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Abstract: Each sparse representation classifier has different classification accuracy for different
samples. It is difficult to achieve good performance with a single feature classification model. In order
to balance the large-scale information and global features of images, a robust dictionary learning
method based on image multi-vector representation is proposed in this paper. First, this proposed
method generates a reasonable virtual image for the original image and obtains the multi-vector
representation of all images. Second, the same dictionary learning algorithm is used for each vector
representation to obtain multiple sets of image features. The proposed multi-vector representation
can provide a good global understanding of the whole image contour and increase the content of
dictionary learning. Last, the weighted fusion algorithm is used to classify the test samples. The
introduction of influencing factors and the automatic adjustment of the weights of each classifier
in the final decision results have a significant indigenous effect on better extracting image features.
The study conducted experiments on the proposed algorithm on a number of widely used image
databases. A large number of experimental results show that it effectively improves the accuracy of
image classification. At the same time, to fully dig and exploit possible representation diversity might
be a better way to lead to potential various appearances and high classification accuracy concerning
the image.

Keywords: multiple vector representation; sparse representation; dictionary learning; image classification

1. Introduction

Image classification has always been one of the important research topics in the field
of computer vision. It can effectively analyze the content of the image to obtain the key
information in the image and give the correct judgment, which is of great significance
to real work life and social development. Generally, image classification includes image
preprocessing [1], image feature extraction [2,3], feature location, feature selection [4] and
classifier design [5,6]. Image feature extraction is an important algorithm and faces many
challenges in image classification, such as intra-class change, scale change, viewpoint
change, illumination conditions and background interference. Therefore, how to effectively
extract image features is an urgent problem to be solved.

In recent years, researchers have generally used sparse representation (SR) and dic-
tionary learning (DL) to extract image features. These methods have a good learning
ability for image representation and can show better recognition results in image classi-
fication tasks [7–9]. The original idea of sparse representation classification (SRC) is to
assume that a given test sample can be linearly represented by all training samples and
obtain the coefficients of linear representation. In classification, all training samples and
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coefficients of each class are used to obtain the predicted value [10]. The predicted value
of all classes is different from test samples, and the class with the smallest difference is
the class of test samples. However, when the data volume increases, the optimization
process may become very slow. In order to speed up the sparse decomposition process,
there are generally two ways: One is to reduce the operation scale by selecting training
samples with certain properties (such as neighbor samples) [11–13], and the other is to
obtain a more compact dictionary containing a large amount of identification information
through DL, such as the classical K-Singular Value Decomposition algorithm (KSVD) [7],
Discriminative K-SVD (D-KSVD) [14], Label Consistent K-SVD (LC-KSVD) [15] and fisher
discrimination dictionary learning (FDDL) [16]. It is worth noting that there is a novel and
prospective research field-hybrid method between metaheuristics and machine learning
with computer vision/image processing applications. The novel research field successfully
combines machine learning and swarm intelligence approaches and proved to be able to
obtain outstanding results in different areas [17,18].

The key of dictionary learning is to obtain a robust dictionary, which can reduce the
difference between the same class of test samples and training samples. There are two
ways to achieve robustness. One is to impose label consistency constraints on deep sparse
features [19,20]. Another is the representation-based classification method (RBCM) [21–23].
When RBCM is applied to image data, the dictionary learning algorithm converts each
image into a vector. References [24,25] also used the idea of converting each image into
a vector when processing images. In the case of the fixed algorithm, fully exploiting the
characteristics of the original sample can improve the classification effect [26–28]. Similarly,
potential multiple representations directly from the original data can provide different
observations of the samples. Combining the features of multiple representations not only
makes the sample categories sparse but also makes the classification effect more stable. The
information obtained by these methods is sparse and contains local sensitive information
of the sample, which can make the feature robust to noise and outliers in the sample.

The main objective behind the approach proposed in this study is to further improve
the RBCM, increase the classification performance of DL, and avoid the features missing
by obtaining novel representations of images, from a practical scope. It shows that the
diversity of vector representations of the image can be further consolidated by matrix
decomposition in dictionary learning, so the resultant complementary information can be
better exploited. The contribution of this research is threefold:

(1) A robust dictionary learning method based on image multi-vector representation is
proposed.

(2) A novel representation of images is designed, which is represented by virtual samples
and multi-vectors. Based on the original algorithm, four new vector representation
methods are added to better mine the large-scale information and global features
of images.

(3) A reasonable weighted fusion image classification algorithm is proposed. The influ-
ence factor is introduced to automatically adjust the weight of each classifier in the
final decision results, which has a significant effect on better extracting image features
and can obtain very stable and accurate classification results.

The organizational structure of this paper is as follows. In Sections 2.1 and 2.2, how
the new image representation method is generated is described in detail, and the process of
weighted fusion algorithm based on SR is described. In Section 3, this paper analyzes the
proposed algorithm and compares it with the original algorithm. In Section 4, comparative
experiments are conducted with other algorithms on a large number of databases. The last
part summarizes the findings of this research.
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2. Proposed Method
2.1. To Obtain Novel Representations of Images

This paper proposes an improved image multi-vector representation algorithm based
on [21] to represent the original image. Use the following steps to obtain a multi-vector
representation of an image.

(1) Generate a virtual image V from the original image I. The representation method of
generating V is as follows:

Vrc =
2
√

Irc·(Pmax − Irc) (1)

where Vrc is the pixel value in the r-th row and c-th column in the virtual image, Pmax is the
largest pixel value existing in the original image and Irc is the pixel value in the r-th row
and c-th column in the original image. The following conclusions can be easily drawn out
by Formula (1).

Proposition 1. When I is a gray-scale image, the maximum value of Vrc is 2
√

127 ∗ 128.

Proposition 2. When Irc = 0 or Irc = Pmax, Vrc = 0.

Proposition 3. When Pmax = 2Irc, Vrc = Irc.

The pixel value of the virtual image V generated in this way is symmetrical about the
maximum value 2

√
127 ∗ 128, which increases the frequency of pixels value in the medium-

intensity pixel and subtracts some other useless characteristic information. In other words,
the generated virtual image not only has stronger discriminative information, but also
maintains the local geometric features of the original image.

(2) Convert I and V into an improved multi-vector representation of the image.

I and V together constitute this experimental database. I is divided into training
sample Y and test sample P. V is added to Y to enrich the training sample, and then all
images are converted into multi-vector representations of images using the method in [21].
The study upgrades t = 4 in the original algorithm to t = 8.

For the m-th sample, this paper uses the vector yi
m to represent the i-th training sample,

and the vector pm to represent the test sample. Both yi
m and pm are generated from the

original image matrix Yi
m and Pm. The structure of Yi

m is shown in (2). There are many ways
to generate yi

m and pm. There are eight ways in the proposed algorithm:

Yi
m =


V11 V12 · · · V1c
V21 V22 · · · V2c

...
...

...
Vr1 Vr2 · · · Vrc

or


I11 I12 · · · I1c
I21 I22 · · · I2c
...

...
...

Ir1 Ir2 · · · Irc

 (2)

Concatenate the first to last rows in the sequence of image matrices Yi
m and Pm,

respectively, to obtain yi
m and pm. Concatenating the last to the first rows in the sequence

of image matrices Yi
m and Pm, respectively, is the second representation way. The third

way concatenates the first to last columns in the sequence of image matrices Yi
m and Pm,

respectively. The fourth way, respectively, concatenate the last to first columns in the
sequence of the same image matrices. The fifth way connects the elements in the same
image matrix sequence from left to right according to the principal diagonal. The acquired
yi

m and pm structures are shown in (3).

yi
m =

(
Vr1 V(r−1)1 · · · V21 V(r−1)(c−1) · · · Vrc

)T
(3)
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Similarly, the sixth way connects the elements in the same image matrix sequence
from right to left according to the principal diagonal to obtain yi

m and pm. The structure
after image vector transformation is shown in (4).

yi
m =

(
V1c V1(c−1) V2c · · · V11 V22 · · · Vr1

)T
(4)

The seventh way connects the elements in the same image matrix from right to left by
counter-diagonal. The acquired yi

m and pm structures are shown in (5).

yi
m =

(
V11 V21 V12 · · · Vr1 V(r−1)2 · · · Vrc

)T
(5)

The eighth way connects the elements in the same image matrix from left to right by
counter-diagonal to obtain yi

m and pm.
Each image representation will form a new dataset and then be used in the dictionary

learning image classification algorithm based on sparse representation. In addition to the
eight vector representations described above, there are many possible vector representa-
tions. For instance, the image is divided into overlapped image blocks with

√
n×
√

n as the
size of the image block, and the image block is represented by the column vector according
to the fixed step size (fixed pixels per interval). This point has been explained in [29,30].

2.2. The Weighted Fusion Classification Algorithm

This section explains how to do weighted fusion for the multi-vector representation of
samples. After obtaining a variety of vector representations of the sample, it is applied to
the dictionary learning image classification algorithm based on sparse representation. This
paper constructs several sparse classifiers to verify the accuracy of classifiers generated
by different features. Weights are allocated based on the accuracy of different classifiers
in all feature cases. The weight proportions of different feature classifiers are updated
continuously through iteration. Finally, the result is output by the final decision classifier.
The specific process of the algorithm is as follows:

(1) Suppose there are m classes of training samples. Ei = (ei1, ei2, · · · , ein) represents the
set of training samples from the i-th class. eij represents the image vector representa-
tion of the j-th training sample of the c class and n is the number of training samples
of the i-th class. The multi-vector representation method proposed in Section 2.2 is
used to extract the feature of the whole training sample and obtain the characteristic
matrix D of multiple sets of training samples.

Dk = (D1, D2, · · · , Dm) ∈ Rd×n (6)

where d is the feature dimensions and k is the k-th class feature. Dk
i is the feature

vector of the i-th training sample of the k-th class sample.
(2) Based on the methods in [21], corresponding sparse representation classifiers are

generated for multiple feature vector matrices in (6). Multiple classifiers obtain the
corresponding classification results Qm of various sparse representations. There-
fore, its residual is calculated via li(y) = ‖y− Dδi(x̂1)‖2, where i = 1, 2, · · · , m,
δi(x̂1) = (0, · · · , 0, ei1, ei2, · · · , ein, 0, 0, · · · , 0)T . The degree of separation between
different categories of the sparse classifier is obtained as follows:

Sk
i =

m

∑
z=1

lz(y)− li(y) (7)

Sk
i represents the degree of separation between the i-th sample of the k-th class classifier

and the other classes in the whole training sample. The greater the separation degree,
the more obvious the classification effect of the classifier on the training sample.
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(3) This study constructs and assigns initial weights for each sparse representation classi-
fier. Using the degree of separation S of the first classifier output as the initial feature
weight coefficient:

Wi =
max

{
Si

j

}
∑k Sk (8)

Wi represents the initialization weight ratio assigned to the i-th class sparse represen-
tation classification.

(4) According to the weight coefficient of (8), the classification results are fused to deter-
mine the image category.

wj =
Hj

∑C
j=1 Hj

(9)

Hj =
m
∑

k=1
WiSk

i , j = 1, 2, · · · , m. wj is the influence proportion of the j-th classifier to

all samples under the influence of multi-classification fusion decision. We combine
the classification result Q and its proportion value w for linear weighting, and obtain
the final classification result as follows:

class(y) = argmax
j

∑
i=1

wiQi. (10)

(5) This study iterates and optimizes the Wi. of each classifier based on the validation
data of the test samples, and use factor ∂ to adjust the weight ratio of each classifier.
If all classifiers fail to detect rightly the vector representation of the sample is dis-
carded. In the classification based on sparse representation, the weight coefficients
are meaningful because they reflect the importance of each training sample.

The main steps of this algorithm are shown in Figure 1:
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Step 1. All the original samples are divided into training sample and testing sample
and the corresponding preprocessing.

Step 2. The original sample generates a virtual sample by (1). The virtual sample and
the original sample make up the experimental dataset.

Step 3. Obtain the multi-vector representation of all original samples using the meth-
ods in Section 2.1.

Step 4. The same dictionary learning algorithm is applied to each vector representation
of the original image to obtain multiple sets of features.

Step 5. The k-th class features of the samples are classified using the same classification
algorithm to obtain the classification results.

Step 6. Finally, the weighted fusion algorithm is used to classify the test samples.

3. The Analysis of the Proposed Algorithm

This section mainly analyses the differences between the original algorithm [21] and
the improved algorithm.

The method in Section 2.2 is used to generate multiple representations in vector
form directly from the original image. Each representation is generated by a specific
transformation scheme. If the original image has t vector representations, the dataset will
increase at least t times. It adds four representation methods to the original algorithm in
this study. That is to increase the content of dictionary learning and enrich the features of
the sample. The multi-vector representation of this study is reasonable because it reveals
more possible changes in the original sample. In other words, multiple representations
of an image can be understood as different observations of the same object. Using these
multiple representations together can better extract information from objects.

The fusion scheme of the original algorithm has been improved. The influence factor
is introduced to adaptively adjust the weight ratio of each classifier in the final decision
results because each sparse representation classifier has different classification accuracy for
different samples. Therefore, factor ∂ reasonably adjusts each adaptive classifier, and the
value of ∂ also has a certain influence on the classification effect. The optimal multi-classifier
fusion decision model is obtained by iterative and adaptive updating parameters. It is
difficult to achieve good performance with a single feature classification model. However,
the multi-vector representation can provide a good global understanding of the overall
image contour. For the classification task, it is not ideal to classify images only by global
features. The proposed weighted fusion classification algorithm focuses on the extraction
of image contour and direction gradient features, and balances global features and local
features. Under the multi-classifier fusion decision, it can deal with the image classification
problem well.

In order to intuitively illustrate the performance of improved algorithms in classifica-
tion, the following will be analyzed in detail through the Yale face database experiments.
The algorithm has more advantages than the original one. Choose the first face image of
the first person as the test sample. Without multi-vector representation, through the SRC
method, the sparse coefficient and residual value of each training sample corresponding
to this test sample are shown in Figure 2. Each of the six index coefficients corresponds
to a category, and the red box corresponds to the 10th class. It can be seen from Figure 2a
that none of the representation coefficients of the test sample corresponding to the first
type of training samples are less than 0. The 15th training samples also have relatively
large positive coefficients. In addition, it is clear from Figure 2b that the residual values
calculated from the first training sample do not differ much from those of the fifteenth
training sample. This shows that, although the SRC method can correctly classify the test
sample, the effect is not obvious.
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Figure 4 shows the coefficient values and classification scores obtained by the proposed
algorithm. The first class has two coefficients greater than 0.2 and both are greater than 0.
Figure 4b shows that the classification score of the test sample calculated by our algorithm
is the highest, which shows that the test sample has achieved correct classification through
the proposed algorithm.

According to the above experimental analysis, it can be found that the “dense” vector
representation in the original method will produce multiple representation coefficients,
which may lead to classification errors. The weighted fusion algorithm can be used to
balance the coefficients, which can avoid classification errors in some cases. This also
proves the effectiveness of the proposed algorithm in classification.



Electronics 2022, 11, 847 8 of 19Electronics 2022, 11, x FOR PEER REVIEW 8 of 19 
 

 

  

(a) (b) 

Figure 4. (a) Coefficients obtained by the proposed algorithm; (b) classification score values ob-
tained by the proposed algorithm.  

According to the above experimental analysis, it can be found that the “dense” vector 
representation in the original method will produce multiple representation coefficients, 
which may lead to classification errors. The weighted fusion algorithm can be used to 
balance the coefficients, which can avoid classification errors in some cases. This also 
proves the effectiveness of the proposed algorithm in classification. 

4. Experiments and Results 
This section evaluates the proposed algorithm experimentally on four publicly used 

databases. These databases include three face databases and one object database, specifi-
cally the Yale B face database [31], the PIE face database [32], the AR face database [33] 
and the COIL-20 database [34]. Statistical tests and comparisons with deep learning meth-
ods are also conducted. 

In order to illustrate the performance of the proposed algorithm in classification, this 
paper compares it with the classical dictionary learning algorithm and the original algo-
rithm [21]. The original algorithm is represented as improvement to K-SVD (IKSVD), im-
provement to D-KSVD (IDKSVD), improvement to LC-KSVD (ILCKSVD), improvement 
to FDDL (IFDDL) and improvement to RDCDL [27] (IRDCDL). The experimental process 
is as follows. Firstly, sample sets are divided into training samples and test samples. The 
original sample generates a virtual sample by (1). Virtual samples and original samples 
constitute the sample set. The multi-vector representation of all original samples is ob-
tained by using the method in Section 2.2. Then, the multi-vector representation is applied 
to the same dictionary learning algorithm to obtain multiple sets of features. Finally, the 
weighted fusion algorithm is used to classify the test samples, and the classification results 
are obtained. Each dictionary learning algorithm performs 20 times and calculates its av-
erage accuracy. The results show that the accuracy of the proposed algorithm has been 
greatly improved by comparing with the original algorithm and other similar algorithms. 
The following is the specific experimental analysis of various datasets. 

4.1. Experiments on the Extended Yale B Face Database 
The Extended Yale B face database contains 2414 faces of 38 persons. Each person has 

nine different postures and 64 face images with different illuminations. According to the 
light intensity, it is divided into five subsets, namely subsets I–V. The light intensity of 
these five subsets is increasing, with a total of 2414 images. Some experimental samples 

Figure 4. (a) Coefficients obtained by the proposed algorithm; (b) classification score values obtained
by the proposed algorithm.

4. Experiments and Results

This section evaluates the proposed algorithm experimentally on four publicly used
databases. These databases include three face databases and one object database, specifically
the Yale B face database [31], the PIE face database [32], the AR face database [33] and the
COIL-20 database [34]. Statistical tests and comparisons with deep learning methods are
also conducted.

In order to illustrate the performance of the proposed algorithm in classification,
this paper compares it with the classical dictionary learning algorithm and the original
algorithm [21]. The original algorithm is represented as improvement to K-SVD (IKSVD),
improvement to D-KSVD (IDKSVD), improvement to LC-KSVD (ILCKSVD), improvement
to FDDL (IFDDL) and improvement to RDCDL [27] (IRDCDL). The experimental process
is as follows. Firstly, sample sets are divided into training samples and test samples. The
original sample generates a virtual sample by (1). Virtual samples and original samples
constitute the sample set. The multi-vector representation of all original samples is obtained
by using the method in Section 2.2. Then, the multi-vector representation is applied to
the same dictionary learning algorithm to obtain multiple sets of features. Finally, the
weighted fusion algorithm is used to classify the test samples, and the classification results
are obtained. Each dictionary learning algorithm performs 20 times and calculates its
average accuracy. The results show that the accuracy of the proposed algorithm has been
greatly improved by comparing with the original algorithm and other similar algorithms.
The following is the specific experimental analysis of various datasets.

4.1. Experiments on the Extended Yale B Face Database

The Extended Yale B face database contains 2414 faces of 38 persons. Each person
has nine different postures and 64 face images with different illuminations. According to
the light intensity, it is divided into five subsets, namely subsets I–V. The light intensity of
these five subsets is increasing, with a total of 2414 images. Some experimental samples
are shown in Figure 5. All images are cut to 32 × 32 pixels. In the experiment, a total of
1170 face images were selected as the test set in subsets I–III, and their images were used
as the training set. Figure 6 and Table 1 show the average recognition rate of different
algorithms and improved algorithms under different atomic number when the number of
training samples is extended concerning the Yale B face database.
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Figure 6. (a) Comparison of different KSVD algorithms; (b) Comparison of different DSVD algorithms.
(c) Comparison of different LC-KSVD algorithms; (d) Comparison of different FDDL algorithms;
(e) Comparison of different RDCDL algorithms. The accuracy of image classification increases steadily
with the increase of atomic number. Compared with other algorithms, the proposed algorithm
generally has advantages.
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Table 1. Average accuracy (%) on the Yale B face database.

The Number of
Atoms 38 76 114 152 190 228 266 304 342 380

KSVD 55.2 68.0 75.1 80.2 82.9 85.3 86.2 83.6 52.6 88.7
IKSVD 58.1 72.4 80.1 84.0 86.5 87.9 88.3 87.0 63.8 88.9

Proposed KSVD 65.2 75.1 83.2 86.5 87.6 90.2 92.2 91.6 66.6 93.9

DSVD 52.4 68.3 76.4 80.9 84.1 85.8 87.4 87.1 85.5 81.3
IDSVD 54.1 72.9 81.5 85.0 87.2 88.5 89.2 88.9 88.2 87.1

Proposed DSVD 60.2 75.3 83.5 87.2 90.3 91.2 92.9 93.3 93.2 92.7

LC-KSVD 55.3 69.3 77.9 81.5 84.0 85.6 86.6 87.9 88.4 87.2
ILC-KSVD 55.4 72.9 80.5 83.9 85.9 87.0 87.5 87.9 87.9 87.5

Proposed LC-KSVD 60.4 77.8 85.2 88.7 89.4 90 90.7 92 92.7 92.3

FDDL 45.7 70.2 78.5 83.1 85.2 86.3 87.0 87.1 87.4 87.4
IFDDL 50.0 71.6 80.9 85.7 88.4 89.9 90.6 91.1 91.2 90.7

Proposed FDDL 60.1 75.6 84.4 89.6 90.3 91.2 92.9 93.3 93.4 93.1

RDCDL 71.9 82.9 85.3 88.5 90.1 91.2 93.4 93.6 93.6 93.7
IRDCDL 73.6 84.4 85.4 89.9 91.9 93.2 93.9 94.3 94.6 94.6

Proposed RDCDL 76.2 86.1 88.2 90.5 92.6 93.2 93.2 94.6 95.6 95.9

From Table 1, it can see that, in most cases, the improved algorithm obtains a higher
average recognition rate than the original algorithm. When the atom is 342, our FDDL algorithm
achieves 93.4% accuracy, which is 2.2% higher than that of IFDDL and 6% higher than that
of the classical FDDL algorithm. The most obvious improvement is when the atom is 38;
our improved FDDL algorithm has accuracy more than 10% higher than IFDDL, and nearly
15% higher than the common FDDL algorithm. Our KSVD is 3.51% higher than IKSVD on
average. Our DSVD is 3.72% higher than IDSVD on average. For FDDL, our FDDL is 3.38%
higher than IFDDL on average. With the increase of atomic number (K = 38, 76, . . . , 342, 380),
our LC-KSVD increases by 4.28% on average compared with the original algorithm. By
comparing the accuracy of the above algorithm, our improved algorithm has a certain degree
of improvement, and the smaller the number of atoms, the more obvious, which verifies that
our algorithm involves different observations of the same object. The improved algorithm has
better classification accuracy and stability.

Finally, to establish a visual difference between methods included in the comparison,
results over 20 runs for some benchmark instances and better performing methods using
box and whiskers diagrams are shown in Figure 6.

4.2. Experiments on the PIE Face Database

This PIE face database contains 41,368 frontal images of 68 people. Each person collects
facial images with 13 different poses, 43 different lighting conditions, and four different
expressions. Figure 7 shows several example images from the PIE face database. We
normalized the size of each image to 32 × 32, then randomly selected ten pictures of each
person as training samples, and the remaining samples as test samples.
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Table 2 shows the average recognition rate of different algorithms in the PIE face
database. It can be seen from Table 2 that the performance of our algorithm is significantly
better than that of other algorithms. For example, when the atom is 68, the accuracy of our
FDDL algorithm is 68.4%, which is 11% higher than IFDDL. Atoms rose by more than 5.12%
overall from 68 to 340. For the LC-KSVD algorithm, the average recognition rate of our
improved algorithm is 81.36%, and the average recognition rate of the original algorithm is
75.38%, which is 5.98% higher than the original algorithm. Compared with other common
algorithms, the improved algorithm has higher accuracy.

Table 2. Average accuracy (%) on the PIE face database.

The Number of Atoms 68 136 204 272 340

KSVD 63.7 68.1 71.4 74.9 77.2
IKSVD 68.4 75.4 78.6 81.2 82.4

Proposed KSVD 72.5 77.4 82.3 85.4 88.1

DSVD 63.8 68.3 73.1 75.3 77.7
IDSVD 69.2 77.7 81.1 82.5 83.4

Proposed DSVD 73.4 83.2 85.1 88.7 89.4

LC-KSVD 62.8 73.0 72.6 74.3 76.4
ILC-KSVD 67.9 79.3 77.7 76.5 75.5

Proposed LC-KSVD 72.2 83.4 84.7 83.1 83.4

FDDL 47.6 69.9 75.5 78.5 80.1
IFDDL 57.2 76.5 81.4 82.9 83.8

Proposed FDDL 68.4 80.4 84.5 86.7 87.4

RDCDL 75.7 81.1 83.4 82.9 84.2
IRDCDL 78.2 85.6 85.7 84.1 85.6

Proposed RDCDL 79.1 86.8 87.5 87.4 88.5

4.3. Experiments on the AR Face Database

In the AR face database, 50 male and 50 female faces were selected to form a subset of
the database, and 14 facial images with changes in lighting and expressions of each person
were extracted, of which seven were used for training, and the remaining seven photos
were used as the test set. The image size was uniformly adjusted to 40 × 50.

Table 3 shows the comparison of different algorithms in the AR face database. It can
be seen from Table 3 that when the atomic number takes different values, our algorithm
has higher recognition rate than other algorithms. The most significant improvement is
that when the atom is 1080, the average accuracy of our KSVD algorithm reaches 94.5%,
which is 14.4% higher than that of IKSVD. In KSVD, the overall average recognition rate
of our algorithm is also the highest, reaching 1.97%. For the FDDL algorithm, although
our improved algorithm has little improvement, the overall basic accuracy is as high as
88.7% (atoms from 120 to 1200), and the average accuracy is 95.72%. Figure 8b shows the
average recognition rates of DSVD, IDSVD and our DSVD algorithms with different atomic
numbers. When the atomic number increases, the average recognition rates of DSVD,
IDSVD and our DSVD algorithms also gradually increase, but the performance of K-SVD
and IKSVD is not stable. Results over 20 runs for some benchmark instances, and better
performing methods using box and whiskers diagrams, are shown in Figure 8.
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Table 3. Average accuracy (%) on the AR face database.

The Number of Atoms 120 240 360 480 600 720 840 960 1080 1200

KSVD 85.3 89.9 93.1 94.3 95.2 96.0 96.4 96.1 79.8 97.2
IKSVD 91.0 94.8 96.4 97.0 97.3 97.6 97.6 97.4 80.1 97.2

Proposed KSVD 92.3 95.1 96.9 97.4 97.9 98.0 98.1 98.3 94.5 97.6

DSVD 82.8 89.5 92.0 93.6 94.6 95.4 96.2 96.0 93.1 96.7
IDSVD 90.2 94.3 95.5 96.3 96.6 97.0 97.3 97.2 96.1 97.1

Proposed DSVD 91.0 95.8 96.4 97.0 97.5 97.6 97.6 97.4 96.5 97.3

LC-KSVD 86.8 90.2 92.7 93.7 94.5 94.9 95.4 95.4 95.8 92.4
ILC-KSVD 88.7 92.3 94.0 94.5 94.7 94.8 94.9 94.9 94.8 93.4

Proposed LC-KSVD 90.3 93.8 96.1 96.2 96.3 96.4 96.4 96.5 95.9 94.7

FDDL 83.4 91.4 92.2 93.1 93.5 93.9 93.9 93.9 93.9 93.9
IFDDL 86.6 94.1 95.4 95.9 96.0 96.2 96.4 96.4 96.5 96.1

Proposed FDDL 88.7 95.3 95.9 96.3 96.4 96.7 97 97 97.1 96.8

RDCDL 81.2 85.2 84.1 84.7 83.8 81.7 86.8 87.5 87.2 88.4
IRDCDL 82.8 86.1 85.7 85.2 86.1 82.6 86.5 87.5 87.3 88.4

Proposed RDCDL 84.2 86.5 88.5 88.7 89.1 90.2 90.8 90.8 90.8 90.8
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4.4. Experiments on the COIL-20 Database

The COIL-20 dataset is a collection of grayscale pictures, including 20 objects taken
from different angles; one image is taken every five degrees, and 72 images are taken
for each object. The dataset contains two subsets. The first group contains a total of
720 unprocessed images of 10 objects. After processing 20 things, the second group includes
a total of 1440 images. The image size is uniformly adjusted to 32 × 32. Figure 9 shows
several example images in the COIL-20 database. Randomly select ten images as training
samples and the remaining images as test samples.
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The comparison results of classification accuracy of different algorithms in the COIL20
database are shown in Table 4. With the increasing number of atoms (K = 40, 60, . . . , 180, 200),
our KSVD algorithm increases by 2.74% on average compared with IKSVD, and the overall
average accuracy is 91.19%. When the atoms are 60 and 180, the improvement effect is
the smallest, and our FDDL is only 0.4% higher than IFDDL. When the atoms are 120 and
140, the improvement effect is the largest, and our LSVD is 3.8% higher than IKSVD. For
non-face database, the proposed algorithm can also effectively improve the accuracy of
image classification.

Table 4. Average accuracy (%) on the COIL-20 database.

The Number of Atoms 40 60 80 100 120 140 160 180 200

KSVD 82.5 85.5 87.2 88.0 88.4 89.0 89.5 84.7 89.0
IKSVD 84.0 86.8 88.2 89.1 89.3 89.5 89.8 90.3 89.0

Proposed KSVD 86.3 89.7 90.3 91.9 93.1 93.3 93.2 92.6 90.3

DSVD 84.3 85.6 86.9 87.5 88.5 89.1 88.7 87.0 84.1
IDSVD 84.6 86.8 88.0 89.0 89.6 90.0 90.0 89.9 89.0

Proposed DSVD 85.7 88.8 90.7 90.9 91.2 93.1 93 92.7 92.6

LC-KSVD 84.7 87.8 88.3 88.7 89.2 89.1 89.1 88.9 89.4
ILC-KSVD 85.3 88.9 89.7 90.2 90.5 90.6 90.5 90.8 90.5

Proposed LC-KSVD 86.3 89.9 90.4 92.3 93.2 93.3 93.4 93.4 93.2

FDDL 84.5 87.8 88.2 89.2 89.9 89.9 90.6 90.6 91.1
IFDDL 80.5 86.5 89.1 89.1 91.1 91.3 91.7 91.9 91.8

Proposed FDDL 84.0 86.9 91.2 91.2 92 92 92.2 92.3 92.5

RDCDL 84.8 87.5 89.4 88.5 90.2 91.4 92.1 92.1 92.9
IRDCDL 85.2 87.3 89.3 89.5 90.7 91.6 92.9 92.3 93.0

Proposed RDCDL 86.9 89.1 90.1 91.9 93.5 93.6 94.1 94.3 94.1

4.5. Statistical Tests

In this paper, the Friedman test [35] and the Nemenyi test [36] are applied to show
whether there are statistical differences between the performance of classification algo-
rithms. The experiment first assumes that H0 represents no significant difference between
all algorithms (all classification algorithms perform equally), H1 represents that there
are significant differences between algorithms. This is assumed certain and evidence is
searched for in the data to reject it.

This paper compares all the algorithms on the Yale B, PIE, AR and COIL-20 datasets.
Each algorithm runs 20 times and takes the average as the test result. Then, each dataset
is sorted according to the test performance from good to bad, and the order values are
1, 2, 3, . . . , 15. If the test performance of the algorithm is the same, the order value is
divided equally, as shown in Table 5. Then use the Friedman test to determine whether
these algorithms perform the same. Friedman statistics can be calculated as follows:

FF =
(N − 1)χ2

F
N(k− 1)− χ2

F
(11)

which is compared to an F-distribution with k− 1 and (k− 1)(n− 1) degrees of freedom,
where n denotes the total number of experiments, k is the amount of classification models
and χ2

F is the value of the Chi-square distribution with F degrees of freedom. The variable
FF = 4.593 is calculated through (11). When the number of datasets is 4 and the number of
algorithms is 15, the critical value of the F test is 1.935, so H0 is rejected and H1 is accepted.
Nemenyi’s test is continued, and the critical value domain CD of the average ordinal value
is calculated according to (12).

CD = qα

√
k(k + 1)

6N
(12)



Electronics 2022, 11, 847 15 of 19

The CD computed through Nemenyi’s test (CD = 3. 049) strongly suggests the exis-
tence of significant differences among the algorithms considered. The proposed DSVD and
RDCDL algorithms obtained good rankings.

Table 5. Ranks achieved by the Friedman and Nemenyi tests in the study. Our DSVD and our RDCDL
algorithms achieve the best rank in the procedures. The statistics computed and related p-values are
also shown.

Algorithms Friedman

KSVD 13.5
IKSVD 10.25

Proposed KSVD 4.5

DSVD 13
IDSVD 7.75

Proposed DSVD 3.25

LC-KSVD 11.25
ILC-KSVD 9.25

Proposed LC-KSVD 4.75

FDDL 12.25
IFDDL 8.25

Proposed FDDL 4.25

RDCDL 7.5
IRDCDL 6.25

Proposed RDCDL 4

Statistic 33.875
Ff 4.593

CD 3.049
p-value 0.002150951

4.6. Comparison with Deep Learning Methods

In order to comprehensively evaluate the proposed methods, some methods based
on deep learning are compared. For example, ResNet-34 [37] and DenseNet-40 [38]. We
select the two methods (proposed DSVD and RDCDL) that perform best in statistical tests
to compare with them. In this experiment, the operating system is Ubuntu18.04, the CPU
is Intel(R) Core (TM) i7-8700 CPU 3.20 GHz and the GPU is NVIDIA GeForce GTX1080Ti
8 GB. Training and testing are carried out in Python language under the PyTorch deep
learning framework. The batch-size in the training is set to 64, the initial learning rate is set
to 0.05, and the dictionary size is set to 380 (10 atoms per category) in the Yale B database
and 600 in AR database. All the methods are repeated 20 times, and their average accuracy
is shown in Table 6.

Table 6. Average accuracy (%) of various methods on the AR, Yale B database and CASIA-
WebFace dataset.

Methods Ext. Yale B AR CASIA-WebFace

Proposed DSVD 93.39 92.76 93.44
Proposed RDCDL 95.90 90.89 95.37

ResNet-34 95.47 47.21 97.15
DenseNet-40 95.63 80.85 98.95

In comparison with methods based on deep learning, the performance of the proposed
DSVD and RDCDL is better than that of ResNet-34 and DenseNet-40 on the Extended Yale
B and AR database. However, methods based on deep learning are better on the CASIA-
WebFace dataset [39]. In order to further evaluate the performance of dictionary learning
methods and deep learning methods based on these three databases, we investigated the
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accuracy of the proposed DSVD, the proposed RDCDL, ResNet-34 and DenseNet-40 under
different training samples, as shown in Figure 10. According to Figure 10a, when the
number of training samples is less than or equal to 16, the proposed DSVD and RDCDL
has obvious advantages over ResNet-34 and DenseNet-40. Combined with Figure 10c, it
is not difficult to find that ResNet-34 and DenseNe-40 are more suitable for large-scale
training sets. When the dataset is small, a large number of effective features cannot be
extracted. It can also be found from the figure that when the number of training samples
is less than 16, the accuracy of ResNet-34 is very unstable. Because the discriminant
information in the small-scale training data is insufficient to update the parameters in
ResNet-34 to obtain stable accuracy, the accuracy is often determined by the randomly
selected initial parameters. This indicates that the proposed method has a prominent
superiority over deep leaning based methods when provided with only a few training
samples on a small-size dataset.
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This paper also conducted time cost experiments on the CASIA-WebFace dataset.
Table 7 shows the average training and testing time of different methods on the CASIA-
WebFace dataset. The time required for dictionary learning to extract features is very short,
and their fastest time is less than 70 s, which is very obvious compared with ResNet-34 and
DenseNet-40. Because methods based on deep learning have many parameters and the
gradient descent method is used to iteratively train the convolution filter, it requires not
only a large number of training samples, but also a large amount of calculation.

The experimental results show that deep learning and traditional methods have their
advantages and disadvantages. Methods based on deep learning require a large number of
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training samples, consume a lot of computing time and the model is complex and difficult
to deploy. However, proposed models do not require much iterative training and the
average test time is only 0.85 s.

Table 7. Average training time and testing time on CASIA-WebFace dataset.

Methods Average Training Time Average Testing Time

Proposed DSVD 67.53 s 0.85 s
Proposed RDCDL 73.55 s 0.87 s

ResNet-34 2.5 h 2.16 s
DenseNet-40 3.2 h 2.04 s

5. Conclusions

In this paper, a new image classification algorithm is proposed, which uses different
observations of the original sample to generate multiple vector representations, thereby
enhancing the potential correlation of the original sample. This paper combines the multi-
vector representation of images with robust dictionary learning, and designs a weighted
fusion algorithm so that dictionary learning can extract higher-dimensional and abstract
features from data, and effectively use the sample information between multi-vector rep-
resentations to improve the discriminant ability. After comparative experiments, the
classification performance of the proposed algorithm is better than that of the original
algorithm before improvement. In addition, this algorithm effectively improves the classi-
fication accuracy, and has the advantages of simple implementation and high degree of
automation. This paper uses the original sample and multi-vector representation to learn
the dictionary for the same object. This operation makes the proposed algorithm more
general. Research shows that more diversified and deeper features can be obtained through
deep mining of the original samples.

A little flaw of the proposed method is that it has a higher computational cost than
that of the conventional dictionary learning algorithm. Because there are kinds of represen-
tations, the next research direction is to explore more effective representation and fusion
strategies, so as to improve classification performance and reduce computation.
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