

1.6400,
3.5500, 5.5500

3.5500,
5.5500, 7.3600

M22 5.5500,
7.5005, 9.2700

2.3600,
4.2700, 6.2700

2.4500,
4.2700, 6.2700

1.3600,
3.3600, 5.3600

4.4500,
6.4500, 8.1800
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Table 15. Cont.

S1 S2 S3 S4 S5

M23 4.2700,
6.2700, 8.1800

4.8200,
6.8200, 8.5500

4.6400,
6.6400, 8.5500

0.8200,
2.6400, 4.6400

4.4500,
6.4500, 8.2700

M24 5.3600,
7.3006, 8.7300

5.5500,
7.5500, 8.9100

0.6400,
2.2700, 4.2700

5.3600,
7.3600, 8.7300

5.7300,
7.7300, 9.2700

M31 3.7300,
5.5500, 7.2700

5.3600,
7.3006, 8.7300

5.5500,
7.5500, 8.9100

0.6400,
2.2700, 4.2700

5.3600,
7.3600, 8.7300

M32 2.3600,
4.2700, 6.2700

3.7300,
5.5500, 7.2700

4.4500,
6.4500, 8.1800

1.6400,
3.5500, 5.5500

3.5500,
5.5500, 7.3600

M33 5.3600,
7.3006, 8.7300

5.5500,
7.5500, 8.9100

0.6400,
2.2700, 4.2700

5.3600,
7.3600, 8.7300

4.4500,
6.4500, 8.1800

M41 3.7300,
5.5500, 7.2700

4.4500,
6.4500, 8.1800

1.6400,
3.5500, 5.5500

3.5500,
5.5500, 7.3600

4.4500,
6.4500, 8.2700

M42 2.3600,
4.2700, 6.2700

2.4500,
4.2700, 6.2700

1.3600,
3.3600, 5.3600

4.4500,
6.4500, 8.1800

5.7300,
7.7300, 9.2700

M43 4.8200,
6.8200, 8.5500

4.6400,
6.6400, 8.5500

0.8200,
2.6400, 4.6400

4.4500,
6.4500, 8.2700

5.1800,
7.1800, 8.8200

Table 16. Fuzzy decision matrix with normalized decisions.

S1 S2 S3 S4 S5

M11 0.3800,
0.6000, 0.8000

0.5400,
0.7500, 0.9200

0.5200,
0.7400, 0.9300

0.4200,
0.6900, 0.9900

0.5200,
0.7400, 0.9400

M12 0.5200,
0.7400, 0.9400

0.3800,
0.6000, 0.8000

0.5400,
0.7500, 0.9200

0.5200,
0.7400, 0.9300

0.4200,
0.6900, 0.9900

M13 0.3800,
0.6000, 0.8000

0.5200,
0.7400, 0.9400

0.5400,
0.7500, 0.9200

0.5200,
0.7400, 0.9200

0.2000,
0.4700, 0.7700

M21 0.3800,
0.6000, 0.8000

0.5400,
0.7500, 0.9200

0.5200,
0.7400, 0.9300

0.4200,
0.6900, 0.9900

0.5400,
0.7500, 0.9400

M22 0.5200,
0.7400, 0.9400

0.3800,
0.6000, 0.8000

0.5400,
0.7500, 0.9200

0.5200,
0.7400, 0.9300

0.4200,
0.6900, 0.9900

M23 0.3800,
0.6000, 0.8000

0.5200,
0.7400, 0.9400

0.5400,
0.7500, 0.9200

0.5200,
0.7400, 0.9200

0.2000,
0.4700, 0.7700

M24 0.3800,
0.6000, 0.8000

0.5400,
0.7500, 0.9200

0.5200,
0.7400, 0.9300

0.4200,
0.6900, 0.9900

0.5400,
0.7500, 0.9400

M31 0.5200,
0.7400, 0.9400

0.3800,
0.6000, 0.8000

0.5400,
0.7500, 0.9200

0.5200,
0.7400, 0.9300

0.4200,
0.6900, 0.9900

M32 0.3800,
0.6000, 0.8000

0.5200,
0.7400, 0.9400

0.5400,
0.7500, 0.9200

0.5200,
0.7400, 0.9200

0.2000,
0.4700, 0.7700

M33 0.3800,
0.6000, 0.8000

0.5400,
0.7500, 0.9200

0.5200,
0.7400, 0.9300

0.4200,
0.6900, 0.9900

0.5400,
0.7500, 0.9400

M41 0.5200,
0.7400, 0.9400

0.5400,
0.7500, 0.9200

0.3800,
0.6000, 0.8000

0.5400,
0.7500, 0.9200

0.5200,
0.7400, 0.9300

M42 0.3800,
0.6000, 0.8000

0.3500,
0.5800, 0.8100

0.5200,
0.7400, 0.9400

0.5400,
0.7500, 0.9200

0.5200,
0.7400, 0.9200

M43 0.5200,
0.7400, 0.9200

0.4600,
0.6700, 0.8600

0.3800,
0.6000, 0.8000

0.3500,
0.5800, 0.8100

0.4200,
0.6900, 0.9900
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Table 17. Fuzzy decision matrix with weighted normalization.

S1 S2 S3 S4 S5

M11
0.00000,
0.00200,
0.00900

0.00200,
0.00700,
0.02200

0.00200,
0.00700,
0.02400

0.00100,
0.00500,
0.01800

0.00300,
0.01100,
0.03600

M12
0.00300,
0.01200,
0.04100

0.00000,
0.00200,
0.00900

0.00200,
0.00700,
0.02200

0.00200,
0.00700,
0.02400

0.00100,
0.00500,
0.01800

M13
0.00300,
0.01200,
0.04200

0.00300,
0.01200,
0.04100

0.00300,
0.01200,
0.04100

0.00500,
0.01600,
0.04800

0.00500,
0.01600,
0.04900

M21
0.00000,
0.00200,
0.00900

0.00200,
0.00700,
0.02200

0.00200,
0.00700,
0.02400

0.00100,
0.00500,
0.01800

0.00200,
0.00900,
0.03800

M22
0.00300,
0.01200,
0.04100

0.00000,
0.00200,
0.00900

0.00200,
0.00700,
0.02200

0.00200,
0.00700,
0.02400

0.00100,
0.00500,
0.01800

M23
0.00300,
0.01200,
0.04200

0.00300,
0.01200,
0.04100

0.00300,
0.01200,
0.04100

0.00500,
0.01600,
0.04800

0.00500,
0.01600,
0.04900

M24
0.00000,
0.00200,
0.00900

0.00000,
0.00200,
0.00900

0.00200,
0.00700,
0.02200

0.00200,
0.00700,
0.02400

0.00100,
0.00500,
0.01800

M31
0.00300,
0.01200,
0.04100

0.00300,
0.01200,
0.04100

0.00300,
0.01200,
0.04100

0.00500,
0.01600,
0.04800

0.00500,
0.01600,
0.04900

M32
0.00000,
0.00200,
0.00900

0.00000,
0.00200,
0.00900

0.00200,
0.00700,
0.02200

0.00200,
0.00700,
0.02400

0.00100,
0.00500,
0.01800

M33
0.00300,
0.01200,
0.04100

0.00300,
0.01200,
0.04100

0.00300,
0.01200,
0.04100

0.00500,
0.01600,
0.04800

0.00500,
0.01600,
0.04900

M41
0.00000,
0.00200,
0.00900

0.00200,
0.00700,
0.02200

0.00200,
0.00700,
0.02400

0.00100,
0.00500,
0.01800

0.00200,
0.00900,
0.03800

M42
0.00300,
0.01200,
0.04100

0.00300,
0.01200,
0.04100

0.00500,
0.01600,
0.04800

0.00500,
0.01600,
0.04900

0.00100,
0.00500,
0.01800

M43
0.00300,
0.01200,
0.04200

0.00300,
0.01200,
0.04200

0.00200,
0.01000,
0.03700

0.00200,
0.00900,
0.03800

0.00100,
0.00500,
0.01800

Table 18. Coefficients of closeness to the aspired level throughout the alternatives.

Alternatives d + i d − i Gap Degree of
CC+i

Satisfaction
Degree of CC-i

Alternative 1 S1 0.0452564 0.0556547 0.6235652 0.3954740
Alternative 2 S2 0.0564554 0.0353625 0.3655474 0.6586950
Alternative 3 S3 0.0475458 0.0555474 0.5695857 0.4585660
Alternative 4 S4 0.0453567 0.0463562 0.4685745 0.4458570
Alternative 5 S5 0.0452265 0.0425555 0.4536652 0.4695850
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Depending upon the value of satisfaction degree shown in Figure 4, it is concluded that
the initial ranking of the efficient IDS using the integrated fuzzy AHP-TOPSIS approach is
S2 > S5 > S3 > S4 > S1 (\>“means\higher to”). Therefore, S2, which is Suricata, is considered
the preferable and effective IDS.

5.2. Comparative Analysis

The use of multiple techniques on almost the same data delivers contradictory conclu-
sions. The investigators use a variety of complementary ways to test the correctness of the
research outcome. In this investigation, the researcher applied a hybrid fuzzy AHP-TOPSIS-
based approach to evaluate the effectiveness of different alternatives. The data-acquisition
and -assessment process for that sample in fuzzy AHP-TOPSIS is similar to the traditional
AHP-TOPSIS approach. As a result, fuzzification and defuzzification are required for the
fuzzy-AHP-TOPSIS. Furthermore, the data for fuzzy AHP-TOPSIS are captured in their
initial statistical values and afterward transformed into fuzzy value sets. The outcomes
obtained through the traditional method were well correlated with those obtained by using
the fuzzy procedure. The comparison analysis’ results were not highly different and varied
from each other, but the accuracy of the outcomes was varied. The traditional approaches
for the effectiveness evaluation of different IDSs are insufficient for working with the
inaccurate or ambiguous quality of linguistic evaluations. Therefore, integrated fuzzy
multi-criteria decision-making strategies are developed to tackle this challenge. Moreover,
the fuzzy approach confirms the findings of the classic strategy, thus enhancing the validity
of the ranking among the five methods. Table 19 and Figure 5 show the comparison of
outcomes with the fuzzy and traditional AHP-TOPSIS approach.

Table 19. Comparison of the results of classical and fuzzy AHP-TOPSIS methods.

Methods/Alternatives S1 S2 S3 S4 S5

Fuzzy-AHP-TOPSIS 0.3954740 0.6586950 0.4585660 0.4458570 0.4695850
Traditional-AHP-TOPSIS 0.3785410 0.6453520 0.4445860 0.4324550 0.4585700
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5.3. Sensitivity Analysis

The responsiveness was evaluated by altering the parameters to test the validity of the
gathered data. During the same statistical analysis, the sensitivity of the obtained weights
(factors involved) was evaluated. Throughout the investigation, at the final (second) step,
13 variables were picked so that sensitivities can be investigated by using 12 experiments.
In each trial, the degree of satisfaction (CC-i) was found by adjusting the weights of every
parameter, while the weight of the other element remained stable, using the Fuzzy-AHP-
TOPSIS approach. Reported consequences are shown in Table 20 and Figure 6.

Table 20. Sensitivity analysis.

Experiments Weights/
Alternatives S1 S2 S3 S4 S5

Experiment-0 Original
Weights

Sa
ti

sf
ac

ti
on

D
eg

re
e

(C
C

-i
)

0.3954740 0.6586950 0.4585660 0.4458570 0.4695850

Experiment-1 M11 0.4354254 0.6012524 0.4895685 0.4775474 0.4956526
Experiment-2 M12 0.4765285 0.7025652 0.5285657 0.5245412 0.5346525
Experiment-3 M13 0.5225365 0.5345474 0.3952653 0.3457425 0.3858547
Experiment-4 M21 0.3412524 0.3855268 0.4245623 0.3756352 0.4152334
Experiment-5 M22 0.3778569 0.4184759 0.5212542 0.5526354 0.5348549
Experiment-6 M23 0.3645256 0.3832654 0.3452635 0.3965875 0.3856368
Experiment-7 M24 0.4800215 0.4976965 0.3776538 0.4236587 0.4165365
Experiment-8 M31 0.3285452 0.5563598 0.3685659 0.5252635 0.5363524
Experiment-9 M32 0.5256356 0.5332654 0.4856965 0.3452635 0.3863897

Experiment-10 M33 0.3436352 0.3853652 0.4276566 0.3753416 0.4163526
Experiment-11 M41 0.3785695 0.4183265 0.3965235 0.3535277 0.3863524
Experiment-12 M42 0.3645758 0.3852653 0.3838574 0.4965352 0.4963564
Experiment-13 M43 0.4856365 0.4963526 0.5485684 0.5254291 0.5458473

Table 18 represents the real weights of this research investigation in the first row.
Taking the performances into account, we see that the alternative (S2) has a high level of
satisfaction (CC-i). Twelve experiments were carried out. The results reveal that, after
twelve tests, Alternative-2 (S2) consistently retains a high level of satisfaction (CC-i). The
performance results demonstrate that the rankings of the alternatives are weight-dependent.



Electronics 2022, 11, 859 18 of 20

Electronics 2022, 11, x FOR PEER REVIEW 18 of 20 
 

 

Experiment-
13 

M43 0.4856365 0.4963526 0.5485684 0.5254291 0.5458473 

 
Figure 6. Sensitivity analysis. 

Table 18 represents the real weights of this research investigation in the first row. 
Taking the performances into account, we see that the alternative (S2) has a high level of 
satisfaction (CC-i). Twelve experiments were carried out. The results reveal that, after 
twelve tests, Alternative-2 (S2) consistently retains a high level of satisfaction (CC-i). The 
performance results demonstrate that the rankings of the alternatives are weight-depend-
ent. 

6. Conclusions 
In today’s modern environment, network security is significant for small, as well as 

large, organizations. Modern security challenges that are increasingly complex and ad-
vanced are always being developed. Online security issues are becoming more prevalent, 
and an IDS can assist in defending your organization from malicious activities. An IDS 
simply analyzes network traffic and notifies the system administrator if any suspicious 
activity is detected. This paper discusses the five most widely used intrusion-detection 
systems. Thereafter, the functionality of these five popularly used intrusion-detection sys-
tems, including Zeek, Suricata, Security Onion, OSSEC, and Snort, are effectively com-
pared with the help of a hybrid fuzzy-logic-based approach and discussed in this study. 
All of the IDSs appear to be highly potential tools. Even though Snort is extensively de-
ployed, it is important to note that Suricata is the new-generation multi-threaded applica-
tion with a broader range of features. Suricata also has a significant benefit over Snort in 
that it does not need many processes to handle an upsurge in network traffic. The type of 
connection or attack to be monitored will determine the implementation of a multispectral 
IDS. The recommendation to network administrators is based on a generic network design 
and frequent network obstructions; however, this may vary depending on the network 
infrastructure of the business entity. The target for future research work is to deploy sim-
ilar research with other MCDM models. The real-world dataset would be reviewed, and 
final assessments would be easily measured without the assistance of any other third en-
tity. 

Author Contributions: Conceptualization, H.A., M.T.J.A., A.A. (Abdullah Alharbi), W.A. and M.A.; 
methodology, H.A., M.T.J.A., A.A. (Abdullah Alharbi), A.A. (Alka Agrawal) and R.K.; software, 

Figure 6. Sensitivity analysis.

6. Conclusions

In today’s modern environment, network security is significant for small, as well
as large, organizations. Modern security challenges that are increasingly complex and
advanced are always being developed. Online security issues are becoming more prevalent,
and an IDS can assist in defending your organization from malicious activities. An IDS
simply analyzes network traffic and notifies the system administrator if any suspicious
activity is detected. This paper discusses the five most widely used intrusion-detection
systems. Thereafter, the functionality of these five popularly used intrusion-detection sys-
tems, including Zeek, Suricata, Security Onion, OSSEC, and Snort, are effectively compared
with the help of a hybrid fuzzy-logic-based approach and discussed in this study. All of
the IDSs appear to be highly potential tools. Even though Snort is extensively deployed, it
is important to note that Suricata is the new-generation multi-threaded application with
a broader range of features. Suricata also has a significant benefit over Snort in that it
does not need many processes to handle an upsurge in network traffic. The type of con-
nection or attack to be monitored will determine the implementation of a multispectral
IDS. The recommendation to network administrators is based on a generic network design
and frequent network obstructions; however, this may vary depending on the network
infrastructure of the business entity. The target for future research work is to deploy similar
research with other MCDM models. The real-world dataset would be reviewed, and final
assessments would be easily measured without the assistance of any other third entity.
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