# Optimal Power Allocation with Sectored Cells for Sum-Throughput Maximization in Wireless-Powered Communication Networks Based on Hybrid SDMA/NOMA

^{*}

## Abstract

**:**

## 1. Introduction

#### 1.1. Analog Beamforming

#### 1.2. Digital Beamforming

#### Digital Beamforming Challenges

#### 1.3. Hybrid Beamforming

#### 1.4. Difference between Analog and Digital Beamforming

## 2. Related Work

## 3. System Model

#### 3.1. Proposed System Model

#### 3.2. Hybrid SDMA/NOMA Approach

Algorithm 1: Wireless device distribution and set. |

Algorithm 2: Optimal power allocation. |

#### 3.3. Optimal Power Allocation

## 4. Performance Evaluation

#### 4.1. Performance Comparison

#### 4.2. Performance Analysis of Hybrid SDMA/NOMA by SINR Threshold

#### 4.3. Tradeoff Analysis of Hybrid SDMA/NOMA

#### 4.4. Computational Cost Analysis

#### 4.5. Study Limitations

## 5. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## Sample Availability

## Abbreviations

ABF | Analog beamforming |

ADC | Analog-to-digital converter |

AWGN | Additive white gaussian noise |

BFU | Beamforming unit |

CPE | Customer premises equipment |

CSI | Channel state information |

DAC | Digital-to-analog converter |

DBF | Digital beamforming |

DDC | Digital down converter |

EH | Energy harvesting |

HAP | Hybrid access point |

DL | Down link |

HBF | Hybrid beamforming |

IoT | Internet-of-Things |

LoS | Line-of-sight |

M2M | Machine-to-machine |

MIMO | Multiple-input multiple-output |

MISO | Multiple-input single-output |

MU-MISO | multiuser multi input single output |

mmWave | Mobile millimeter wave |

NOMA | Nonorthogonal Multiple Access |

OFDMA | Orthogonal frequency division multiple access |

OMA | Orthogonal multiple access |

RF | Radio frequency |

RFI | Radio-frequency interference |

SDMA | Space division multiple access |

SIC | Successive interference cancellation |

TDMA | Time division multiple access |

UAV | Unmanned aerial vehicle |

WD | Wireless devices |

WET | Wireless energy transfer |

WIT | Wireless information transfer |

WPCN | Wireless powered communication networks |

WPT | Wireless power transfer |

WSN | Wireless sensor networks |

## References

- Xie, L.; Shi, Y.; Hou, Y.T.; Lou, A. Wireless power transfer and applications to sensor networks. IEEE Wirel. Commun.
**2013**, 20, 140–145. [Google Scholar] [CrossRef] - Wei, D.; Chan, H.A.; Kameri, K.V.N. Circular-Layer Algorithm for Ad Hoc Sensor Networks to Balance Power Consumption. In Proceedings of the 2006 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks, Reston, VA, USA, 28–28 September 2006; Volume 3, pp. 945–950. [Google Scholar] [CrossRef]
- Bi, S.; Zeng, Y.; Zhang, R. Wireless powered communication networks: An overview. IEEE Wirel. Commun.
**2016**, 23, 10–18. [Google Scholar] [CrossRef][Green Version] - Bi, S.; Ho, C.K.; Zhang, R. Wireless powered communication: Opportunities and challenges. IEEE Commun. Mag.
**2015**, 53, 117–125. [Google Scholar] [CrossRef][Green Version] - Desai, V.; Krzymien, L.; Sartori, P.; Xiao, W.; Soong, A.; Alkhateeb, A. Initial beamforming for mmWave communications. In Proceedings of the 2014 48th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 2–5 November 2014; pp. 1926–1930. [Google Scholar] [CrossRef]
- Björnson, E.; van der perre, L.; Buzzi, S.; Larsson, E. Massive MIMO in Sub-6 GHz and mmWave: Physical, Practical, and Use-Case Differences. IEEE Wirel. Commun.
**2018**, 26, 100–108. [Google Scholar] [CrossRef][Green Version] - Hampson, G.; Roberts, P.; Leach, M.; Brown, A.; Bateman, T.; Neuhold, S.; Beresford, R.; Cheng, W.; Tuthill, J.; Bunton, J.; et al. Microwave Phased Array Digital Beamforming System Design Challenges for SKA. In Proceedings of the 2015 European Microwave Conference (EuMC), Paris, France, 7–10 September 2015. [Google Scholar] [CrossRef]
- Hashemi, M.; Koksal, C.; Shroff, N. Energy-Efficient Power and Bandwidth Allocation in an Integrated Sub-6 GHz—Millimeter Wave System. arXiv
**2017**, arXiv:1710.00980. [Google Scholar] - Chi, K.; Chen, Z.; Zheng, K.; Zhu, Y.H.; Liu, J. Energy Provision Minimization in Wireless Powered Communication Networks With Network Throughput Demand: TDMA or NOMA? IEEE Trans. Commun.
**2019**, 67, 6401–6414. [Google Scholar] [CrossRef] - Jiang, M.; Li, Y.; Zhang, Q.; Qin, J. Joint Position and Time Allocation Optimization of UAV Enabled Time Allocation Optimization Networks. IEEE Trans. Commun.
**2019**, 67, 3806–3816. [Google Scholar] [CrossRef] - Yan, H.; Chen, Y.; Yang, S.H. Time Allocation and Optimization in UAV-enabled Wireless Powered Communication Networks. IEEE Trans. Green Commun. Netw.
**2021**, 1. [Google Scholar] [CrossRef] - Koutsioumpos, M.; Zervas, E.; Hadjiefthymiades, E.; Merakos, L. Monitoring for Rare Events in a Wireless Powered Communication mmWave Sensor Network. Sensors
**2020**, 20, 3341. [Google Scholar] [CrossRef] - Shanin, N.; Garkisch, M.; Hagelauer, A.; Schober, R.; Cottatellucci, L. Optimal Resource Allocation and Beamforming for Two-User MISO WPCNs for a Non-linear Circuit-Based EH Model. arXiv
**2021**, arXiv:2110.01453. [Google Scholar] - Lee, K.; Cho, S.; Lee, J.; Joe, I. Harvest-Then-Transceive: Throughput Maximization in Full-Duplex Wireless-Powered Communication Networks. Ieice Trans. Commun.
**2018**, 101, 1128–1141. [Google Scholar] [CrossRef] - Sun, X.; Yang, W.; Cai, Y. Secure and Reliable Transmission in mmWave NOMA Relay Networks With SWIPT. IEEE Syst. J.
**2021**, 1–12. [Google Scholar] [CrossRef] - Rouijel, A.; Hadmi, A.; Ghazi, H.E.; Mohammadi, Z. Tensor-based approach for blind separation of Interleave-NOMA 5G system. Sci. Afr.
**2021**, 14, e00956. [Google Scholar] [CrossRef] - Mobini, Z.; Mohammadi, M.; Chalise, B.K.; Suraweera, H.A.; Ding, Z. Beamforming Design and Performance Analysis of Full-Duplex Cooperative NOMA Systems. IEEE Trans. Wirel. Commun.
**2019**, 18, 3295–3311. [Google Scholar] [CrossRef] - Cao, Y.; Zhao, N.; Pan, G.; Chen, Y.; Fan, L.; Jin, M.; Alouini, M.S. Secrecy Analysis for Cooperative NOMA Networks With Multi-Antenna Full-Duplex Relay. IEEE Trans. Commun.
**2019**, 67, 5574–5587. [Google Scholar] [CrossRef][Green Version] - Gau, R.H.; Chiu, H.T.; Lu, T.C. Classification-based Optimal Beamforming for NOMA Wireless Relay Networks. In Proceedings of the 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), Helsinki, Finland, 25–28 April 2021; pp. 1–7. [Google Scholar] [CrossRef]
- Wang, X.; Jia, M.; Guo, Q.; Ho, I.W.H.; Lau, F.C.M. Full-Duplex Relaying Cognitive Radio Network With Cooperative Nonorthogonal Multiple Access. IEEE Syst. J.
**2019**, 13, 3897–3908. [Google Scholar] [CrossRef] - Jiang, M.; Li, Y.; Zhang, Q.; Li, Q.; Qin, J. Secure Beamforming in Downlink MIMO Nonorthogonal Multiple Access Networks. IEEE Signal Process. Lett.
**2017**, 24, 1852–1856. [Google Scholar] [CrossRef] - Cheng, Y.; Li, K.H.; Teh, K.C.; Luo, S.; Li, B. Two-Tier NOMA-Based Wireless Powered Communication Networks. IEEE Syst. J.
**2021**, 1–10. [Google Scholar] [CrossRef] - Song, D.; Shin, W.; Lee, J.; Poor, H.V. Sum-Throughput Maximization in NOMA-Based WPCN: A Cluster-Specific Beamforming Approach. IEEE Internet Things J.
**2021**, 8, 10543–10556. [Google Scholar] [CrossRef] - Abd-Elmagid, M.A.; Biason, A.; ElBatt, T.; Seddik, K.G.; Zorzi, M. Non-Orthogonal Multiple Access schemes in Wireless Powered Communication Networks. In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017; pp. 1–6. [Google Scholar] [CrossRef][Green Version]
- Li, F.; Wu, Y.; Nie, Y.; Shi, C. Time Allocation and Optimization in Time-Reversal Wireless Powered Communication Networks. Int. J. Antennas Propag.
**2020**, 2020, 8906438. [Google Scholar] [CrossRef] - Huang, Y.; Yang, L.; Bengtsson, M.; Ottersten, B. A limited feedback SDMA scheme with dynamic multiplexing order. In Proceedings of the 2009 IEEE 10th Workshop on Signal Processing Advances in Wireless Communications, Perugia, Italy, 21–24 June 2009; pp. 211–215. [Google Scholar] [CrossRef]
- Gomez-Cuba, F.; Zorzi, M. Optimal link scheduling in millimeter wave multi-hop networks with space division multiple access. In Proceedings of the 2016 Information Theory and Applications Workshop (ITA), La Jolla, CA, USA, 31 January–5 February 2016; pp. 1–9. [Google Scholar] [CrossRef]
- Yin, J.; Du, P.; Yang, G.; Zhou, H. Space-division multiple access for CDMA multiuser underwater acoustic communications. J. Syst. Eng. Electron.
**2015**, 26, 1184–1190. [Google Scholar] [CrossRef] - Chen, C.; Yang, Y.; Deng, X.; Du, P.; Yang, H. Space Division Multiple Access With Distributed User Grouping for Multi-User MIMO-VLC Systems. IEEE Open J. Commun. Soc.
**2020**, 1, 943–956. [Google Scholar] [CrossRef] - Chen, Z.; Basnayaka, D.A.; Haas, H. Space division multiple access in optical attocell networks. In Proceedings of the 2016 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), Doha, Qatar, 3–6 April 2016; pp. 228–232. [Google Scholar] [CrossRef]
- Chen, Z.; Basnayaka, D.A.; Haas, H. Space Division Multiple Access for Optical Attocell Network Using Angle Diversity Transmitters. J. Light. Technol.
**2017**, 35, 2118–2131. [Google Scholar] [CrossRef] - Bianchi, G.; Messina, D.; Scalia, L.; Tinnirello, I. A space-division time-division multiple access scheme for high throughput provisioning in WLANs. In Proceedings of the IEEE International Conference on Communications, ICC 2005, Seoul, Korea, 16–20 May 2005; Volume 4, pp. 2728–2733. [Google Scholar] [CrossRef]
- Maeng, J.; Dahouda, M.; Joe, I. A NOMA-Combined Hybrid Approach for SDMA Improvement in Wireless Powered Communication Networks. Wirel. Pers. Commun.
**2022**, 122, 877–895. [Google Scholar] [CrossRef] - Wu, Q.; Chen, W.; Ng, D.W.K.; Schober, R. Spectral and Energy-Efficient Wireless Powered IoT Networks: NOMA or TDMA? IEEE Trans. Veh. Technol.
**2018**, 67, 6663–6667. [Google Scholar] [CrossRef][Green Version] - Rao, S.S. Geometric Programming. In Engineering Optimization; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2009; Chapter 8; pp. 482–543. [Google Scholar] [CrossRef]
- Sediq, A.B.; Gohary, R.H.; Schoenen, R.; Yanikomeroglu, H. Optimal Tradeoff Between Sum-Rate Efficiency and Jain’s Fairness Index in Resource Allocation. IEEE Trans. Wirel. Commun.
**2013**, 12, 3496–3509. [Google Scholar] [CrossRef][Green Version] - Kunikawa, M.; Yomo, H.; Abe, K.; Ito, T. A Fair Polling Scheme for Energy Harvesting Wireless Sensor Networks. In Proceedings of the 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), Glasgow, UK, 11–14 May 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Manju; Singh, S.; Kumar, S.; Nayyar, A.; Al-Turjman, F.; Mostarda, L. Proficient QoS-Based Target Coverage Problem in Wireless Sensor Networks. IEEE Access
**2020**, 8, 74315–74325. [Google Scholar] [CrossRef] - Chattopadhyay, A.K.; Bhattacharyya, C.K.; Bhattacharya, S. Single Hop Sensor Deployment Algorithm. In Proceedings of the 2012 Sixth International Conference on Sensing Technology (ICST), Kolkata, India, 18–21 December 2012; pp. 347–352. [Google Scholar] [CrossRef]
- Amutha, J.; Sharma, S.; Nagar, J. WSN Strategies Based on Sensors, Deployment, Sensing Models, Coverage and Energy Efficiency: Review, Approaches and Open Issues. Wirel. Pers. Commun.
**2020**, 111, 1089–1115. [Google Scholar] [CrossRef]

**Figure 3.**Harvest-then-transceive protocol in hybrid SDMA and NOMA approach and optimal power allocation.

**Figure 8.**Sum throughput: comparison between optimization and original approaches by SINR threshold.

Symbol | Value |
---|---|

${S}_{i}$ | Variable |

$W{D}_{i}$ | 100 |

$SIN{R}_{th}$ | Variable |

${H}_{p}$ | 30 dBm |

${H}_{i}$ | ${10}^{-3}$×${D}_{i}^{-2}$ |

${N}_{i}$ | −30 dBm × Random numbers |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Maeng, J.; Dahouda, M.K.; Joe, I.
Optimal Power Allocation with Sectored Cells for Sum-Throughput Maximization in Wireless-Powered Communication Networks Based on Hybrid SDMA/NOMA. *Electronics* **2022**, *11*, 844.
https://doi.org/10.3390/electronics11060844

**AMA Style**

Maeng J, Dahouda MK, Joe I.
Optimal Power Allocation with Sectored Cells for Sum-Throughput Maximization in Wireless-Powered Communication Networks Based on Hybrid SDMA/NOMA. *Electronics*. 2022; 11(6):844.
https://doi.org/10.3390/electronics11060844

**Chicago/Turabian Style**

Maeng, Juhyun, Mwamba Kasongo Dahouda, and Inwhee Joe.
2022. "Optimal Power Allocation with Sectored Cells for Sum-Throughput Maximization in Wireless-Powered Communication Networks Based on Hybrid SDMA/NOMA" *Electronics* 11, no. 6: 844.
https://doi.org/10.3390/electronics11060844