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Abstract: This paper proposes a novel robust latent common subspace learning (RLCSL) method
by integrating low-rank and sparse constraints into a joint learning framework. Specifically, we
transform the data from source and target domains into a latent common subspace to perform the data
reconstruction, i.e., the transformed source data is used to reconstruct the transformed target data.
We impose joint low-rank and sparse constraints on the reconstruction coefficient matrix which can
achieve following objectives: (1) the data from different domains can be interlaced by using the low-
rank constraint; (2) the data from different domains but with the same label can be aligned together by
using the sparse constraint. In this way, the new feature representation in the latent common subspace
is discriminative and transferable. To learn a suitable classifier, we also integrate the classifier learning
and feature representation learning into a unified objective and thus the high-level semantics label
(data label) is fully used to guide the learning process of these two tasks. Experiments are conducted
on diverse data sets for image, object, and document classifications, and encouraging experimental
results show that the proposed method outperforms some state-of-the-arts methods.

Keywords: latent common subspace; transfer learning; low-rank constraint; subspace structure

1. Introduction

Collecting massive labeled data is an expensive and time-consuming process in real-
istic scenarios [1]. Meanwhile, visual classification models often are required to be well
trained for accurate prediction by sufficient labeled data. In this case, there is an urgent
need to use labeled and relevant data from various data sets for facilitating the training
process [2]. However, in some complex applications, the data from different data sets have
different distributions. Thus, the key point of the problem is how to recover the knowledge
gained from existing or well-constructed data sets for a novel task. Transfer learning is
such a technique that attempts to learn an appropriated model for target application by
recovering the knowledge from the source domain [3,4] In other words, transfer learning
attempts to transfer the knowledge from the source domain where the data are labeled to a
different but related target domain for obtaining a better model [5,6].

A major problem in transfer learning is how to decrease the different probability
distributions of data in source and target domains. Intuitively, finding a better data
representation that not only reduces the discrepancy distributions among different domains
as best as we can but also simultaneously preserves essential properties (such as local
geometric properties and intrinsic discriminable structure of data) of different domains
is a feasible solution [7] which makes the model trained from the labeled source domain
use for target domain directly. Many conventional subspace learning methods aim to find
a good data representation (low dimensional subspace) that can preserve some specific
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properties of original data and thus they can be used for transfer learning [8–11]. Transfer
subspace learning methods use the idea of subspace learning to find an appropriate data
representation, i.e., latent common subspace, for the data of source and target domains in
which the different distributions of the source and target data are also reduced as much
as possible [12–14]. Nonetheless, these proposed transfer subspace learning methods only
focus on low-level features (visual features) of data from the source and target domains,
which are independent of the subsequent tasks such as visual classification. Thus, the
high-level semantic information (label information) is not fully exploited to guide classifier
learning [15,16].

It is well known that in transfer learning a good feature representation should be
transferable [2,3,5]. However, to learn a discriminative classifier, we need to learn a discrim-
inative feature representation. Therefore, we assume that we can learn a discriminative
and transferable feature representation from the original feature representation. To this
end, this paper attempts to find an appropriate data feature representation for reducing the
difference in probability distributions between different domains. Therefore, this paper
proposes a novel transfer learning method called robust latent common subspace learning
(RLCSL) by finding a proper data feature representation that can not only reduce the
distribution discrepancy but also improve the discriminative ability of the new feature
representation. In this way, the new feature representation is beneficial for the subsequent
learning task, i.e., classifier learning. Previous transfer subspace learning methods merely
focus on the transferable feature representation learning. However, the proposed method
uses data reconstruction to find a latent common subspace where the data from source
and target domains have similar probability distributions by using the low-rank constraint.
Moreover, the data from different domains but with the same label can be aligned together
by using the sparse constraint. Current locality reconstruction methods only work on the
scenario that the data come from the same domain, i.e., the data have a similar distribution.
For example, locally linear embedding (LLE) [17] and non-negative matrix factorization
(NMF) [18] cannot guarantee a neighborhood-to-neighborhood reconstruction. To this end,
the proposed method imposes low-rank and sparse constraints on the reconstruction coeffi-
cients which can make the reconstruction coefficient matrix obtain a block-wise structure
as shown in Figure 1. Therefore, the neighborhood-to-neighborhood reconstruction can be
obtained. Specifically, we introduce the low-rank and sparse constraints to constrain the
reconstruction coefficient matrix to achieve this goal so that the reconstruction process can
automatically select the neighbor data sharing the same label but from different domains to
complete the reconstruction as much as possible [15,19]. To enhance the robustness of our
algorithm, we also introduce a sparse matrix to simulate the noise for reducing the effect
of noisy data during the data reconstruction. To learn a suitable classifier parameter, we
integrate the classifier learning and feature representation learning into a unified optimiza-
tion objective. The whole framework of our method is demonstrated in Figure 2. We apply
the proposed RLCSL method to the task of transfer learning. Massive experiments are
conducted on the image data, object data, and document data and encouraging experiment
results show the outstanding performance of our method.

The main contributions of this paper are summarized as follows.
(1) We impose the low-rank constraint on the reconstruction coefficient matrix to make

data from different domains interlace well for obtaining a transferable feature representa-
tion. Moreover, by imposing a sparse constraint on reconstruction coefficient matrix, the
data from different domains but with the same label can be aligned together for learning a
discriminative feature representation.

(2) The classifier learning and feature representation learning are integrated into a
unified optimization objective for achieving the best of them.

(3) Massive experiments demonstrate that the proposed method outperforms the
state-of-the-art transfer learning methods.
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Figure 1. The transformed target domain data is represented by the transformed source domain data
and the reconstruction coefficient matrix has a block-wise structure.
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Figure 2. Framework of the proposed method. Transformed matrix Q is used to respectively
project the data from different domains into the latent common subspace and then the new feature
representation in the latent common subspace is projected into the label space by using transformation
matrix P and thus transformed matrix P is also used to learn the classifier parameter. By imposing
the low-rank and sparse constraints on the reconstruction matrix Z, the transformed target domain
data can be sparsely represented by the transformed source domain data. Therefore, the matrix Z has
a sparse block-diagonal structure.

The remainder of this paper is organized as follows. Section 2 reviews some related
works. Section 3 introduces the basic idea of robust latent common subspace learning and
some related discussions. Massive experiments are conducted in Section 4. Section 5 gives
the limitations of the proposed method. Finally, we present the conclusion of the paper in
Section 6.
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2. Related Works

Recently, transfer learning has been widely studied in the field of machine learning
and computer vision. In this section, we review some related works on transfer learning.

Two outstanding surveys of transfer learning can be found in [20,21]. The properties
of domains and tasks are commonly used as a common way to classify the type of transfer
learning. For example, inductive transfer learning aims to use the data in the same domain
for various tasks [22–25]. Inductive learning can be also used as a supervised multi-task
learning model if the data from both source and target domains have class labels [26].
Self-taught learning is a special case of inductive learning if only the data from the target
domain have class labels [25]. Inductive transfer learning can be referred to as domain
adaptation, where the source domain is transformed by manipulating the distribution
or feature representation of the source domain [2–5,7]. A significant amount of research
work is being devoted to solving the domain adaptation problem by attempting to resolve
the divergence between the source and target domains [27–31]. The idea behind all these
methods is that they learn one or more subspaces to mitigate the domain shift [2]. When
label information is applicable for source and target domains, these methods can not only
pass down the discriminative power but also align source and target data well.

Recently, iterative modification of the classifier is a basic way to perform transfer learn-
ing [32–34]. In these methods, an iterative strategy is used to adapt the knowledge from the
source domain to the target domain gradually. However, these methods severely depend
on the quality of the model obtained by subsequent iterations. The subspace learning
method is commonly used in transfer learning by discovering the common subspace for the
source and target data. The objective of subspace learning is to find a subspace in which the
desired data property is preserved. For example, locality preserving projection (LPP) [35],
neighborhood preserving embedding (NPE) [36], and isometric projection (ISOP) [37] are
proposed to find a subspace where the intrinsic geometry structure of data is preserved.
Linear discriminant analysis (LDA) [10], local discriminant embedding (LDE) [38], and
locality Fisher discriminant analysis (LFDA) [39] are proposed to improve the algorithmic
discriminant ability by using the label information. Recently, low-rank constraint-based
subspace learning methods exploit the low-rankness to find the subspace structure of
data [2,4,40,41]. Compared to conventional subspace learning methods which assume a
specific noise such as Gaussian noise, low-rank constraint subspace learning methods can
effectively deal with different types of noise with large magnitudes. Since our paper is
based on subspace learning, we will introduce many subspace learning-based transfer
learning methods. For example, Si et al. applied many traditional subspace learning
methods to solve the problem of transfer learning by learning a subspace to reduce the
divergence of the distribution [42]. Shao et al. proposed a generalized transfer subspace
learning via low-rank constraint (LTSL) [2]. In LTSL, a unified transformation is utilized to
transform both source and target data into a common subspace. The use of the low-rank
constraint is done to guarantee good data alignment. Robust visual domain adaptation
with low-rank construction (RDALR) is proposed to strictly transform the source domain
data into the target domain [4]. The low-rank constraint imposed on the reconstruction
coefficient matrix is to ensure that the source domain and target domain have a similar
distribution. Kan et al. proposed a domain adaptation method, called targetized source
domain (TSD) bridged by common subspace, for face recognition [3]. The idea behind
TSD is to convert the source domain images to the target domain while preserving its
supervisory information. The sparse reconstruction is used in TSD which is more flexible
as a non-parameter measurement. Transfer component analysis (TCA) is also a transfer
subspace learning method that learns a latent common subspace to reduce the difference
between the margin distributions of the source and target domains [7]. Although the above
methods are closely related to our method, i.e., reducing the differences in the marginal
distributions of the source and target domains by learning a common subspace, they signifi-
cantly differ from our proposed method in the following aspects. First, these methods learn
a latent common subspace in which the distribution divergence between the source domain
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and target domain can be reduced. However, our proposed method learns a latent common
subspace in which the distribution discrepancy can be reduced and the discriminative
ability of new feature representation can be also largely improved. Second, these methods
adopt a two steps strategy to address the problem of transfer learning. However, our
proposed method unifies these two steps into an optimization objective to seek the best
of them.

3. Robust Latent Common Subspace Learning
3.1. Notation

Denote σi(Z) as the i-th singular value of matrix Z, we define ‖Z‖∗ = ∑i σi(Z) and
‖Z‖2,1 = ∑dim

i=1

√
∑nt

j=1 Z2
ij as the unclear norm and `2,1-norm of matrix Z, respectively.

Denote F as the binary label matrix, we define it as follows: for each sample xi, yi ∈ <c is
the corresponding label. Suppose that xi is from the k-th class (k = 1, 2, ..., c), then only the
k-th entry of yi is one and all the other entries are zero. Denote E ∈ <dim×nt as the noise
matrix, we define ‖E‖1 = ∑ij |Eij| as `1-norm of matrix E. A description of many variables
used in this paper is shown in Table 1.

Table 1. Description of different variables.

Variable Description

Xt ∈ <m×nt target domain data matrix
Xs ∈ <m×ns source domain data matrix
F ∈ <ns×c binary label matrix
Z ∈ <ns×nt reconstruction coefficient matrix
E ∈ <dim×nt noise matrix
P ∈ <dim×c transformation matrix for label space
Q ∈ <m×dim transformation matrix for latent common subspace

m dimension of data
ns number of source domain data
nt number of target domain data

dim dimension of latent common subspace

3.2. Objective Function

A classifier with better classification performance in visual object recognition tasks
always requires finding a good feature representation. Especially when the data from
different domains have different distributions [15], which is a difficult task to learn a good
feature representation. To this end, we propose to learn a latent common space in which
the following properties should be preserved.

(1) The distribution discrepancy between source and target domains is reduced as
soon as possible.

(2) The neighborhood-to-neighborhood reconstruction should be emphasized to keep
enough discriminant information for classifier learning [3].

(3) The noisy information should be filtered as much as possible.
To achieve the above purposes, we use transformation matrix Q ∈ <m×dim to transform

the data from different domains into a latent common subspace. Similar to works in [2–4],
we also suppose the dimensionalities of data from source and target domains are the same
for the convenient statement. In real applications, we can use two different transformation
matrices to transform data from different domains into the latent common subspace. For
each sample xi, QTxi is the corresponding representation in the latent common subspace.
To satisfy the first property, we assume that the transformed target data can be linearly
reconstructed by the transformed source data in the latent common subspace. A naive least-
square criterion-based reconstruction is not suitable for the neighborhood-to-neighborhood
reconstruction which may over-fit the data and ignore structure information in both source
and target domains. LTSL [2] and RDALR [4] impose the low-rank constraint on the
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reconstruction coefficient matrix so as to reduce the distribution discrepancy between
source and target domains. Although the low-rank constraint can make the distance
between the means of transformed source domain data and transformed target domain data
close in the latent common subspace, the neighborhood to neighborhood reconstruction
may be lost owing to the global low-rank constraint. To this end, we impose the joint
low-rank and sparse constraints on the reconstruction coefficient matrix such that the first
two properties are satisfied simultaneously. Thus, we have the following objective function

min
Z,Q

λ1rank(Z) + λ2‖Z‖2,1 s.t. QTXt = QTXsZ (1)

where λ1 and λ2 are the non-negative regularization parameters that aim to balance the
corresponding terms. It is well known that if the data points are neighborhood, then
they have the same label with a high probability. By using the constraint ‖Z‖2,1, each
transformed data point from the target domain tends to select nearest neighbors from the
transformed source domain for performing sparse reconstruction. This guarantees that
the neighborhood-to-neighborhood reconstruction can be preserved to provide enough
discriminative ability for the new feature representation, i.e., QTXs or QTXs. In other
words, each transformed data point from the target domain select the transformed data
points from the source domain with the same label to perform the reconstruction. Thus,
the transformed data points from different domains but with the same label can be aligned
together. Moreover, the use of low-rank constraints can ensure that the data from both
domains can be interlaced with each other so that the distribution discrepancy between
source and target domains is also reduced [2].

In order to fulfill the third property, we introduce a sparse matrix to fit the noise so
that the effect of noisy data points can be reduced. As displayed in Figure 2, the noisy data
points do not participate in the reconstruction process, which is formulated as

min
Z,Q

λ1rank(Z) + λ2‖Z‖2,1 + λ3‖E‖1 (2)

s.t. QTXt = QTXsZ + E

where λ3 is the non-negative regularization parameter.
We introduce a linear function P ∈ <dim×c to forecast the mapping relationship

between the latent common subspace and the label space, that is,

F = XTQP (3)

The least-squares loss function is utilized to learn P. Thus, we propose the following
objective function

min
Z,P,Q

‖F− XT
s QP‖2

F + λ1‖Z‖∗ + λ2‖Z‖2,1 + λ3‖E‖1 + λ4‖P‖2
F (4)

s.t. QTXt = QTXsZ + E

where λ4 is the non-negative trade-off parameter. In order to make sure that the problem is
solvable, we impose the orthogonal constraint on the transformation matrix Q, and thus
reformulate Formula (4) as the following problem:

min
Z,P,Q

‖F− XT
s QP‖2

F + λ1rank(Z) + λ2‖Z‖2,1 + λ3‖E‖1 + λ4‖P‖2
F (5)

s.t. QTXt = QTXsZ + E, QTQ = I

From the above formulation, it is clear that we actually learn two transformation
matrices Q and P in which Q is used to transform the data from the original feature space
into the latent common subspace and P is used to learn the classifier parameter. The
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second (the low-rank constraint) and third (the sparse constraint) terms can effectively
guarantee that the first and second properties are fulfilled. The fourth term ensures that the
learning process is robust. The fifth term can be used to prevent the over-fitting problem by
minimizing the Frobenius norm of matrix P.

The optimization problem in Formula (5) is intractable to be resolved, due to the fact
that the rank minimization problem is not convex. Following [2], we could replace this
rank minimization by its surrogate, nuclear norm minimization, and reformulate it as

min
Z,P,Q

‖F− XT
s QP‖2

F + λ1‖Z‖∗ + λ2‖Z‖2,1 + λ3‖E‖1 + λ4‖P‖2
F (6)

s.t. QTXt = QTXsZ + E, QTQ = I

where ‖.‖∗ represents the nuclear norm of a matrix. By learning matrix Q, we can obtain a
discriminative and transferable feature representation which is benefit from that we impose
the joint sparse and low-rank constraints on reconstruction coefficient matrix Z.

3.3. Optimization Algorithm

Problem (6) could be addressed by using the popular alternating direction method
(ADM) [2,4,40,41]. However, ADM requires introducing two extra variables for solving (6)
and the time-consuming matrix inversions are required in each iteration. To this end, we
introduce a linearized alteration direction method with adaptation penalty (LADMAP) [43]
to solve (6). Moreover, we introduce two extra variables W and H to make the objective
function separable (please note that with the setting QP = W ∈ <m×c, we can obtain the
classifier W for classifying the targRLCSL. The objective of the first variantt data directly).

min
Z,P,Q

‖F− XT
s QP‖2

F + λ1‖Z‖∗ + λ2‖Z‖2,1 + λ3‖E‖1 + λ4‖P‖2
F (7)

s.t. QTXt = QTXsZ + E, QTQ = I, QP = W, Z = H

The augmented Lagrangian function of problem (7) is

h̄(W, Q, P, Z, H, E, Y1, Y2, Y3, Y4) = ‖F− XT
s W‖2

F

+λ1‖Z‖∗ + λ2‖H‖2,1 + λ3‖E‖1 + λ4‖F‖2
F + Tr(YT

1 (Q
TXt

−QTXsZ− E)) + Tr(YT
2 (Q

TQ− I)) + Tr(YT
3 (QP−W))

+Tr(YT
4 (Z− H)) +

µ

2
(‖QTXt −QTXsZ− E‖2

F

+(‖QTQ− I‖2
F) + (‖QP−W‖2

F) + ‖Z− H‖2
F)

(8)

where Y1, Y2, Y3, and Y4 are Lagrange multipliers and µ is a penalty parameter. The
LADMAP is utilized to alternately update the variables W, Q, P, Z, H, and E, through min-
imizing h̄ with other fixed variables. Therefore, we obtain six update steps corresponding
to all variables, and all steps have closed form solution.

Step 1. Update Q: The solution of Q can be obtained by solving (9).

h̄(Q) = arg min
Q

Tr(YT
1,k(Q

TXt −QTXsZk − Ek))

+Tr(YT
2,k(Q

TQ− I)) + Tr(YT
3,k(QPk −Wk))

(9)

s.t. QTQ = I

By setting the derivation ∂h̄(Q)
∂Q = 0, we obtain

∂h̄(Q)

∂Q
= XtYT

1,k − XsZkYT
1,k + 2QY2,k + Y3,kPT

1,k = 0

⇒ Q = (XsZkYT
1,k − XtYT

1,k −Y3,kPT
k )Y2,k

(10)
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Step 2. Update P: The solution of P can be obtained by solving (11).

h̄(P) = arg min
P

λ4‖P‖2
F +

µ

2
‖Qk+1P−Wk +

Y3,k

µk
‖2

F (11)

By setting the derivation ∂h̄(P)
∂P = 0, we obtain

P = (2λ4 I + µQT
k+1Qk+1)

−1(µQT
k+1(Wk −

Y3,k

µk
)) (12)

where I is the identity matrix with an appropriate size.
Step 3. Update W: The solution of W can be obtained by solving (13).

h̄(W) = arg min
W
‖F− XT

s W‖2
F +

µk
2
‖Qk+1Pk+1 −W +

Y3,k

µk
‖2

F (13)

By setting the derivation ∂h̄(W)
∂W = 0, we obtain

W = (2XsXT
s + µI)−1(µ(Qk+1Pk+1 +

Y3,k

µk
) + 2XsF) (14)

Step 4. Update Z: The solution of Z can be obtained by solving (15).

h̄(Z) = arg min
Z

λ1‖Z‖∗ + ψ(Qk+1, Xt, Xs, Zk, Ek, Hk, Y1,k, Y4,k) (15)

where ψ(Qk+1, Xt, Xs, Zk, Ek, Hk, Y1,k, Y4,k) =
µk
2 (‖QT

k+1Xt−QT
k+1XsZk−Ek +

Y1,k
µk
‖2

F + ‖Zk−
Hk +

Y4,k
µk
‖2

F). Here, the quadratic term ψ can be represented by its first order approximation
at the previous iterate and then an additional approximation term is appended, i.e.,

h̄(Z) = arg min
Z

λ1‖Z‖∗+ < ∇Zψ(Qk+1, Xs, Xt, Zk, Ek, Hk,

Y1,k, Y4,k), Z− Zk > +
θµk
2
‖Z− Zk‖2

F

= arg min
Z

λ1‖Z‖∗ +
θµk
2
‖Z− Zk

+
∇Zψ(Qk+1, Xs, Xt, Zk, Ek, Hk, Y1,k, Y4,k)

θµk
‖2

F

= arg min
Z

λ1‖Z‖∗ +
θµk
2

‖Z− Zk +
XT

s Qk+1 J0 + 2XT
s Qk+1QT

k+1XsZk + Zk − J1

2θ
‖2

F

(16)

where J0 = QT
k+1Xt − Ek +

Y1,k
µk

and J1 = Hk −
Y4,k
µk

. ∇Zψ(Qk+1, Xs, Xt, Zk, Ek, Hk, Y1,k, Y4,k)

is the partial differential of ψ with respect to Z and θ = ‖Xs‖2
F.

Problem (16) can be solved through singular value thresholding (SVT) [2].

Z =  λ1
θµk

[Zk −
XT

s Qk+1 J0 + 2XT
s Qk+1QT

k+1XsZk + Zk − J1

2θ
] (17)

where  λ1
θµk

(X) = US λ1
θµk

VT is the thresholding operator with respect to λ1
θµk

, where S λ1
θµk

(X) =

sign(Xij)max(0, |Xij − λ1
θµk
|) is the soft-thresholding operator and X = USVT is the singu-

lar value decomposition of X.
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Step 5. Update H: H can be updated through solving the optimization problem (18)
with the closed form solution.

h̄(H) = arg min
H

λ2‖H‖2,1 +
µk
2
‖Zk+1 − H +

Y4,k

µk
‖2

F (18)

which can be solved by the following Lemma 1.

Lemma 1 ([41]). Let A be a given matrix and if the optimal solution to

min
B

α‖B‖2,1 +
1
2
‖A− B‖2

F (19)

is B∗, then the ith column of B∗ is

Bi∗ =


‖Bi‖2−α

‖Bi‖2
Ai if ‖Ai‖2 > 0

0 otherwise
(20)

where Bi and Ai are the ith columns of matrix B and A, respectively.

Step 6. Update E: E can be updated by solving the optimization problem (21) with
the closed form solution (22).

h̄(E) = arg min
E

λ3‖E‖1 +
µk
2
‖QT

k+1Xt −QT
k+1XsZk+1 − E +

Y1,k

µk
‖2

F (21)

⇒ Ek+1 = ξ λ3
µk

(QT
k+1Xt −QT

k+1XsZk+1 +
Y1,k

µk
) (22)

where ξ λ3
µk

= shrink(QT
k+1Xt − QT

k+1XsZk+1 +
Y1,k
µk

, λ2
µk
) and shink(x, a) = sign max(|x| −

a, 0).
Step 7. Update Y1, Y2, Y3, Y4 and µ: We update the Lagrange multipliers and penalty

parameter as follows (ρ ≥ 1).

Y1,k+1 = Y1,k + µk(QT
k+1Xt −QT

k+1XsZk+1 − Ek+1)

Y2,k+1 = Y2,k + µk(QT
k+1Qk+1 − I)

Y3,k+1 = Y3,k + µk(Qk+1Pk+1 −Wk+1)

Y4,k+1 = Y4,k + µk(Zk+1 − Hk+1)

µk+1 = min(µmax, ρµk)

(23)

The complete algorithm is outlined in Algorithm 1.

3.4. Classification

Once the optimal solution W is obtained, we first obtain Fs = XsW and Ft = XtW,
respectively. Then Fs and Ft are respectively used as training set and test set and the nearest
neighbor classification (NN) [2] is utilized as the baseline classifier to classify Ft.
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Algorithm 1: Solving RLCSL by LADMAP.

Input: Data set matrix Xt and Xs; Source domain data label indicator matrix F;
Parameters λ1, λ2, λ3, λ4 and the latent common subspace dim;
Initialization: Z0 = H0 = O; E0 = O; P0 = O; W0 = O; Q0 = arg maxQ Tr(QTXsXT

s Q),
s.t. QTQ = I; Y1,0 = O; Y2,0 = O; Y3,0 = O; Y4,0 = O; µ0 = 0.1; µmax = 107; ρ0 = 1.01;
θ = ‖Xs‖2

F; k = 0; σ ≤ 10−6
while not converged do

1. Fix the others and update Q by solving (9)
Q← orthogonal Q.
2. Fix the others and update P by solving (11).
3. Fix the others and update W by solving (13).
4. Fix the others and update Z by solving (15).
5. Fix the others and update H by solving (18).
6. Fix the others and update E by solving (21).
7. Update the multipliers as follows

Y1,k+1 ← Y1,k + µk(Qk+1Xt −QkXsZk+1 − Ek+1)

Y2,k+1 ← Y2,k + µk(QT
k+1Qk+1 − I)

Y3,k+1 ← Y3,k + µk(Qk+1Pk+1 −Wk+1)

Y4,k+1 ← Y4,k + µk(Zk+1 − Hk+1)
8. Update the parameter µ follows
µk+1 = min(µmax, ρµk)
9. Check the convergence conditions
Ω ≤ ε
where Ω = max(‖QT

k Xt −QT
k XsZ− E‖∞, ‖QkPk −Wk‖∞, ‖Zk − Hk‖∞)

10. Update k: k← k + 1.
end while
Output: W.

3.5. Computation Complexity, Memory Requirement, and Convergence

(1) Computation Complexity: For simplicity, we assume that both Xs and Xt are of
m× n matrices. From the subsequent experiments, we know that the dimensionality of the
latent common subspace is very small, i.e., dim� m. The main computation burdens of
Algorithm 1 are:

(1) Matrices multiplication and inverse in steps (1), (2), and (3).
(2) SVD computation of an n× n matrix in step (4).
We discuss each part in detail. The main computation cost of steps (1), (2), and (3)

are respectively O(mn2 + mndim + mcdim) (c is the number of classes), O(dim2m), and
O(m2n+m3 +mnc+m2c). The SVD computation in step (4) takesO(n3) and thus the main
computation cost of step (4) is O(n3 + nmdim + n2m). When the number of samples, i.e., n
is large, its computation overhead becomes prohibitively high. Fortunately, Liu et al. [41]
provide a better way to deal with the problem in step (4).

For any optimal solution Z∗ to the following problem,

min
Z

λ1‖Z‖∗ + λ2‖Z‖2,1 s.t. Xt = XsZ (24)

We have

Z∗ ∈ span(XT
s ) (25)

which indicates that the optimal Z∗ lies the space spanned by XT
s . So, we can compute

the orthogonal basis of XT
s in advance and a compact Z∗ can be obtained by: Z∗ = K∗Z̃∗,
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where K∗ is the orthogonal columns of XT
s . In this way, we have rewritten the original

problem in (24) as

min
Z

λ1‖Z̃‖∗ + λ2‖Z̃‖2,1 s.t. Xt = MZ̃ (26)

where M = XsK∗. After solving for Z̃ the solution for (24) can be recovered by K∗Z̃∗. M
is of full column rank if we give an appropriate dictionary Xs [2]. Because the number
of rows of Z̃ is at most rs and thus the computation cost of SVT in one iteration in (26) is
O(nr2

s ). Combining the above results, the total computation complexity of Algorithm 1 is
aboutO(N(2mn2 + 2mndim + mcdim + dim2m + m2n + m3 + mnc + m2c + nr2

s )), in which
N is the number of iterations.

(2) Memory Requirement: For the memory requirement, we give the memory re-
quirements of main variables in Table 2. From Table 2, we can see that the main memory
requirements are about 8(mnt + mns + nsc + 3(nsnt) + dimnt + dimc + 2(mc) + dimm +
dimns + dim2). We also give the quantitative assessment for the case of MSRC → VOC by
using MATLAB function of [user,sys]=memory and the result indicates that MemAvail-
ableAllArrays: 3.244 × 109.

Table 2. Memory requirement (byte (B)) of different variables.

Variable Type Memory Requirement

Xt ∈ <m×nt Double 8mntB
Xs ∈ <m×ns Double 8mnsB
F ∈ <ns×c Double 8nscB
Z ∈ <ns×nt Double 8nsntB
H ∈ <ns×nt Double 8nsntB
E ∈ <dim×nt Double 8dimntB
P ∈ <dim×c Double 8dimcB
W ∈ <m×c Double 8mcB

Q ∈ <m×dim Double 8dimmB
Y1,k ∈ <dim×ns Double 8dimnsB
Y2,k ∈ <dim×dim Double 8dimdimB

Y3,k ∈ <m×c Double 8mcB
Y4,k ∈ <ns×nt Double 8nsntB

(3) Convergence: The convergence properties of the inexact ALM have been well
investigated in [41] for the case that the number of variables is at most two. Nevertheless,
there are six variables for problem (6). Moreover, the objective function in (6) is un-smooth
which makes that convergence cannot be guaranteed. Based on the theoretical results
in [2,41,44], two conditions are sufficient for Algorithm 1 to converge which are as follows

(1) The dictionary Xs is of full column rank.
(2) The optimality gap in each iteration step is monotonically decreasing, i.e.,

τ = ‖(Zk, Pk, Qk, Hk)− arg min
Z,P,Q,H

h̄‖2
F (27)

where Zk, Pk, Qk, and Hk are the solutions generated in the k-th iteration. We previously
showed that the first condition is easy to obey. The second condition is hard to be proved
directly, and thus in the section of the experiment we show that this condition can hold
in real-world applications. Figure 3 displays the convergence curves of our method on
two different cases. It can be seen that the object value decreases monotonically with the
increase in the number of iterations. This demonstrates that the proposed optimization
algorithm is efficient and has a fast convergence behavior, say within 20 iterations.
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(a) A→D (b) W→D

Figure 3. Convergence curves of our method on different cases. (a) A→D with SURF feature and (b)
W→D with CNN feature.

3.6. Connections to Existing Works

As discussed in Section 2, our proposed method significantly differs from previous
transfer learning methods such as LTSL [2], RDALR [4], and TSD [3] in the following
aspects.

(1) A great deal of work has been proposed for visual object classification, e.g., scene
classification and image tagging [15,45] by transforming the data from different domains
into the latent common subspace to reduce the distribution difference. Although these
methods can push the data from different domains together, the data from different domains
but with the same label cannot align together. Therefore, our proposed method uses matrix
Q to transform the data from the original feature space into the latent common subspace
for reducing the distribution discrepancy. More importantly, we impose the joint low-rank
and sparse constraints on the reconstruction coefficient matrix to guarantee that: (a) the
data from different domains can be closely interlaced; (b) the data from different domains
but with the same label can be aligned together to seek the neighborhood to neighborhood
reconstruction.

(2) Conventional transfer learning methods [8,22,46–48] mainly learn a transformation
to reduce the distribution but ignore the classifier learning. In the proposed method, the
new feature representation learning and classifier learning are integrated into the unified
optimization framework. Thus, we can learn a suitable feature representation and use it as
the input for learning the discriminative classifier parameter.

To our knowledge, LTSL [2] and RDALR [4] are most closely related to our RLCSL.
For the clearness of comparison, the difference between these methods are as follows:

(1) Difference from LTSL [2] (lost local structure information): In LTSL, a unified
transformation is used to transform the data from both the source and target domains
into a common subspace where the discrepancy of the source and the target domains is
decreased with a low-rank constraint, and the classification is performed in the common
subspace. RLCSL first uses a transformation matrix to transform the data from both the
source and target domains into the latent common subspace for eliminating or reducing
the distribution discrepancy and simultaneously the classifier is learned from the latent
common subspace by another transformation matrix. In this way, the common subspace
learned by RLCSL is more discriminative to fit the labels than LTSL. In addition, in our
RLCSL, the sparse constraint can effectively improve the discriminative ability of the new
feature representation.

(2) Difference from RDALR [4]: In RDALR, only the source data are transformed into
an intermediate subspace, which has too little freedom to pull the source domain close
enough to the target domain. Moreover, when the source domain data are transformed
into the target domain, the data of different subjects may overlap each other and thus
it is difficult to separate them. In contrast, our method transforms both of them into a
latent common subspace, which can make them close enough to each other. Additionally, a
specific linear classifier is learned to ensure that they are separated as much as possible.
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It is necessary to note that LTSL and RDALR only use the low-rank constraint to
address the transfer learning problem which cannot guarantee that the data from the same
subject in one domain may choose the data points of the same subject from another domain.
By using the sparse constraint, RDALR tends to select the data points from different
domains but the same subject for reconstruction. This is useful to find the discriminant
structure of the data from different domains [3].

4. Experiments

In this section, we conducted massive experiments on three different data sets, i.e.,
object recognition, image classification, and text classification, to evaluate the classification
performance of RLCSL.

4.1. Data Set Preparation

Text Data set: Reuters-21,578 [22,49] is a benchmark text corpora that is widely used
for testing the performance of transfer learning. Reuters-21,578 is a complex text data set
with many top and subcategories. The three largest top categories are orgs, people, and place,
each of which is comprised of many subcategories.

Object Data set: Office is the visual domain benchmark data, including common
object categories from three different domains, i.e., Amazon, DSLR, and Webcam. In this
data set, each domain contains 31 object categories, such as laptop, keyboard, monitor,
bike, etc., and the total number of images is 4652. In the Amazon domain, each category
has 90 images on average while in DSLR or Webcam each category has 30 images on
average. Caltech-256 is also a standard data set for object recognition, which has 30,607
images from 256 categories. In our experiments, the public Office + Caltech data sets
released by Gong [50] are adopted. SURF features are extracted and quantized into an
800-bin histogram with codebooks computed with K-means on a subset of images from
Amazon. Then the histograms are standardized by z-score. In sum, we have four domains:
A (Amazon), D (DSLR), W (Webcam), and C (Caltech-256). In addition to the SURF feature,
we also selected the convolutional neural network (CNN) feature to test the performance
of different methods. For the CNN feature, eight layers with five convolutional layers and
three fully connected layers of CNN were trained on the ImageNet in [51]. Our experiments
used the output of the 6th layer with 4096 dimensionalities. More details of the architecture
and training protocol can be found in [51].

Image Data set: MSRC and VOC2007 [52] are used in our experiments. The MSRC
data set is released by Microsoft Research Cambridge, containing 4323 images labeled
by 18 classes. The VOC2007 data set consists of 5011 images annotated with 20 concepts.
These two data sets share six common semantic classes: airplane, bicycle, bird, car, cow,
and sheep.

Table 3 shows the detailed introduction of these data sets.

4.2. Comparison Methods

In order to evaluate the validity of the proposed RLCSL method with different config-
urations of these data sets, we compared RLCSL with some competitive state-of-the-art
methods including geodesic flow kernel (GFK) + NN [50], transfer component analysis
(TCA) + NN [7], transfer subspace learning (TSL) + NN [42], low-rank transfer subspace
learning (LDA) + NN (LTSL) [2], robust visual domain adaptation with low-rank recon-
struction (RDALR) + NN [4], transfer feature learning with joint distribution adaptation
(JDA) [53], scatter component analysis (SCA) [54], discriminative transfer subspace learning
via low-rank and sparse representation (DTSL) [55], joint feature selection and subspace
learning (FSSL) [56], transfer joint matching (TJM) for unsupervised domain adaptation [52],
and 1-nearest neighbor classification (NN) and principle component analysis (PCA) + NN.
In the experiment, TSL adopts Bregman divergence instead of maximum mean discrepancy
(MMD) as the distance for comparing distributions. NN is chosen as the baseline classifier
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because there is no need for parameter tuning. Please note that partial experiments results
are quoted from [54].

Table 3. Detailed information of different data sets (note the number in parentheses is the
dimensionality).

Data Set Subset Abbr. #Images Features # Classes

Office-Caltech256

Amazon
Caltech
DSLR

Webcam

A
C
D
W

958
1123
157
295

SURF(800)
DeCAF7(4096) 10

Reuters-21,578
orgs

people
place

or
pe
pl

1237
1208
1016

Pixel(4771) 2

MSRC-VOC2007 MSRC
VOC2007

M
V

1269
1530 DSIFT(240) 6

4.3. Experiments on the Office, Caltech-256 Data Sets

By randomly selecting 2 different domains as the source domain and target domain
respectively, we constructed 12 different cross-domain object data sets, e.g., A→D, A→W,
A→C, · · · , C→W. The experimental results of single source domain and single target
domain on these 12 cross-domain object data sets are shown in Table 4.

Table 4. Classification accuracies (%) of different methods on the Office and Caltech-256 data sets.

Dataset NN PCA GFK TSL TCA RDALR LTSL SCA DTSL JDA RLCSL

C→A 23.70 36.95 41.02 44.47 37.89 38.20 25.26 43.74 51.25 44.78 50.52
C→W 25.76 32.54 40.68 34.24 26.78 38.64 19.32 33.56 38.64 41.69 42.71
C→D 25.48 38.22 38.85 43.31 39.49 41.40 21.02 39.49 47.13 44.59 47.13
A→C 26.00 34.73 40.25 37.58 34.73 37.76 16.92 38.29 43.37 39.36 43.37
A→W 29.83 35.59 38.98 33.90 28.47 37.63 14.58 33.90 36.61 37.97 38.98
A→D 25.48 27.39 36.31 26.11 34.39 33.12 21.02 34.21 38.85 39.49 42.67
W→C 19.86 26.36 30.72 29.83 26.36 29.30 34.64 30.63 29.83 31.17 30.45
W→A 22.96 31.00 29.75 30.27 31.00 30.06 39.56 30.48 34.13 32.78 35.69
W→D 59.24 77.07 80.89 87.26 83.44 87.26 72.61 92.36 82.80 89.17 87.26
D→C 26.27 29.65 30.28 28.50 30.28 31.70 35.08 32.32 30.11 31.70 31.70
D→A 28.50 32.05 32.05 27.56 30.90 32.15 39.67 33.72 32.05 32.15 32.67
D→W 63.39 75.93 75.59 85.42 73.22 86.10 74.92 88.81 72.20 86.10 77.29

Average 31.37 39.79 42.95 42.37 39.75 43.61 34.55 44.30 44.74 45.91 46.70

In order to evaluate the classification performance of the comparison methods and
RLCSL better, we conducted the experiments of multiple sources domains vs. single
target domain on the Office and Caltech 256 data sets. We randomly choose two subsets
as the source domain while a single data set as the target domain. Thus, we also can
construct 12 different cross-domain object data sets, e.g., AC→D, AC→W, · · · , DW→C. The
experimental results are shown in Table 5. From Tables 4 and 5, the experimental results
show that RLCSL is able to obtain good classification accuracies. Figure 4 provides the
classification accuracy of different methods with the CNN feature. As shown in Figure 4,
we can find that all methods obtain better classification results and our method is still
the best competitor. The reason of supporting the excellent classification performance of
RLCSL is twofold: the joint low-rank and sparse constraints can reduce the distribution
discrepancy, plus the transferable feature representation learning and classification learning
are integrated into the unified optimization objective. Thus, the proposed method can
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benefit from the high-level feature for improving classification accuracy. Although LTSL
and RDALR use the low-rank constraint to learn the transferable feature representation,
they separately learn the transferable feature representation and classifier. Therefore, the
high-level feature, i.e., the semantic label is not directly related to the learning process in
LTSL and RDALR. This also means that RLCSL can benefit from the high-level feature but
LTSL and RDALR may not.

Figure 4. Classification accuracies (%) of different methods on the Office and Caltech-256 data sets
with CNN feature in which the Y-axis represents the classification accuracy and X-axis represents
different cases.

Table 5. Classification accuracies (%) of multiple source domains vs single target domain on the
Office and Caltech-256 data sets.

Dataset NN PCA GFK TSL RDALR LTSL RLCSL

A,C→D 33.76 40.13 45.86 46.50 35.67 34.39 52.23
A,C→W 31.19 37.97 39.32 33.56 28.47 27.46 42.37
A,D→C 28.50 37.22 39.89 41.67 36.33 21.73 45.41
A,D→W 49.15 55.25 66.78 54.24 66.78 26.78 62.71
A,W→C 27.60 35.62 37.40 42.03 36.60 26.98 45.06
A,W→D 64.33 73.25 81.53 63.06 77.07 41.40 73.24
C,D→A 24.32 34.55 37.27 45.20 39.56 26.30 53.86
C,D→W 34.92 48.14 65.76 50.85 60.34 29.83 59.66
C,W→A 24.43 35.70 39.25 45.20 41.02 30.06 52.40
C,W→D 47.13 66.24 78.98 52.23 73.89 38.22 68.78
D,W→A 29.23 35.80 38.10 34.24 32.99 37.89 38.41
D,W→C 25.47 28.58 30.45 31.26 29.92 33.57 33.57

Average 35.00 44.04 50.05 45.00 46.55 31.22 52.30

4.4. Experiments on the Reuters-21,578 Data Set

For the Reuters-21,578 data set, we can generate six different cross-domain text data
sets orgs→ people (or→ pe), people→ orgs (pe→ or), orgs→ place (or→ pl), place→ orgs (pl
→ or), people→ place (pe→ pl), and place→ people (pl→ pe) by utilizing the three largest top
categories. For the fairness of comparison, we directly adopted the preprocessed version of
Reuters-21,578 provided by Long [49] (http://ise.thss.tsinghua.edu.cn/~mlong/, accessed
on 31 December 2021). Table 6 shows the classification performance of different methods
on the Reuters-21,578 data set. The results in Table 6 show the superiority of RLCSL with
respect to classification performance.

http://ise.thss.tsinghua.edu.cn/~mlong/
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Table 6. Classification accuracies (%) of different methods on the Reuters-21,578 data set.

Dataset NN PCA GFK TSL RDALR LTSL RLCSL

or→pe 72.85 70.53 75.00 72.52 72.85 / 76.15
pe→or 72.03 71.22 75.91 74.54 72.03 / 81.08
or→pl 67.50 64.43 69.80 69.51 67.50 / 73.72
pl→or 61.12 63.29 68.21 65.35 61.12 / 69.98
pe→pl 52.65 58.22 60.63 58.22 52.65 / 64.81
pl→pe 53.39 58.22 59.05 57.66 53.39 / 60.63

Average 63.26 64.32 68.10 66.30 63.25 / 71.06

4.5. Experiments on the MSRC and VOC2007 Data Sets

Following [52], for these two data sets, we constructed MSRC vs. VOC2007 (M→V) by
choosing a total of 1269 images in MSRC as the source domain, and a total of 1530 images
in VOC2007 as the target domain. Besides, we switched the data set with another data
set: VOC2007 vs. MSRC (V→M). All the source and target domain images are uniformly
rescaled to 16× 16 pixels in length, and extract 128-dimensional dense SIFT (DSIFT) features
utilizing the VLFeat open-source package. Then K-means clustering is utilized to obtain a
240-dimensional codebook. As such, the training and test data are constructed to share the
same label set and feature space. The classification results are shown in Table 7 in which
our proposed method obtains the best classification result. Figure 5 gives receiver operating
characteristic (ROC) curve on this data set from which we can see that class 2 and class 4
achieve the best classification performance on cases of M→V and V→M, respectively.
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Figure 5. ROC curves on cases of (a) M→V and (b) V→M.

Table 7. Classification accuracies (%) of different methods on the MSRC and VOC2007 data sets.

Dataset NN PCA GFK TSL RDALR SCA DTSL FSSL TJM RLCSL

M→V 28.63 28.82 28.76 30.92 28.95 32.75 34.71 29.74 32.75 35.36
V→M 48.94 49.09 48.86 47.44 48.94 48.94 53.82 37.93 49.41 50.11

Average 38.78 38.95 38.81 39.18 38.94 40.85 44.27 33.83 41.08 42.73

The training time of different methods is shown in Table 8. The results in Table 8 show
that the proposed method RLCSL obtains the third ranking in training time. The main
reason may be that RLCSL takes a large amount of time to solve the joint low-rank and
sparse optimization problem.
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Table 8. Time cost(s) of different methods on different data sets.

Dataset LTSL GFK RDALR TSL DTSL RLCSL

M→V 413.61 6.95 51.97 459.59 355.84 375.42
A→D 32.27 9.74 7.40 59.60 51.60 10.38
C→W 37.23 10.71 5.37 61.44 62.08 17.80

A→D(CNN) 301.13 290.12 101.23 424.23 436.65 118.37
C→W(CNN) 293.46 302.34 104.37 461.28 472.59 109.18

Average 215.54 123.97 54.06 293.22 275.75 126.23

4.6. Visualization Analysis of Matrix Z

Figure 6 gives the visualization of matrix Z. It is obvious that the learned matrix Z
is sparse and low-rank which means that although we used matrix H to replace matrix
Z in our optimization algorithm, the algorithm finally satisfies constraint Z = H after
algorithm convergence. We eventually obtain the sparse and low-rank reconstruction
coefficient matrix Z that is very useful to align the data from different domains, which
further confirms the motivation of our method from the view of optimization. In addition,
we can see that the block-wise structure in matrix Z is somewhat obscure. The reason
may be that the distribution discrepancy of data from different domains is not completely
eliminated. However, the block-wise structure in matrix Z is very obvious in locations
of many classes. This indicates that the data from different domains but with the same
label can be aligned together and then the distribution discrepancy of different domains
is reduced and representations of QTXs and QTXt are discriminative. In other words,
the latent common subspace, i.e., Q can be used as an intermediate that can not only
reduce the distribution discrepancy but also improve the discriminative ability of new data
representation QTXs and QTXt. From this point, the latent common subspace is suitable
for transfer learning and classifier learning.

(a) W→D (b) D→W

Figure 6. Visualization of matrix Z on two different cases in which the case of W→D is performed on
CNN feature and the case of D→W is performed on SURF feature.
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4.7. Parameter Sensitivity

There are four parameters λ1, λ2, λ3, and λ4 in our objective function. Specifically, λ1
and λ2 are used to balance the importance of the low-rank and sparse constraint terms.
The goal of λ3 is to control the influence of noise and λ4 is used to avoid the problem
of over-fitting. Theoretically, large values of λ1 or λ2 can make the reconstruction coeffi-
cient matrix Z more important in the proposed method. In our method, we always set
λ1 = 1 for obtaining better experimental results. However, Figure 7 shows that both
λ1 and λ4 have slight effects on the classification performance on the case of C → D.
We given different combinations of these two parameters from a reasonable discrete set
{10−4, 10−3, 10−2, 10−1, 101, 102} in Figure 7, which indicates that the classification perfor-
mance of our proposed method is roughly consistent over a wide range of values of these
two parameters. For parameters λ2 and λ3, we can see from Figure 7 that the classification
accuracy of our proposed method is very robust to different settings provided the parame-
ters are set in a feasible range. For dimensionality dim, we can see from Figure 7 that the
proposed method is robust to the value of dim. From Figure 7, we can also find that it is an
easy job to pick up a suitable parameters combination for the proposed method.
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Figure 7. The classification performance of our method vs. different parameters on the case of C → D
with SURF feature.

4.8. Ablation Studies

In order to study the proposed RLCSL deeply, we conducted the ablation studies to
test the indispensability of each component of RLCSL by comparing RLCSL with four
variants of RLCSL. The objective of the first variant RLCSLv1 is as follows

min
Z,P,Q

‖F− XT
s QP‖2

F + λ2‖Z‖2,1 + λ3‖E‖1 + λ4‖P‖2
F (28)

s.t. QTXt = QTXsZ + E, QTQ = I

The goal of RLCSLv1 is to test the effectiveness of the low-rank constraint. The
objective of the second variant RLCSLv2 is as follows

min
Z,P,Q

‖F− XT
s QP‖2

F + λ3‖E‖1 + λ2‖Z‖2
F + λ4‖P‖2

F (29)

s.t. QTXt = QTXsZ + E, QTQ = I

whose goal is to verify the effectiveness of the joint low-rank and sparse constraints. The
objective of the third variant RLCSLv3 is as follows
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min
Z,P,Q

‖F− XT
s QP‖2

F + λ1‖Z‖∗ + λ2‖Z‖2,1 + λ4‖P‖2
F (30)

s.t. QTXt = QTXsZ, QTQ = I

whose goal is to verify the effectiveness of the sparse term (the main goal is to reduce the
negative affect of noisy term). The objective of the fourth variant RLCSLv4 is as follows

min
Z,P,Q

‖F− XT
s QP‖2

F + λ1‖Z‖∗ + λ3‖E‖1 + λ4‖P‖2
F (31)

s.t. QTXt = QTXsZ + E, QTQ = I

whose goal is to test the effectiveness of sparse constraint.
The experimental results are shown in Figure 8. From the results in Figure 8, we can

see that the low-rank constraint is more important than other terms on aligning data from
the different domains (RLCSLv4 is the second-best competitor). The experimental results
also show that the sparse constraint, i.e., `21 sparse constraint, also plays an important
role in improving the classification accuracy (RLCSLv1 is the third competitor). The sparse
noisy term can reduce the effect of noisy term and thus it can improve the classification
accuracy (RLCSLv3 is the fourth competitor). When we removed the joint low-rank and
sparse constraints the classification performance is relatively poor (RLCSLv2 obtains the
lower classification accuracy). Therefore, it is necessary to integrate all components into
RLCSL for ensuring better classification performance.
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Figure 8. Ablation studies of RLCSL.

5. Limitations

The limitations of the proposed method are as follows: (1) the dimension of latent
common subspace needs to be set in advance although the algorithm is robust to the varia-
tion of its value; (2) the mathematical programming formulation is nonconvex. Although
the convergence curve indicates that the proposed optimization algorithm has weak con-
vergence properties, there is no strict theory to guarantee that the convergence behavior is
always satisfied.

6. Conclusions

This paper proposes a novel robust latent common subspace learning method which
utilizes the joint low-rank and sparse constraints to constrain the reconstruction coefficient
matrix for obtaining a transferable and discriminative feature representation. Simultane-
ously, the latent common subspace is used as an intermediate that reduces the semantic gap
between the low-level data representation and the high-level semantics. By integrating the
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classifier learning and latent common subspace learning into a unified framework, we learn
a discriminative classifier parameter. The main difference between the proposed method
and most related methods is shown in Table 9. The encouraging experimental results show
the effectiveness of the proposed method. In the future, we are planning to extend our
method to the semi-supervised transfer learning scenario and apply our proposed method
into medical data analysis [57,58] for computer-aided medical diagnosis [59,60].

Table 9. Comparison between most related works.

Comparison Perspective JDA TCA RDALR LTSL DTSL RLCSL

Data Reconstruction X X X X X

Low-Rank Constraint X X X X

Sparse Constraint X X

Low-Rank and Sparse Constraints X X

Subspace Learning X X X X X X

Convex Optimization X X

Classifier Learning X X
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