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Abstract: With the development of the smart grid, massive electric Internet of Things (EIoT) devices
are deployed to collect data and offload them to edge servers for processing. However, the task of
offloading optimization still faces several challenges, such as the differentiated quality of service
(QoS) requirements, decision coupling among multiple devices, and the impact of electromagnetic
interference. In this paper, a low-complexity delay and energy-efficiency-balanced task offloading
algorithm based on many-to-one two-sided matching is proposed for an EIoT. The proposed algorithm
shows its novelty in the dynamic tradeoff between energy efficiency and delay as well as in low-
complexity and stable task offloading. Specifically, we firstly formulate the minimization problem
of weighted difference between delay and energy efficiency to realize the joint optimization of
differentiated QoS requirements. Then, the joint optimization problem is transformed into a many-
to-one two-sided matching problem. Through continuous iteration, a stable matching between
devices and servers is established to cope with decision coupling among multiple devices. Finally,
the effectiveness of the proposed algorithm is validated through simulations. Compared with
two advanced algorithms, the weighted difference between the energy efficiency and delay of the
proposed algorithm is increased by 29.01% and 45.65% when the number of devices is 120, and is
increased by 11.57% and 22.25% when the number of gateways is 16.

Keywords: electric Internet of Things (EIoT); differentiated quality of service (QoS) requirements;
task offloading; many-to-one two-sided matching

1. Introduction

The electric Internet of Things (EIoT) is a kind of industrial-level Internet of Things
(IoT) [1,2] applied to the smart grid. By effectively integrating all kinds of communication
and computing resources, the EIoT improves the information level of the electric power
system and provides network support for the construction of the smart grid [3,4]. With the
deployment of massive sensing devices, the data volume and computing requirements of
the EIoT’s perception of information have shown explosive growth [5]. The data processing
of the EIoT has high requirements on energy efficiency and delay. On one hand, battery-
powered EIoT devices have limited energy [6–8]. Improving energy efficiency can increase
the utilization of energy resources and extend the network life cycle. On the other hand,
power services such as differential protection and precise load control require low latency.
However, traditional cloud computing where cloud servers locate far away from EIoT
devices causes large transmission delay and low energy efficiency [9,10].

Edge computing provides computing services through an integrated open platform
near the data source [11]. Its applications are initiated on the device side to reduce the
transmission delay and energy consumption, thereby resulting in faster network service
response and higher energy efficiency for data processing. By combining edge computing
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with EIoT gateways, devices can offload data to one of the nearby gateways for processing to
jointly improve delay and energy efficiency performance [12]. However, the task offloading
optimization for an edge-computing-based EIoT still faces some challenges.

First of all, task offloading should be optimized based on dynamically varying network-
state information to improve both delay and energy efficiency performance [13,14]. The
challenge is that improving delay may deteriorate energy efficiency and vice versa. There-
fore, a well-balanced tradeoff between delay and energy efficiency is required. Second,
given the intensive deployment of EIoT devices, the task offloading strategies of multiple
devices are coupled [15]. Specifically, multiple devices may simultaneously select the
same gateway for task offloading, and the task offloading strategies of each device will be
affected by other devices. Last but not least, due to the complex environment of the EIoT,
the influence of electromagnetic interference on task offloading optimization should be
considered to meet the reliability requirements of data transmission [16].

Matching theory provides a flexible tool to solve the conflicting resource allocation
problems. In the matching problem, each agent in one group ranks the agents in the other
group according to the utility function to establish a preference list. A stable matching
is achieved through the interaction among agents from two sides. Matching theory has
been widely applied in task offloading optimization for the IoT. In reference [17], a low-
complexity and stable task offloading mechanism based on price matching was proposed to
minimize the total network delay. In reference [18], Shan et al. proposed a matching-based
two-step approach aiming at minimizing the energy consumption of the IoT devices by
optimizing the task offloading decision and transmission power. In reference [19], Huang
et al. introduced a task-container matching market to provide on-demand offloading
services based on system service capability and resource availability. In reference [20],
a matching theory-based task for offloading strategy was proposed, aiming at reducing the
total IoT network energy. In reference [21], a solution to minimize the network delay from
a contract-matching integration perspective was provided. Nevertheless, these previous
works only target a single performance metric as either energy efficiency or delay, while
the differentiated service demand guarantee oriented to multiple metrics are ignored.

The joint optimization of multiple metrics in task offloading problems, such as delay
and energy efficiency, has been also investigated. Zhang et al. proposed a privacy protection
task offloading method based on a deep Q-network (DQN), which can enable users to make
optimal offloading decisions to reduce delay and energy consumption while improving privacy
levels [22]. Yang et al. proposed a two-stage offloading algorithm, which optimizes computation
and communication resource allocation under limited energy and sensitive latency [23]. Chen
et al. proposed a two-timescale resource allocation mechanism based on matching theory to
minimize power consumption and ensure low-delay performance [24]. In reference [25], a
distributed device-to-device offloading system which can guarantee high probability of on-time
task completion and low energy consumption was proposed. In reference [26], Ding et al.
investigated a decentralized partitioning computation offloading strategy for multiple devices
and multiple mobile edge servers with limited resources, where the weighted sum of energy
consumption and delay is maximized by optimizing the execution location, CPU frequency, and
transmission power. However, the competition conflict of multiple devices in task offloading is
not taken into consideration by these works, which cannot achieve stable matching between
gateways and devices.

In this work, we propose a many-to-one two-sided matching-based delay and an
energy-efficiency-balanced task offloading algorithm for the EIoT to maximize the weighted
difference of energy efficiency and delay. First, the task offloading strategies of multiple
devices are decoupled through computing resource allocation and the quota settings of
the gateways. Then, the formulated problem is transformed into a many-to-one two-sided
matching problem between the devices and gateways. Next, the proposed algorithm
jointly optimizes the energy efficiency and delay of the task offloading devices, which
establishes a stable matching between devices and gateways through continuous iterations.
The contributions of this paper are summarized as follows:
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• Dynamic Tradeoff between Energy Efficiency and Delay: We consider differentiated
QoS requirements by establishing the weighted difference between energy efficiency
and delay as an optimization objective. The tradeoff between energy efficiency and de-
lay can be dynamically balanced by adjusting the weight according to the requirements
of task offloading optimization.

• Low-Complexity and Stable Task Offloading: A low-complexity many-to-one two-
sided matching-based algorithm is proposed to establish the stable matching between
devices and gateways to solve the problem of task offloading conflicts for the EIoT.
The preference lists of devices and gateways are modeled as the energy efficiency and
total task offloading delay, respectively.

• Extensive Performance Simulation: Numerous results demonstrate that the proposed
algorithm can achieve superior performance in terms of energy efficiency, delay, and
the weighted difference between them compared with existing state-of-the-art algo-
rithms. Moreover, the impact of key parameters such as computing resources and SINR
threshold on performance are revealed to provide guidance for practical applications.

The remaining parts of the paper are organized as follows: System model and problem
formulation are introduced in Section 2. Section 3 describes the proposed many-to-one
two-sided matching-based delay and energy-efficiency-balanced task offloading algorithm
for the EIoT. The simulation results are provided in Section 4. Section 5 concludes the paper.

2. System Model and Problem Formulation

In this section, we first introduce the task offloading model, including the data trans-
mission model, delay model, and the energy efficiency model. Then, the task offloading
optimization problem is formulated.

2.1. Task Offloading Model

The considered the task offloading model for the EIoT, which is shown in Figure 1,
which consists of multiple gateways and EIoT devices. The gateway establishes wireless
connections with devices and provides computing resources. We consider that each device
is in the coverage of multiple gateways. Due to the limited computing resources and
constrained battery capacity of EIoT devices, the tasks need to be offloaded to the gateway
for processing.

Figure 1. Task offloading model for EIoT.
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We assume that there are I EIoT devices, the set of which is denoted asM = {m1, . . . , mi,
. . . , mI}. There exist J gateways, the set of which is defined as S = {s1, . . . , sj, . . . , sJ}.
We denote the task offloading indicator variable as xi,j, where xi,j = 1 represents that
device mi selects the gateway sj for task offloading, and xi,j = 0 otherwise. We define the
maximum number of EIoT devices that can be simultaneously served as qj. Therefore, xi,j
needs to satisfy

I

∑
i=1

xi,j ≤ qj. (1)

Figure 1 shows an example of task offloading with six EIoT devices, three gateways,
and qj = 2. Task offloading conflict occurs when m1, m2, and m3 simultaneously select s2
for task offloading. Finally, s2 chooses to serve m1 and m2, and m3 remains idle.

2.1.1. Data Transmission Model

The EIoT devices can offload tasks to one of the multiple gateways through orthog-
onal frequency division multiplexing (OFDM)-based orthogonal subchannels (see refer-
ences [27,28]), and electromagnetic interference is considered. Therefore, the transmission
rate between mi and sj is given by

Ri,j = B log2(1 + SINRi,j), (2)

where B represents the subchannel bandwidth. SINRi,j represents the signal-to-interference-
plus-noise ratio (SINR) [29] between mi and sj, which is given by

SINRi,j =
xi,jPTX gi,j

σ2 + εi,j
, (3)

where PTX and σ2 represent the transmission power and noise power, respectively [30].
Furthermore, gi,j is the channel gain between mi and sj. εi,j represents the electromagnetic
interference. Considering the reliability constraints of task offloading, the SINR must satisfy
SINRi,j ≥ SINRmin, where SINRmin is the SINR threshold.

2.1.2. Delay Model

We define Ui as the task data size of mi. The task computing intensity, i.e., the CPU
cycles processing one bit by sj, is defined as f j (cycle/bit). The computing resource (cycle/s)
allocated by sj is defined as αj, which is given by

αj =
ψj

qj
. (4)

Therefore, the transmission delay between mi and sj, and the computing delay of sj
processing the tasks of mi are given by

QTX
i,j =

Ui
Ri,j

, (5)

QC
i,j =

f jUi

αj
. (6)

The total task offloading delay is the sum of the transmission delay and computing
delay, which is given by

Qi,j = QTX
i,j + QC

i,j. (7)
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2.1.3. Energy Efficiency Model

We define Ei,j as the task offloading energy consumption of mi, which is given by

Ei,j = (PTX + P0)QTX
i,j = (PTX + P0)

Ui
Ri,j

, (8)

where P0 represents the circuit power of the device operation.
We define energy efficiency (bit/(J·Hz)) as the amount of data that can be transmitted

per unit of energy per unit of bandwidth [31]. Therefore, the energy efficiency of mi
offloading tasks to sj is given by

ηi,j =
Ui

BEi,j
=

Ui

B(PTX + P0)
Ui
Ri,j

=
Ri,j

B(PTX + P0)
. (9)

2.2. Problem Formulation

In this paper, we address the task offloading problem for the EIoT. The objective is to
maximize the weighted difference between energy efficiency and delay Ψ(xi,j) under the
constraints of task offloading and SINR. As such, Ψ(xi,j) is given by

Ψ(xi,j) =
I

∑
i=1

J

∑
j=1

xi,j(Vηi,j −Qi,j), (10)

where V is the weight to balance the order of magnitude between energy efficiency and
delay. The task offloading optimization problem is modeled as

P1 : max
{xi,j}

Ψ(xi,j),

s.t. C1 :
I

∑
i=1

xi,j ≤ qj, sj ∈ S , xi,j ∈ {0, 1},

C2 :
J

∑
j=1

xi,j = 1, mi ∈ M, xi,j ∈ {0, 1},

C3 : SINRi,j ≥ SINRmin, mi ∈ M, sj ∈ S . (11)

C1 and C2 are the task offloading constraints, which indicate that each gateway can
be selected by qi devices at most, and each device can select only one gateway. C3 is the
SINR constraint.

3. Delay and Energy-Efficiency-Balanced Task Offloading for EIoT Based on
Two-Sided Matching

In this section, we elaborate the problem transformation and the proposed delay
and energy-efficiency-balanced task offloading algorithm for the EIoT based on two-
sided matching.

3.1. Problem Transformation

To solve P1, it is feasible to traverse all possible results due to the high computational
complexity [32,33]. Therefore, we convert P1 into a many-to-one two-sided matching
problem between devices and gateways.
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Theorem 1. Matching: Matching φ is defined as the mapping relationship of a setM∪S , which
is denoted as φ: M∪S → S ∪M. When φ(mi) = sj and φ(sj) = mi, it means that mi and sj
establish a matching relationship, which can be expressed as

xi,j =

{
1, φ(mi) = sj and φ(sj) = mi,
0, otherwise.

(12)

In many-to-one two-side matching, each device traverses all gateways to obtain the
preference values toward different gateways and each gateway traverses all devices to
obtain the preference values toward different devices. The preference value of mi for sj
and ωi,j, is defined as the weighted energy efficiency of mi offloading tasks to sj. The
preference value of sj for mi and γj,i, is defined as the total delay of mi offloading tasks to
sj. Furthermore, ωi,j and γj,i are expressed as

ωi,j = V · ηi,j, (13)

γj,i = −Qi,j. (14)

For each mi and mi ∈ M, sj �mi sj′ denotes that mi prefers sj to sj′ , which is given by

sj �mi sj′ ⇔ ωi,j|φ(mi)=sj
> ωi,j′ |φ(mi)=sj′

, (15)

where⇔ is a binary preference relationship.
Meanwhile, for each sj and sj ∈ S , mi �sj mi′ denotes that sj prefers mi to mi′ , which

is given by

mi �sj mi′ ⇔ γj,i|φ(sj)=mi
> γj,i′ |φ(sj)=mi′

. (16)

After obtaining ωi,j|φ(mi)=sj
, sj ∈ S and γj,i|φ(sj)=mi

, mi ∈ M, the preference list of
devices is obtained by sorting ωi,j|φ(mi)=sj

, sj ∈ S in descending order, which is denoted as

Fi = {· · · , sj, sj′ · · · }, sj �mi sj′ . (17)

The preference list of gateways is obtained by sorting γj,i|φ(sj)=mi
in descending order,

which is denoted as

Fj = {· · · , mi, mi′ · · · }, mi �sj mi′ . (18)

Based on Fi and Fj, P1 can be solved by the proposed delay and energy-efficiency-
balanced task offloading algorithm.

3.2. Many-to-One Two-Sided Matching-Based Delay and Energy-Efficiency-Balanced Task
Offloading Algorithm

The implementation process of the proposed delay and energy-efficiency-balanced
task offloading algorithm is shown in Algorithm 1, which consists of three steps.

Step 1: Initialize the sets of task offloading strategies, unmatched devices, and un-
matched gateways as φ = ∅, Ω =M and Γ = S ;

Step 2: Each mi and mi ∈ M, and each sj and sj ∈ S calculate the preference values
based on (13) and (14), and establish the preference lists Fi and Fj based on (17) and (18);

Step 3: First, each device in Ω proposes to its most preferred gateway based on Fi, i.e.,
the top gateway in its preference list.

Afterwards, each sj and sj ∈ S calculates the total number of temporary matches
and new proposals. If the total number of temporary matches and new proposals is less
than quota qi, sj establishes temporary matches with the devices which propose to it. The
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matched devices are temporarily removed from Ω. Otherwise, sj establishes temporary
matches with only the top qj devices in its preference list Fj, which propose to it. Then,
the matched devices are removed from Ω. The unmatched devices are added into Ω and
remove sj from Fi. If the total number of matches for sj is equal to qj, remove sj from Γ.

Iterative matching ends when each device establishes a match with a gateway or its
preference list Fi = ∅. Based on the matching results, each device offloads the tasks to the
corresponding gateway for data processing.

Algorithm 1 Delay and Energy-Efficiency-balanced Task Offloading Algorithm

1: Input:M, S .
2: Output: φ.
3: Step 1: Initialization
4: Initialize φ = ∅, Ω =M, and Γ = S .
5: Step 2: Preference List Construction
6: Each mi and sj calculate the preference values based on (13) and (14), and establish

the preference lists Fi and Fj based on (17) and (18).
7: Step 3: Iterative Matching
8: While Ω 6= ∅ and Fi 6= ∅ do
9: For mi ∈ Ω do

10: mi proposes to its most preferred gateway based on Fi.
11: End for
12: For sj ∈ Γ do
13: If the total number of temporary matches and new proposals, e.g., mi, for sj is

less than quota qj then
14: Match sj with the devices which propose to it temporarily and remove the

matched devices from Ω.
15: else
16: Temporarily match sj with its most preferred qj devices proposing to sj based

on Fj. Remove matched devices from Ω and add unmatched devices into Ω.
17: Unmatched devices update Fi = Fi \ sj.
18: End if
19: If the total number of matches for sj is equal to qi then
20: Γ = Γ \ sj.
21: End if
22: End for
23: End while

3.3. Complexity Analysis

The complexity of the proposed algorithm is O(I + J + Ilog(J) + Jlog(J)) + O(I).
Based on the analysis, the complexity of the proposed algorithm has a negligible impact on
the delay performance during task offloading and is also applicable when the number of
devices is large.

4. Simulation Results

In this section, we first introduce the simulation parameter settings. Afterwards,
extensive simulation results are elaborated to verify the effectiveness of the proposed
algorithm. The simulation is implemented on MATLAB R2021.

4.1. Simulation Parameter Settings

The proposed algorithm is compared with two existing task offloading algorithms, i.e.,
an energy-efficiency-first (EEF) task offloading algorithm [34], which aims to maximize the
the energy efficiency without considering the time delay. The second is a time-delay-first
(TDF) task offloading algorithm [13], which aims to minimize the time delay without
considering the energy efficiency. The simulation results are shown from Figures 2–9. Fur-
thermore, to verify the performance of the proposed algorithm, we compare the proposed
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algorithm with the task offloading algorithm based on ε-greedy, which jointly optimizes the
weighted difference between energy efficiency and delay [35]. Through 500 experiments,
the simulation comparison is performed and shown from Figures 10–12.

The channel gain is influenced by the small-scale fading, i.e., gi,j = (127 + 30× log di,j),
where di,j is the distance between mi and sj. Other parameters are summarized in Table 1 [34,36].

Table 1. Simulation parameters.

Parameters Value

I [60, 100]
qj [10, 20]
Ui [1.5, 2] Mbits
αj [6× 109, 5× 1010] cycle/s
f j [1× 103, 3.5× 103] cycle/bit

P0, PTX 0.1 W, 0.4 W
V 25
σ2 −174 dBm

SINRmin 16 dB
B 0.2 MHz

4.2. Simulation Results and Analysis

Figure 2 shows the weighted difference between energy efficiency and delay versus
the number of devices. The EEF and TDF only consider a single optimization objective.
It is difficult to ensure that the delay and energy efficiency are optimized at the same time.
Therefore, the proposed algorithm sets the weight V to unify the device energy efficiency
and delay magnitude, and builds the weighted difference between energy efficiency and
delay based on the weight V to realize the joint optimization of energy efficiency and delay.
The dynamic compromise between energy efficiency and transmission delay improves
the overall performance of the proposed algorithm. The simulation results show that as
the number of devices increases, the weighted difference between energy efficiency and
delay under different algorithms decrease. The performance of the proposed algorithm
is always better than that of EEF and TDF. When the number of devices is 120, compared
with EEF and TDF, the performances of the proposed algorithm are increased by 29.01%
and 45.65%, respectively.

Figure 3 shows the weighted difference between energy efficiency and delay versus the
number of gateways. The simulation results show that the weighted difference improves
with the number of gateways. The proposed algorithm always has the best performance
among the three algorithms. Compared with EEF and TDF, the proposed algorithm can
enhance the weighted difference between energy efficiency and delay by 11.57% and 22.25%,
respectively, when the number of gateways is up to 16.

Figure 4 shows the computing and transmission delay versus qj, and Figure 5 shows
the total delay, energy efficiency, and weighted difference versus qj. The simulation results
show that the computing delay, energy efficiency, and weighted difference are positively
proportional to qj, while the transmission delay decreases with qj. The reason is that as qj
becomes larger, less computing resources are allocated to each device, thereby increasing
computing delay. Meanwhile, the device has a larger probability to offload tasks to a
closer gateway, so as to reduce the transmission delay. When gateways can accept more
devices, the device will access the gateway with higher energy efficiency, which increases
the performance of energy efficiency. Therefore, it is necessary to select the appropriate
values of qi to realize the dynamic tradeoff among computing delay, transmission delay,
and energy efficiency.
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Figure 2. Weighted difference between energy efficiency and delay versus the number of devices.
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Figure 6 shows the total delay and energy efficiency versus computing resources. The
simulation results demonstrate that when computing resources of gateways are increased
from 4 × 1010 to 8 × 1010, the energy efficiency keeps increasing trend while the total
delay keeps decreasing trend. The reason is that larger computing resources reduce the
computing delay for devices during the task offloading process, thereby reducing the
total delay. Moreover, sufficient computing resources encourage devices to select closer
gateways for task offloading, which leads to higher energy efficiency.
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Figure 6. Total delay and energy efficiency versus computing resources.

Figure 7 shows shows total delay and energy efficiency versus SINRmin. The simula-
tion results demonstrate that the energy efficiency increases with SINRmin, while the total
delay almost remains unchanged. The reason is that a larger SINRmin results in a tighter
SINR constraint, which cannot be satisfied by the remote gateways with a poor SINR.
Devices are enforced to choose closer gateways for task offloading. Therefore, the energy
efficiency is increased and transmission delay is decreased due to the reduced transmission
distance. However, the computing resources of remote gateways cannot be utilized, which
increases the computing delay. Therefore, the total delay almost remains unchanged.

Figure 8 shows the weighted difference between energy efficiency and delay versus
computing resources. The simulation results demonstrate that the weighted difference
between the energy efficiency and delay of all three algorithms increase with computing
resources, and the proposed algorithm increases fastest. Based on Figure 9, with the
increase of computing resources, the computing delay is reduced and the energy efficiency
is increased, resulting in an increase in the weighted difference between energy efficiency
and delay. EEF has the smallest increasing trend. The reason is that EEF only optimizes
energy efficiency and the computing delay will not affect the gateway selection of devices.

Figure 9 shows the weighted difference between energy efficiency and delay versus
SINRmin. The simulation results demonstrate that the weighted difference between the
energy efficiency and delay of the proposed algorithm and the TDF increases with SINRmin,
while that of the EEF remains almost unchanged. The reason is that the EEF always selects
the gateway with a better SINR for task offloading according to the energy efficiency opti-
mization objective, and the increase of SINRmin will hardly change the gateway selection.
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Since the proposed algorithm takes into account both energy efficiency and delay for the
task offloading optimization, it performs better than the TDF.
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Figure 9. Weighted difference between energy efficiency and delay versus SINRmin.

Figure 10 shows the weighted difference between energy efficiency and delay versus
simulation numbers. When the number of tests increases, the weighted difference of the
ε-greedy algorithm increases, but the performance of the proposed algorithm is much better
than the greedy algorithm. When the number of tests is 500, the proposed algorithm has
a 73.43% increase in weighted difference between energy efficiency and delay compared
to the ε-greedy algorithm. The reason is that the ε-greedy algorithm needs to explore
non-optimal options to obtain task offloading strategies and ignores the coupling among
different devices. The proposed algorithm can reduce the complexity of the coupling
problem and realize the precise matching between devices and gateways to achieve the
joint optimization of the energy efficiency and delay of all devices.

Figure 11 shows the energy efficiency versus simulation numbers. Figure 12 shows
the total delay versus simulation numbers. After many simulations, the performances of
the ε-greedy algorithm in terms of energy efficiency and total delay have been improved
but are still lower than the proposed algorithm. This is because the ε-greedy algorithm has
difficulty in solving the coupling among different devices.
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5. Conclusions

In this paper, we addressed the task offloading problem for the EIoT, and proposed
a delay and energy-efficiency-balanced task offloading algorithm. We first modeled the
optimization objective of the task offloading problem as the weighted difference between
delay and energy efficiency. Then, the task offloading problem was transformed into a
many-to-one two-sided matching problem, where the preference values of the devices and
gateways in regard to each other were calculated based on energy efficiency and delay,
respectively. A stable matching between devices and servers was established through
a continuous iteration. Therefore, the proposed algorithm achieved a dynamic tradeoff
between energy efficiency and delay as well as low-complexity and stable task offloading.
The simulation results showed that compared with EEF and TDF task offloading algorithms,
the proposed algorithm could improve the weighted difference between energy efficiency
and delay by 29.01% and 45.65% when the number of devices is 120, and by 11.57% and
22.25% when the number of gateways is 16, respectively. In addition, compared with
an ε-greedy task offloading algorithm, the proposed algorithm had a 73.43% increase in
weighted difference between energy efficiency and delay when the simulation number is
500. Some perspectives related to future work are outlined.

Task Offloading Optimization under Uncertain Information: Considering the com-
plex and dynamic environment of the EIoT, collecting the global state information, such as
the computing resource of gateways, the channel state information, and the task offload-
ing decision of other devices, incurs prohibitive signaling overheads. Therefore, the key
information for task offloading optimization is uncertain. In the future, we will consider
exploring advanced artificial intelligence (AI) with powerful environment-learning capabil-
ities to deal with task offloading optimization under uncertain information conditions.

Joint Optimization of Task Offloading and Computing Resource Allocation: We only
consider task offloading optimization and assume that gateways allocate computing re-
sources equally to devices in this paper. However, the equal allocation manner cannot
ensure the efficient utilization of computing resources. Specifically, computing resources
allocated to the devices with large amounts of offloaded data may be insufficient, resulting
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in large computing delays, while computing resources allocated to other devices may be
idle. In the future, we will explore the joint optimization of task offloading and computing
resource allocation to further improve the delay performance of devices and the resource
utilization of gateways.
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