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Abstract: Accurate geolocation and tracking of Radio-Frequency Interference (RFI) sources, which
affect wireless and satellite systems such as Global Navigation Satellite Systems (GNSS) and Satellite
Communication (SatCom) systems, are considered to be a significant issue. Several studies connected
to civil and military operations on this issue have been investigated recently. The literature review has
surveyed many algorithm simulations for optimizing geolocation and target-tracking estimation. Al-
though most of these algorithms have their own advantages, they have weaknesses, such as accuracy,
mathematical complexity, difficulties in implementation, and validation in the real environment, etc.
This study has been concerned with investigating the accuracy of geolocation and tracking under high
speed and powerful rotation using extracted data from the Orolia Skydel simulator, which simulates
the space environment involving Low Earth Orbit (LEO) satellites as sensors and Unmanned Aerial
Vehicles (UAV) as RFI emitters. Various scenarios modeled using the Orolia Simulator for quasi-real
dynamic trajectories of LEO satellites have been created. The assumed approaches have been verified
by Cramer—Rao Lower Bound (CRLB) and Posterior CRLB (PCRLB) to determine the increase in
Root Mean Square Error (RMSE) value. The simulation scenarios have been performed using the
Monte Carlo iteration. Eventually, the overall achieved results of the considered approaches using
data acquired from the Orolia Simulator were presented and compared with theoretical simulation.

Keywords: modeling and experimental analysis; Orolia Skydel simulator; accuracy geolocation and
emitter-tracking; time difference of arrival; frequency difference of arrival; cross ambiguity function;
high-degree nonlinear tracking filters

1. Introduction

Radio-Frequency Interference (RFI) is an unwanted signal. It can reduce the reliability
and efficiency of the communication networks in wireless systems [1,2]. This issue has
led to the need for location identification and RFI source tracking. From that, it can
notify the organization responsible for RF intervention, which can be mitigated with the
help of sophisticated techniques. For this reason, researchers and scientists have paid
more attention to finding a suitable technique for precision tracking and localization of
dynamic RFI, as well as creating different scenarios using a Software-Defined Radio (SDR)
system as a quasi-real implementation on proposed algorithms. Even though extensive
studies on geolocation and target-tracking techniques have been carried out based on
various electromagnetic propagation parameters, which use various statistical methods by
MATLAB simulation scenarios, none of the literature covers modeling and experiments
using the very advanced and unique kind simulator called “Orolia Skydel simulator”.
Various experimental work has been implemented for geolocation and emitter-tracking
to emulate navigation and communication satellite signals using other simulators. For
example, ref. [3] created a model and analyzed the performance geolocation technique
based on Satellite Tool Kit (STK) scenarios. In [4], the authors offered two constellations
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based on the GPS positioning output by OEM628 of BDStar Navigation Company. The data
were processed using the signal software-processing platform, and the fusion positioning
was done using opportunity signals (SOPs). In another article, [5], the pirent™ GSS6700
GNSS signal simulator (Spirent Communications plc, Paignton, UK) was paired with an
interference signal generator through a Spirent™ GSS8366 device to construct quasi-real
dynamic trajectories. Signal-power degradation, navigation solution availability, Dilution
Of Precision (DOP), and positioning accuracy were all evaluated as part of the performance
evaluation. Table 1 presents a comparison between the approach STK modeling executed
in [3] and those executed by our approach.

Table 1. Comparison between the modeling and experiment proposed in [3] with our proposed
modelling and experiment.

No Ref. [3] Our Proposed Modelling and Experiment
They h deled i-real tati
<y ﬁ?’e m?he}el diasiieal geostationaty We have modeled quasi-real dynamic trajectories of LEO
1 sateflite with three antennas as sensors satellites as sensors and Unmanned Aerial
to receive the signal strengths from . ] ] ) .
) ) . ) Vehicle (UAV) as an emitter using Orolia Skydel simulator.
stationary Earth station as emitter using STK.
We worked to geolocate and track a dynamic emitter
2 They worked to geolocate the stationary using Cross Ambiguity Function (CAF) and
emitter using the RSS algorithm. High-degree Nonlinear Tracking Filters
based on TDOA /FDOA.

3 They verified the approach performance by
increasing latitudes at varying contour widths.

We verified the approach performance based on
different measurements of hybrid TDOA /FDOA
as well TDOA and FDOA individually.

In this study, the Orolia Skydel simulator is used elegantly to generate In-phase/
Quadrature (I/Q) data files of RFI signals received by LEO satellites. Figure 1 illustrates
the considered model of proposed scenarios.

4
LEO Orbit

e
RFI signal

(@) (b)

Figure 1. Modeling scenario using Orolia LEO Simulator. (a) Orolia’s Skydel simulator. (b) Pro-
posed Scenario.

The simulated scenario is very well adapted for geolocation tracking of maneuver
RFI sources. Many vital projects rely on durable and reliable GNSS signals to deliver
extremely accurate Positioning, Navigation, and Timing (PNT) data in the next generation
of satellite-enabled applications. Orolia GNSS testing and simulation services to assure the
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system’s performance, resiliency, and accuracy in complex GNSS space-based applications,
also generating low earth orbit simulation [6].

Time of Arrival (TOA), Time Difference of Arrival (TDOA), Frequency of Arrival
(FOA), Frequency Difference of Arrival (FDOA), Angle of Arrival (AOA), Received Signal
Strength (RSS), and Power Difference of Arrival (PDOA), etc. are electromagnetic propa-
gation parameters that are used by various approached of geolocation, and tracking [7-9].
The TOA measurement is related to knowing the distance between the source and the
sensor and radio propagation velocity, where the radio propagation velocity is well known
as 2.998 x 108 m/s. The common lack of synchronization between the source and the
receiver is one practical obstacle in TOA measurements. In other meanings, receivers are
frequently unaware of the specific start time of source transmission. Because of the uncer-
tainty surrounding the transmission instant start time, all received TOA measurements
have a common temporal offset, which can contribute to severe localization accuracy [10].
Subtraction of pairwise TOA measurement results in correlated noise in TDOA. The sensors
synchronization is taken into consideration in the TDOA model. In a two-dimensional (2D)
scenario, to achieve better precision for TDOA-based geolocation, at least three sensors are
needed for receiving similar signals that broadcast from the emitter [11]. The FOA model
depends on the carrier frequency, radio propagation velocity, and Doppler shift between
emitter and sensor when both or one of them is moving [12]. The FDOA is a difference
in pairwise FOA measurement caused by the Doppler shift of the received signal due to
differences between sensors and emitter velocities [13].

A signal observation that might be received from a sensor is not enough to compute a
better estimation of the emitter source. In the TDOA method, the emitter might estimate
over many scattered points of a hyperbola curve. This problem requires increasing the
number of sensors or sensing points that mainly target the geolocation measurement of
received signals. From that, more than one hyperbola will produce a precise target location
estimation [14,15]. In addition, combining two or more geolocation measurement models
will achieve the best measurement of electromagnetic propagation parameters and reduce
the sensors or sensing points needed [16-21].

From the literature review, numerous geolocation and target-tracking algorithms
based on electromagnetic propagation parameters have been considered [2,22,23]. In [24],
the authors have studied the accuracy of emitter geolocation using the CAF approach. They
proposed an approach to eliminate mirrored locations in tri-satellite TDOA localization
based on TDOA measurements taken at many times to attain precision. In addition, the
authors in [25] addressed the problem of stationary ground-based location using one
transmitter (emitter) and two airborne mobile receivers. They have explored the effect
of spatially multiplexed Multiple-Input-Multiple-Output (MIMO) signals on the CAF
calculation of TDOA and FDOA, and the consequent effect on geolocation; this method
did not carry out any modeling and experimenting of the scenario before arriving at
the solution.

Moreover, Dexiu Hu et al. [20], proposed an algebraic method using combined TDOA
and FDOA with a differential Doppler rate that increases the moving source geolocation
accuracy. The method proposed by the author relied on the pseudo-linear set of equations
and a two-step weighted least squares (WLS) estimator. In [26], the authors proposed
a Linear Least Squares (LLS) approach. This study analyzed the performance of the
proposed algorithm, which considered four static sensors to geolocate mobile sources using
the LLS method based on the TOA /RSS measurement. The authors of [27] presented a
position-estimation method based on a Deep-Learning (DL) algorithm that works directly
on TDOA-based locating system channel impulse responses. The authors explained the
signal and data possessing in depth and verified the method’s effectiveness in various
real-world scenarios. Although their method corresponds to traditional signal-processing
methods under line-of-sight conditions, it outperforms earlier methods under significant
multi-path propagation.

To estimate the location and tracking of the RF emitter, Kalman filter (KF) and its ex-
pansion based on conventional geolocation measurements has been proposed in numerous
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studies [28-30]. In [31], the Extended Kalman filter (EKF) based on TDOA /FDOA was
proposed to estimate target position and tracking. The main disadvantage of the EKF is
that it relies on pre-estimation to estimate the variance of process and measurement noises,
which may be difficult to accurately track the RFI position when predicting with a signifi-
cant deviation from the actual values (measurement) [32]. In [33], the authors proposed
two algorithms to solve the simultaneous mapping and localization (SLAM) problem. The
first algorithm is an amortized constant-time coordinate descent algorithm for recovering
these state estimates from the information form, and the second is an efficient algorithm for
data association in Sparse Extended Information Filters (SEIFs) that takes logarithmic time,
assuming that an efficient search tree searches for nearby features. The method was put
into practice and compared to the EKF solution. In [34], the authors used EKEF to create a
unified Factor Graph (FG) architecture in which a practical AOA-based position detector
accomplishes the observation process.

Furthermore, the variance of observation errors, which EKF requires, was determined
in real time by using both the AOA measurements and the expected target state. Compared
to the traditional method, such a dynamic estimating strategy has higher performance
robustness, especially when the sensing environment is unstable. Simulations show that
the suggested system achieves lower Root Mean Square Error (RMSE) in many assessment
settings and has a rapid convergence tendency. The Adaptive Extended Kalman Filter
(AEKF) was proposed to reduce error estimation for similar problems [35]. Still, for high
non-linearity, the error may increase because of the rotational speed of the emitter. Multiple
Quadrature information Kalman filters were proposed in [36]; these can work in high non-
linearity with a high-speed mobile sensor. In digital signal-processing, estimation has been
considered an important challenge. For that, numerous studies have been deployed for
estimations, and KF deemed as a highly powerful tool used for a linear dynamical system
to estimate state and deems as a least-squares linear filter that provides an optimal recursive
deployment. In [37], a hybrid localization approach based on the Particle Filter (PF) and
particle swarm optimization algorithm are presented, focusing on the localization tasks
when an a priori environment map is available. In addition, the approach was advocated
for Distributed Bayesian filtering (DBF) in [38], where each node operates a distinct particle
filter, and the collected consensus is sought on the sensor data alone or in conjunction with
intermediate local filter estimates.

However, it is quite challenging to design an optimal filter that functions in a nonlinear
system. In addition, a study showed that the cubature Kalman filter (CKF) estimations
are better when compared with the estimations of the unscented Kalman filter (UKF) [39];
however, its performances are worse compared with the Gauss-Hermite quadrature filter
(GHQF) [40]. Therefore, for better performance, CKFs with random degrees of accuracy
were proposed, and therefore it is stated that the high-degree CKFs could estimate better
accuracy and stability performance such as GHQF but with less computational cost. High-
degree cubature rules are applied to numerical integration and a target-tracking problem to
demonstrate the system effectiveness and better performance computations. The measured
results of target-tracking simulation illustrated that enough accuracy can be obtained
employing fifth-degree CKF rather than EKF, therefore combining the use of third-degree
CKF and PF; the performance is much better than GHQF [41].

The main contributions of this paper are: (i) creating various scenarios using Orolia
Skydel as a space environment involving LEO satellites to receive emitted RFI signals
from UAVs; (ii) applying the assumed scenarios as a quasi-real environment to verify the
approaches of optimizing geolocation measurement and high-degree nonlinear tracking
filters and compare performance with theoretical simulations.

The paper is structured as follows. The architecture of geolocation and target-tracking
using the Orolia Simulator that is considered and presented in Section 2. The mathematical
model is detailed in Section 3. Experimental implementation and actual simulation scenar-
ios are explained in Section 4. Experiment results and performance analysis are illustrated
in Section 5. Finally, the conclusion and suggestions for future works are provided in
Section 6.
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2. Proposed Simulation Environment

The multi-LEO satellites (sensors) produce time delay and a frequency Doppler affect-
ing the received signal from the UAV(emitter), which has led us to propose TDOA/FDOA
measurement using the Orolia Skydel simulator as a quasi-real environment. TDOA /FDOA
measurements can be implemented on a nonlinear tracking filter to track the RFI sources.
Figure 2 shows the general diagram of the proposed model and architecture. In this study,
we considered the fixed Earth-centered Earth-Fixed (ECEF) coordinates [42,43].

Scenario implemented at Orolia Skydel Signal Processing
S, 4
RF Front-End Geolocation Optimizing
N ) N Measurements measurement
) Received signal
Sy ¢ atsensor#1 [ *| i .
’ Geolocation Scenario
) Geoloc{atlon Output
technique
Recorder
g ¥ ™ Received signal . G IRERN TDC:iA
e at sensor # 2 /0 fil an
A Q files FDOA Non-
linear
£ RFI signal Tracking
N | Received signal filtering
—
Emitter (UAV ) at sensor # L

Figure 2. A general diagram of emitter estimation using multi-LEO satellites based on TDOA and
FDOA Measurement.

2.1. Geolocation and Target-Tracking Architecture

In the Orolia Skydel simulator, setting up LEO satellite simulation concerning tracking
UAV is possible, which spuriously generates the RFI source of interference. With the help
of “Orolia”, an advanced software-defined GNSS simulator installed in the LASSENA
laboratory, we can generate the simulation for different instances localization algorithms
are recorded in raw I/Q files [44]. Moreover, the information of transmitter and receiver can
also be downloaded using logging files for each epoch as a reference file, which will be useful
to fix the parameters of UAV and LEO satellites coordinates and velocity, etc. in the source
localization algorithm implemented in MATLAB. Initially, the number of sources of RFI in the
form of UAV and the LEO satellites are set in separate instances by assigning a window to a
Radio 0, 1, 2, etc. To the best of our knowledge, this is the first time, this simulator is used to
simulate and record RFI signal geolocation and emitter-tracking problems.

2.2. Modeling of Emitter, Sensor and Radio Assign

In the beginning, we need to define the radio and select the type of signal, which
could be GNSS Upper L-band, GSSN Lower L-Band, or Interference. After that, starting
with Instance-1, we can specify the trajectory of the dynamic emitter from the Interference
section. In the study, we consider the UAV as an RF emitter. After that, we can specify
the trajectory of the UAV(as a dynamic emitter) from the interference section. Next, we
can specify the reference power level (that we considered —90 dBm). From the transmitter
section, we can select signal and trajectory. We can observe the power level at the receiver
side (LEO satellite) specified at the transmitter side. Additionally, in the transmitter section,
we can ignore propagation loss. In the trajectory, we can choose a fixed position of service
that we can put as a circle shape or import the trajectory of the dynamic emitter as Keyhole
Markup Language (KML) or Comma-Separated Values (CSV) file format with timestamps.

Moreover, the information of transmitter and receiver can also be downloaded using
logging files for each epoch as a reference file, which will be useful to fix the parameters
of UAV and LEO satellites coordinates and velocity etc. From the Settings-Interference-
Transmitter 1, and Signal section, we can select the type of signal we want to transmit. It
could be Continuous-Wave (CW), Chirp, Pulse, or Binary Phase-Shift Keying (BPSK) signal,
see Figure 3.
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[0 Skydel - Untited (Not Swved) - 0 X

Start Am tus  Ready 00:00:00 2020-03-31  00:00:00 18 2099 172800

Interference + Transmitter T

<«————————— Setting > interference > Transmitter 1

General
Type Enabled  Frequency (MHz) Power (dB)  Group Detais

Trajectory
Antenna

Remove. °

BPSK

Figure 3. Selection of interference signal.

As well, the central frequency of the BBSK signal, which was considered in this study
as 1575.42 MHz with 2.046 MHz bandwidth as shown in Figure 4.

Power (dB)

Frequency (MHz)

Group

Transmit Signal

Central Frequency

BPSK r x

Ersbied %)
Tronmmtter fowes *
Sgnal Redative Power [0.00 &8
Use Default Group

o o

Grop Growp 1 -Rado 1RF A
Code Rate 1023 MChipsfs .
- | Code Length 1me -

Figure 4. Creating central frequency of BPSK signal.

From the antenna section, we can import the antenna pattern of the emitter, or we can
select None to avoid interfering with the power of the signal, see Figure 5.



Electronics 2022, 11, 781

7 of 30

Pattern

Antenna

Figure 5. Specifying antenna pattern.

After configuring the transmitter, we need to configure the receiver. To configure
the LEO satellite as a receiver, we can click on the Settings-Vehicle tab and specify the
Keplerian Elements. For example, we can change reference time that will change satellite
position and adjust the best line of sight (LOS) between the LEO satellite and the emitter;
see Figure 6. Regarding antenna pattern, it is the same situation as the transmitter; we
import the antenna pattern or select it None to avoid interfering with the signal’s power.

Keplerian Elements

O, Exth-Octiing Spacecnah Reference Time 2015-11-26T13:42:35Z |~ =

Semi-Major Axis 6782093.08 il Keplerian Elements

Inclination Angle 51.6203 Reference Tme 015-11-6T1401:382 &

Right Ascension 353.9390 S g 1S792000.08 =

Eccentricity 0.00099770 Indeafon Angle | {16203 P
Right Ascensicn 353.9350 deg

Hean Anomaly 2996610 Eccentrioty 0.000957% T

| Argument of Perigee |198.2108 e ——= &5

¥ Argument of Perigee | 1% | deg

Orbxt Preview 1howr

Other settings for the vehicle and for the

i amosphere must be set when using spacecraft
trajectory.

Tel me more...

Figure 6. Screenshot of LEO satellite orbital parameters setup.

We can repeat the same steps in the next instances, and put the first instance as master
and others as slave. From the Settings-Global-Synchronize Simulators section, we can select
the instance if it is master or slave, see Figure 7. Eventually, we can save all changes at each
instance, and click on start at instance-1 to run the scenario configured. All configurations
are saved in the Skydel-SDX/Configurations folder, and the configuration files use the
(sdx) filename. After passing the selected time, we can stop the running simulation and
save the simulation scenario at I/Q files (CSV format) [44].
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. ><«———— Instance-1

st a Resdy

ML - < > <« Instance-2
o ;

0 s e oo ) +————————|nstance-3

Fle 4t Window Help

Figure 7. Three Instances for the full scenario.

3. Mathematical Model of Geolocation and Tracking Scenarios
3.1. Conventional Geolocation Measurements

The signal transmitted from a high-speed dynamic emitter received at multi-sensors
has time delay and frequency Doppler. Therefore, we can compute TDOA and FDOA
between the emitter and the ith sensor [20].

Let the emitter position at time index k be,

uy = ug + Ckay , @

where uf = [x{, y{, z]" and 1 = [x{, ¢, Z]]’ are initial location vector and velocity vector of
emitter, respectively,  is time between successive measurements, (-)° represents the true
value without noise, and [-]’ denotes the matrix transpose.

3.1.1. TDOA
The TOA measurement at ith sensor is given by
(17
T = & @)
&= —s?), {i=12...,M}
where || - || represents the 2-norm, and ¢ is the propagation speed ~ 2.998 x 10° m/s, d7,

is range between emitter and ith sensors in (m), as well s9 = [x?,y?,27]" is initial location
vector of ith sensor.

The time difference of signal arrival (TDOA) between ith sensors when we use sensor
#1 as reference is calculated as

Tilk = Ti(,)k_Tf,k-l_ni,l,k’ {l =2,3,...,.M; k= 1,2,...,K}, (3)
where 1,1 ; ~ N(0,02). The vector form of TDOA can be represented as
Tk = Tz +ny, (4)

where
/
Tk = [Tz,l,k, W1k 'TM,l,k] ,

!
T, = [Tg,l,k’ Ty TX/I,],k] ’ ®)

/
ng = [”2,1,10 n31kr " nM,l,k] ’
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Covariance matrix (R, ) of TDOA noise is determined as
2 2
0' e 0'
Ry =E[mny] = | T2 |, ©)
(M—-1)(K+1)

where E[-] represents the statistical expectation; and ¢2 is the variance of TDOA measure-

ment noise.
1 1 1

~ Bs /BNT /S/N’

where B is signal bandwidth, By is noise bandwidth, T is integration time, and S/ N is
interference power [20].

@)

Or

3.1.2. FDOA
The FOA measurement at the ith sensors is given by

o _ )Gy =12 M) ®
S 7

where f, is assumed carrier frequency received by the sensor in (Hz), d';’,k is the range rate,
also called the Doppler or radial velocity between emitter, and ith sensors in (m/s), and
89 = [x9, 95, z;’]’ is initial velocity vector of ith sensor (m/s).

The FDOA between ith sensors when use sensor #1 as reference is calculated as

fi,l,k :fl-(zk*ff,k%*fli’l’k, {l =23 ...,M; k= 1,2, ...,K}, (9)
where 711, ~ N(0, O'J%). The vector form of FDOA can be represented as

fe=fi+n, (10)

where

fe= 1210 o1 fmar)
fZ = [fg,l,k’f??,l,k’ o 'f](\)/I,l,k]/ ’ (11)

. . . . /
ng = [7’12,1,k/ N3 1k - '”M,l,k] ’

Covariance matrix (Rj, ) of FDOA noise is determined as

Ry =E[ne ng]= | L1 |, (12)

(M—1)(K+1)

where O'J% is the variance of FDOA measurement noise [20].

3 1 1
of = V3 (13)
T /BNT /S/N
3.1.3. Hybrid TDOA/FDOA
The TDOA and FDOA measurements can be arranged in one vector h; 1 (xi) as
Tk Tik — Tk
hi (x) = = : (14)

fr fik— fix
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Hy (%) = [ho1 (%), b1 (), - - ()] (15)
The corresponding noise vector is
. /
fe=[n 1), (16)

which assumes zero-mean Gaussian with covariance matrix Ry of hybrid (TDOA /FDOA) [45].

E[fy] =0, 17)
E[fify] = Ry,
where
o2 o2
Ry (z;:\)/(_m?)
Re=| " = . o | (18)
Ry, Of 0¥
——
(M—1)(K+1)

3.2. State Tracking Estimation

The state estimation is used as information in the conventional Kalman filter. The
nonlinear system process x;,1 and observation process is specified by

X = f(Xe_1) + Vi1, (19)

vk = Hi(xx) + g, (20)

where f(+) is state transition matrix; Hy(x) is geolocation measurement matrix; vy_1 is
system noise and fi; geolocation measurement noise, which are statistically independent
Gaussian processes of zero mean and known covariance matrices (Q_1, Ry) [9,35].

From (19), the state-space model for a constant velocity of target-tracking can be
defined as

r sin(wy_1At) cos(wg_1At)—1 ]
1 Wi—1 0 Wi—1 0
0 cos(wi_1At) 0 —sin(wr_1At) 0
xr= |0 717C°iflikflm) 1 7Sin(5::llm) 0| (xk—1) + vi_1, (21)
0 sin(wg_1At) 0 cos(wi_1At) 0
10 0 0 0 1]
and system covariance matrix is
E[Vk—l] = 0,
AP AR
sz 2 0 o0 0
At
/ 5 At A03 02 0 22)
Evi v J=Q1=|0 0 £F & 0 ,
0 A% Af 0
0 0 0 0 175x107%At

where x; = [uy, i1y, wy]’ is the target state that consists of the three-dimensional (3D) position
vector (uy), velocity vector (i), and rotation rates (wy) at time instant t;; At is the sampling
interval [46].
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3.3. Geolocation and Target-Tracking Techniques
3.3.1. Cross Ambiguity Function (CAF) Approach

CAF combines TDOA and FDOA to achieve more accuracy and reduce the require-
ments for geolocation and mapping measurements. The measurements of TDOA and
FDOA are used for cross-correlation equations, as presented in (23). CAF is applied in
order to compute the peaks that are assumed to be the sources of the emitter using the
CAF function. Then, the evaluation will be performed to do selection of the most accurate
position, such as the higher peak, as a precise interference source.

T
CAF(T, f) = /O sigr (P)sigs (t — T)e 2 tdt (23)
where sig; and sigp are continuous-time signals; ”+” means complex conjugate; T is the
integration period in seconds; T is the time delay in seconds, and f is the frequency offset in
Hertz. When the RFI emitter sends its signal towards the sensors, it reaches each sensor at a
different time and with shifted frequency (due to their motion). The signals are captured for
the selected period T. Binary-phase-shift-keying (BPSK) signals takes two-phase reversals
such as 0° and 180° in this model. This is widely used in satellite communications.
A sinusoidal carrier wave is modulated by binary digits “1” and “0”, so the data signal shifts
the phase of the carrier waveform is either 0° or 180°. From the trigonometric relationships,

{sin(x + ) = —sin(x),

(24)
cos(x + 1) = — cos(x),

There are two possible states in a BPSK modulation, where the carrier is multiplied by
£1. Therefore, general analytic expression of BPSK signal can be given as,

OStSTsymz

25
i=1,2 @)

sigi(t) = Acos [27fct + @;(t)] {

where A is the amplitude, f is the carrier frequency, ¢;(t) is the data symbol period, which
takes on the values of “0” or ”7t”, and Tsym is the data symbol period that equal (1/ Rsym).
Rsym is a symbol rate for the generated BPSK signals.

By substituting (24) in (25), it can achieve two waveforms transmitted in a BPSK of
continuous-time or analog signals

sig1(f) = Acos(2mfct), (26)
sigo(t) = —Acos(27mtfet),
The discrete time is represented as
sig1(n) = Acos[2rf.(nTs)], 27)
sigo(n) = —Acos [27rf(nTs)],

Practically, (27) must be in discrete form to be easy for digital signal analysis and
computation. For that, sampling frequency (fs) must change to sample duration Ty = 1/ f;,

Therefore let
t=nTs, 28
f=5E, *

where fP is the digital FDOA, N is the number of samples for each signal that equal le
From that, we can produce the discrete CAF.
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N-1 T . fDVl
CAF(‘L’,fD) = Z sig1[n] sigs [n — ?]e_JZHT, (29)
n=0 s

By substituting (5) and (11) in (29), as well as letting 1 equal the first sample of the
receiving signals and N = f,; T, the CAF surface can modify as [47]

no+fsT—1 T —'27Tﬁ—n[f (nTo)—f (nT)]
CAF(x,y) =}, sigl[n]sigﬁ[n—Round(T)]e] fr VeI (30)

n=ngp S

Because the term {%S} is in the digital domain and corresponds to an offset in the
sample index, it must be rounded to the nearest integer. That means fractional offsets are
not permitted. Computing the CAF surface in the xy domain is dependent on the number
of snapshots taken.

3.3.2. Gauss—Hermite Quadrature Filter (GHQF) Approach

Different versions of derivative-free filters were derived to employ EKF, Unscented
Kalman Filter (UKF), and are generally called Sigma Point Kalman Filter (SPKFs), including
Central Difference Kalman Filter (CDKF), Divided Difference Filter (DDF), and Particle
Filters as well in the literature [41]. The Cubature Information Filter (CIF) was used in [36]
to solve the pedestrian integrated navigation problem in a foot-mounted sensor fusion
design. The Unscented Information Filter (UIF) was used for target-tracking in [48]. In [36],
limitations of variant versions of 3rd- and 5th-degree CKF/CIF were observed in simulation
with high initialization error when the superiority of the Gauss—Hermite and the 7th-degree
CKF/CIF have been demonstrated and then justified. Based on that, an important question
arises: how can one adapt the best cubature rule degree to the state estimation problem
parameters (initialization, non-linearity, state dimension) in order to achieve the best
estimate with less computational complexity. For that, GHQF 3rd and 5th degrees were
considered and verified their performance.

Referring to the various derivations of multiple Gaussian-point filters, and through the
following state-of-art of authors in [36], we can conclude a uniform algorithm of different
square Kalman filters. The algorithm achieved will be a difference of others in how the
points are, and the weights given in (31) are calculated [41]. The Gauss—Hermite rule can
be created using a Gaussian weighted integral [49,50].

N
/ FON (6% Z)dx ~ Y wi(x+ VEE) (31)
n i=1

where /X is the Cholesky decomposition of ¥ and satisfies the relation ¥ = (\/f)(\/f) "
& is the quadrature point, and (-)’ denotes the matrix transposition. Using the algorithm of
higher-degree filtering, we can use square conversions, cubes, and convert various sigma
points to create points and weights. The numerical integration methods of the quadrature
integral given in (31) are suitable when the measurement noises with covariance matrices
Qi_1 and Ry, of process state and localization, respectively. The considered algorithm
introduces three steps of the Gauss—Hermite quadrature filtering.

1. First step: Initialization
In the first step,
(i) Initialize the mean (X;_;) and covariance (Py_;;_1) of the random variable
X(O) S (éir Wz) with 520|0' and PO\O'
(ii) Compute the quadrature points by

& =2, (32)
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where ¢; is the ith eigenvalue of J that is supposed to be a symmetric tridiagonal
matrix with zero diagonal elements given by

Jiiv1 =Vi/2=0, (33)

(iii) Calculate the respective weights W; of the quadrature points (¢;), where W; is
equal to the square of the first element of the ith normalized eigenvector of J.

Second step: Time update
In the second step, it is necessary to evaluate and estimate state

Xi,uk,l = /P18 + R 1t (34)
() _ g/
Xk|k,] - f(xkfl‘kfl’ uk—l/k - 1) ’ (35)
" wix ()
Xilk—1 = ZW]Xk\k—l ’ (36)
j=1
i () % j A
Ppp1= Z{W (Xk‘k,l - Xk\k—l) X (Xk‘k,l - xk|k—1) + Qi1 (37)
j:
where {X;{,u 1 }]’”:1 is the quadrature points; {XZ‘(Ql}}”:l is the propagated quadrature

points; Xy is the predicted state mean; and Py ;_, is the predicted error covariance.
Third step: Measurement update
In the third step, it is necessary to evaluate and estimate measurement

dek_l = \/Prpe—18 + X1, (38)
j _ j
Y, =h0G, p m k), (39)
iy
Vijk-1 = ZW]Yk\kq , (40)
=1
" i (i j '
Pyykik—1= 2“’] (Yk|k71 - Yklkfl) X (Yk|k71 - Yk|k71> + Ry, (41)
]:
i (X j '
Pay k-1 = Z%W] (Xk|k—l - xk\k—l) x (Yk|k—1 - f’k\k—1> ’ (42)
]:
_ -1
Wy = PXYrk|k*1Pyy,k\k—1 ’ (43)
Xk = Xifk—1 + Wi (Yie — Tipe—1) (44)
Pije = Pr—1 — Wiy Wy, (45)

where {X;(‘ k_1)j=1 is the new quadrature points; {Y{{‘ k_1)7%1 is the new propagated
quadrature points; §;,_; is the predicted measurement; Pyy ;1 is the innovation
covariance matrix; P,y 11 is the cross-covariance matrix; Wy is the Kalman gain; X
is the updated state; and Py is the corresponding error covariance.

Eventually, this can obtain the posterior density; therefore, a nonlinear Kalman filter
estimates the hidden state using a Gaussian distribution of probability density functions.

P(xk | yix) = N (R Pri) (46)

where y1.; is the set of measurements y1.x = [y1,y2, - - - Yk]-
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In this work, the visibility and availability of multiple LEO satellite constellations
are assumed to be sequential, ensuring a minimum of one LEO satellite signal availability.
A distributed sequential high-degree nonlinear filtering algorithm was developed and
compared in the simulation with a distributed sequential filter such CKF 3rd degree,
CIF 3rd degree, CIF-V1 5th degree, CIF-V2 5th degree, CIF-V3 5th degree, and CIF-MY
SOVSKKH 7th degree.

3.4. Algorithm Performance Evaluation

To know the performance of the emitter geolocation algorithm, Cramer—Rao lower
bound (CRLB) is the best validator. CRLB is the inverse of the Fisher Information Matrix
(FIM) [51]. In addition, an unbiased estimator performance for the emitter position and
velocity is the Posterior CRLB (PCRLB). The PCRLB was employed to verify the algorithm
performance of optimizing geolocation and tracking estimation by determining the increase
in RMSE. The deriving of PCRLB and algorithm performance of nonlinear measurements
is presented in Appendix A [52]. RMSE of position, velocity, and rotation rate for target-
tracking are defined as [53].

RMSE}™ = /4 £, luf — |2,

RMSE} = \/ XN, [l — i’ |2, 47)

RMSE[* — \/N N (@l —w?")?,

where (u}’j, iy, wg) and (uzn, ilzn, wzn) are the true and estimated target positions, velocities,
and rotation rate at the N runs of the Monte Carlo iterative [54,55].

The metrics have been used to compare the performance of all proposed algorithms.
For a fair comparison, 100 runs of independent Monte Carlo have been made. The perfor-
mance is verified by the RMSE of the position, velocity, and rotation rate defined in (47). In
the considered scenarios, the initial estimate Xg|y was created randomly from the Gaussian
distribution N/ (X010, Pojo) in each run.

4. Modeling Setup and Realistic Experimental of Simulation Scenarios

This section introduces measurement results to analyze and demonstrate the accuracy
of geolocation and tracking for RFI emitter using extracted data from the Orolia Skydel
Simulator. Figure 8 illustrates the experimental setup used in this study.

Instance-1 Raw I & Q files %
II-

Instance-3

L0 gs

Figure 8. The entire setup for the experiment.
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4.1. Modeling Scenario

lites

Realistic simulation scenarios using the Orolia Simulator considered three LEO satel-
to estimate and track a UAV flying in a circle at high speed and powerful rotation.

The UAV emits an RFI signal on the central frequency 1575.42 MHz, corresponding to
the three GPS receivers onboard the three LEO satellites. The experiment has considered
a binary phase-shift keying (BPSK) modulation scheme. Three instants are created and
summarized as

Instance-1: Simulate UAV trajectory, generate RFI signal (common for three scenarios),
and create earth-orbiting spacecraft (setup-LEO satellite # 1)

1.  Simulation of UAV Circular Trajectory.

2. Create new radio assign # 0.

3. Vehicle- Keplerian orbital elements setup.

4.  Save it as Master into the named file (sdx format).

Instance-2: Creating earth-orbiting spacecraft (setup LEO satellite # 2).

1.  Create a new radio and assign # 1.
2. Vehicle-Keplerian orbital elements setup.

(a) Change the reference time.
(b) Other Ephemeris Elements.

3. Save it as Slave into the named file (sdx format).
Instance-3: Creating earth-orbiting spacecraft (setup-LEO satellite # 3).
*  Repeating the same steps of the Instance-2.

Save and Record I/Q files (CSV format), as well export RAW logging files for reference.
Figure 9 illustrates snapshots from the three Instances.

1/Q files will be used as input information at the realistic scenarios of geolocation

and tracking approaches. Useful quasi-real data extracted from the Orolia Simulator is

presented in Appendix B.
O Circular Traject: x
Latitude 45.00000000* |5 Radus | 1000.000 m = | Orign Angle: | 0.00000000* |5
Longitude -73.00000000* | Speed | 30.000 mfs
Attude (Bipsod) | 1000m : Mobon  Clodkevse (CW)
Use Crasshar Postion ] Search

<

i
i

(@)

Figure 9. Cont.
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Figure 9. Three instances created by the Orolia Simulator. (a) Instance-1. (b) Instance-2. (c) Instance-3.

4.2. RFI Emitter Geolocation Using CAF

This section covers the accurate RFI emitter geolocation scenario using the CAF
approach based on extracted data from the Orolia Skydel Simulator. In this scenario, we
have considered two LEO satellites as sensors that receive emitted RFI signals from the
motionless UAV as an emitter in this approach. The two sensors (s; and s;) and emitter
uy are located at the coordinate positions shown in the grid. The symbols d; and d; are
the relative position vectors between each of the sensors and the emitter, while $;, $; and
1 are the respective velocity vectors. dm is the required resolution to achieve the best
CAF-Map image. In this derivation, the emitter is considered stationary, so there is no
time-variant (k), and the emitter’s velocity equals zero. Figure 10 illustrates the geometry
of the geolocation scenario.
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Figure 10. Example of geolocation geometry.

For your information, this figure represents one instantaneous snapshot (Nus,qps)

of the system geometry. Since the sensors are moving at their respective velocities, the
geometry changes with each passing instant of time. That is why the TDOAs and FDOAs in
a system are time-varying in nature. Therefore, CAF can be computed based on the TDOA
and FDOA measurements. Consequently, it can assume the number of snapshots within a
fixed gap in the considered scenario [56]. The steps of emitter geolocation using CAF are
detailed as

i
ii.

ii.

iv.

V.

Input parameters: f; fs; Rsym; dm; N UMsnaps; S /N; and create XY grid

Snapshots Loop for break up the signals into snapshots.

for i=1,2,---, Numgygs do,

Import I/Q files for UAV and LEO satellites trajectory, as well the delay time and
Doppler shift of receiving signal.

Calculation: Calculating a CAF surface based upon input signals.

e  Calculating relative position vectors for each sensor and the current map location,
¢  Start going through each map location in XY grid by creating a loop for XY index
forii =1, 2, -, length (indexX) do,
forjj=1,2,---,length(indexY) do,
1. Calculate relative position vectors for each sensor and the current map location,
2. Calculate the TOA and FOA between emitter and sensors via (2) and (8),
3. Compute TDOA and FDOA from the relative position vectors via (4) and (10),
4. Compute the CAF value for the current MAP position via (29),
end loop jj
end loop ii
e  Saving CAF mapping result of current snapshot.
end i, end Snapshots Loop.
Output result: Save file of CAF mapping; and plotting CAF result with the peak point.

4.3. RFI Emitter-Tracking Using High-Degree Nonlinear Filters

This section covers the scenario of accurate RFI emitter-tracking using the high-degree

nonlinear tracking filters approach based on extracted data from the Orolia Skydel Simu-
lator. In this scenario, three LEO satellites are considered to receive RFI emitted a signal
from a UAV under high speed and powerful rotation. As mentioned in the previous
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section, the UAV moves circularly at the initial equal position (1000, 1000) with an alti-
tude of 1000 m and an absolute speed of 100 m/s. The velocity has adjusted vertically
to the line from the circle center to the origin position. In addition, the initial position of
each LEO satellite is s; = (798.50,4502.10,5008.70) km, s, = (1236.50, —4547.90,4876.07) km,
s3 = (1668.80, —4572.70,4721.00) km, and their velocity is v; = (7007.70, —993.50,2020.60) m/s,
vy = (6926.40, —678.30, —2399.70) m /s, v3 = (6813.10, —360.00, —2767.90) m/s. The initial es-
timate Xgo values with different uncertainty level values were introduced gradually
from the Gaussian distribution N (X0j0, Pojp) in which the true initial value xgo is
Xolo = (1000 m, 100 m/s, 1000 m, 0 m/s, —3 deg/s)’ and Pyo being the initial covariance:
Py = diag(100 m?,10 m?/s?, 100 m?,10 m?/s?,100 mrad®/s?).

The steps of emitter-tracking using GHQF are detailed as
i.  Input parameters: TDOA and FDOA measurements based on data from the Orolia

simulator; Q) _1; initial position and velocity for sensors and RFI emitter; number of

Monte Carlo runs (N); scan times (K); and number of quadrature points (m).

(a) First step:
1. Initialization — X9, and Py)g

fori=1,2,--- ,mdo,

2. Calculating the quadrature points via (31),

3. Calculating first element of the respective weights,
end loop i,

ii.  Start tracking: Time update and Measurement update.
forn=1,2,---,N do,
fork=1,2,---,Kdo,
(b) Second step:
forj=1,2,---,mdo,
1. Computing of evaluate state via (33) and (34),

2. Computing of estimate state via (35) and (36),
end loop j,

(c) Third step: update.
forj=1,2,---,mdo,
1. Computing of evaluate state via (37) and (38),

2. Computing of estimate state via (39) to (44),
end loop j,

end loop k,
end loop 1,
iii. Evaluation: Evaluate the posterior density via (45).
iv.  Output result: The accurate estimates of the emitter position and velocity.

5. Experimental Results
5.1. RFI Emitter Geolocation Scenario

In this scenario, the CAF method was applied to achieve peak of RFI emitter estimation
and cross-correlation of TDOA and FDOA measurements based on extracted data from
the Orolia Simulator. Figure 11 is illustrated the RMSEs of the position for the RFI emitter
using measurements of TDOA and FDOA individually and hybrid, as well as, Figure 12 is
illustrated the peak CAF and cross-correlation of TDOA and FDOA, which denoted the
estimation position of the RFI emitter.
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5.2. RFI Emitter-Tracking Scenario

In this scenario, the high-degree nonlinear tracking filters were applied to estimate
the position, velocity, and turn rate of RFI emitter based on extracted data from the Orolia
Simulator. Figure 13 shows the emitter-tracking using nonlinear filtering, where Figure 14
presents the zoom of the trajectory and filter tracking. Figures 15-17 show the RMSEs of
the position, velocity, and turn rate for the RFI emitter using the proposed filters.

. Important notes

It is important to mention that the RFI target-tracking problem in this work is dif-
ferent from other standard problems known in the literature because of the nature of the
measurement. TDOA /FDOA measurement is highly nonlinear and different in range and
bearing, and is very well analyzed and understood from the RADAR community. Indeed,
as nonlinear degree becomes different, observability degree and analysis become different.
It is traditionally important to develop particle-filtering methods for target-tracking prob-
lems; however, in this paper, we have restricted our analysis to nonlinear derivative-free
algorithms such as CKF GHKEF of different degrees, as these algorithms present more
advantages compared to particle filters and sequential particle filters when speaking about
real-time implementation feasibility.

5.3. Discussion and Performance Analysis

From Figure 11, it can be noted that using TDOA to geolocate the UAV as an RFI
emitter is problematic since the TDOA is based on the difference in arrival time. In contrast,
FDOA estimation is based on frequency Doppler contrast. In this way;, it is possible to
observe how the LEO satellite high-accelerated linear velocity affects the rate of FDOA
calculations when using FDOA alone or in combination with TDOA /FDOA, which is
crucial for identifying and following the UAV. As a result, the RMSE convergence speed
when using FDOA individually, or a combination of TDOA /FDOA is faster than when
using only TDOA in identical situations.

0.1 I l I I
. CRLB of TDOA
0.09 —#CRLB of FDOA |
|\ CRLE of TDOA/FDOA
0.08 -\ _
0.07 | _
__006F | _
‘é l".‘ ‘II
w 2 -
o .‘.‘ -
0041 1 ™ 7
003F | [ 7
| T e
0.021- — 7
~— A o 1
" S N — I — —|
0 | I I I I
0 10 20 40 B )

30
time,k (s)
Figure 11. RMSE for TDOA, FDOA, and TDOA /FDOA.

Figure 12 shows the particulars of the peak and cross-correlation of TDOA and FDOA
in the CAF-Map. The distance deviation, in this case, was only 650 m, and there were no
issues with left-right ambiguity. The CAF-resolution maps were set to 500 m, so the results
were extremely encouraging. The implications of slight adjustments in the geometry of the
sensing platforms were demonstrated in this scenario.
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Figure 12. Snapshot of CAF peak and cross-correlation for RFI emitter location estimation. (a) CAF
peak of RFI emitter estimation. (b) Cross-correlation of TDOA and FDOA.

From Figures 13-15, it can be noted that the robust UAV (as an RFI emitter) tracking
occurred when applying high-degree nonlinear tracking filtering. From Figure 14, we can
note a high diversion of 3rd-degree CKF tracking because of the sensitivity of CKF.

From Figures 16-19 the RMSE convergence speed when using FDOA individually
or a combination of TDOA/FDOA is faster than when using only TDOA in identical
situations. As a result, we can note changes of a high-degree nonlinear filtering tracking
based on TDOA /FDOA, where the 3rd-degree CKF displays much larger errors than the
3rd-degree GHQF or 5th-degree GHQF 3rd-degree GHQF maintains a good performance,
but it is less accurate than the 5th-degree GHQF, which has the best performance and an
indistinguishable accuracy. In Figures 17b and 18c, we can note the evidence that CKF is
very sensitive to initialization values compared to GHQF. The GHQF is more accurate and
has faster convergence to the real state. CKF requires more time to converge and propagate
higher error during the first 5 s. Some solutions exist using adaptive forms of CKF or
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what we call stochastic CKF sampling, in order to perform better initialization robustness.
However, that is another problem to solve and will be considered in future works.

0 True Trajectory
37 Degree CKF
gy 3 Degree GHQF
—g— 5 Degres GHQF e,

-20 0 20 40 60 8 100 120 140 160 180

VX(m)

Figure 13. Experimental RFI emitter-tracking based on TDOA /FDOA measurements: Results of CKF
3rd degree, GHQF 3rd degree, and GHQF 5th degree compared with the true trajectory.

True Trajectory
34 Degree CKF
e 3" Degree GHQF
260 - | —g— 5% Degree GHQF

UAV trajectory

250 [ CKF tracking GHQF tracking

Y(m)

230 -

\

L 1

20 A5 0 5 0 5
X(m)

Figure 14. Zoom-in of Figure 13—From the result, one can note that high-nonlinearity filtering of
5th-degree GHQF and 3rd-degree GHQF are more reliable tracking compared to 3rd-degree CKF.
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Figure 15. Experimental RFI emitter-tracking based on TDOA /FDOA measurements: Results of CKF,
5th degree HCKF-V1, 5th degree HCKF-V2, 5th degree HCKF-V3, 7th degree HCKF-GENZ, and
GHKF 3rd degree compared with the true trajectory.
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Figure 16. RMSE for GHQF approach based on TDOA: The figure concludes the performance results
of GHQF 5th compared to GHQF 3rd, and CKF 3rd based on TDOA produced a high divergence of
RMSE and difficulty in tracking the UAV as RFI emitter when using TDOA measurement. (a) RMSE
of position. (b) RMSE of velocity. (¢) RMSE of rotation.
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Figure 17. RMSE of GHQF approach based on FDOA: The performance result of GHQF 3rd-degree
and 5th-degree approach compared to the CKF 3rd degree based on FDOA is better than the approach
based on TDOA. (a) RMSE of position. (b) RMSE of velocity. (c) RMSE of rotation.
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Figure 18. RMSE of GHQF approach based on TDOA /FDOA: In this figure, the lower error bound
was achieved by GHQF 3rd and GHQF 5th. It appears the RMSE convergence speed is perfect when
using GHQF 5th degree based on hybrid TDOA /FDOA compared to conventional filters. (a) RMSE
of position. (b) RMSE of velocity. (c) RMSE of rotation.
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Figure 19. RMSE of GHIF 5th- and 3rd-degree approach based on TDOA /FDOA: In this figure, the
lower error bound was achieved by GHQF 5th. It appears the RMSE convergence speed is perfect
when using GHQF 5th degree based on hybrid TDOA /FDOA compared to conventional filters.

Higher degrees of CKF and higher degrees of GHKF were implemented and it is shown
that GHKF 5th degree presented the best results in the three state estimation problems even
with loss of observability of the third state. Table 2 presented the performance validation
for the proposed approach implemented by extracted data from the Orolia Simulator and
compared it to the theoretical simulation. Table 3 presents quadrature points and average
execution time for 100 runs of the Monte Carlo iteration at the experimental task and
theoretical simulation of the proposed filters. The main configurations of the computer
used in this process are listed as the following: Intel (R) Core (TM) i7-6500 CPU @ 2.59 GHz;
8.00 GB RAM. According to the experimental task and theoretical simulation, the execution
time of the filters is approximately proportional to the quadrature points.

Table 2. Average RMSE for a position (Pos.), velocity (Vel.), and rotation rate (w) implemented by

experimental and theoretical simulation.

RMSEs of Algorithm
Validation with the
Theoretical Simulation

RMSEs of Algorithm
Validation with the
Experimental Task

Pos. (m) Vel. m/s) w (deg/s) Pos.(m) Vel.(m/s) w (deg/s)

3rd Deg CKF 72.2575 43.8975 5.7510 69.1524 40.8675 42712
3rd Deg GHQF  60.8740 38.8890 5.2535 58.9539 36.9493 4.2130
5th Deg GHQF  60.0550 38.2520 5.1500 58.6646 36.5513 4.0128

It is clear and easy to note that the GHQF approach based on Orolia modeling and
TDOA /FDOA measurements for tracking an RFI emitter at high speed and a powerful
rotation has achieved perfect tracking compared to conventional filters. It is crucial to
compare the performance of the modeling and proposed approaches with the latest and
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recently developed methods [3]. For that, we have created various scenarios for muti-LEO
satellites and a UAV as emitter using the Orolia Skydel simulator and implemented at CAF
and GHKF 3rd and 5th degrees based on TDOA /FDOA. In our approach, the results have
been presented in terms of position, speed, and rotational force (Omega). Although [3]
created their scenario for one Geosynchronous Equatorial Orbit (GEO) satellite with three
antennas and stationary Earth station as emitter using STK, they implemented their scenario
to localize the emitter position employing the RSS method.

Table 3. Comparative of quadrature points and execution time during implementation of the experi-
mental task and theoretical simulations.

Experimental Task Theoretical Simulation

Quadrature  Execution Time Quadrature Execution Time

Points (ms) Points (ms)

3rd Deg CKF 10 0.95 10 0.8
3rd Deg GHQF 243 17.2 243 16.1
5th Deg GHQF 3125 209.0 3125 206.0

6. Conclusions and Future Works

In this paper, we have investigated the accuracy of geolocation and tracking for RFI
emitters at high speed and powerful rotation using extracted data from the Orolia Skydel
simulator as a quasi-real environment. Employing the Orolia Skydel simulator, various
scenarios for quasi-real dynamic trajectories of LEO satellites as sensors and a UAV as an
RFI emitter have been constructed. The CAF and GHQF approaches were applied based
on TDOA and FDOA measurements and data acquired from Orolia to geolocate and track
a UAV at high speed and strong rotation circumstances. CRLB and PCRLB have verified
the proposed approaches to determine the increase in RMSE using Monte Carlo iteration.
Finally, it has been concluded that the proposed approaches can work perfectly with the
extracted data from quasi-real environments. In future work, we propose to implement
more experiments for complex algorithms such as considering the problem of initialization
of CKEF filter tracking by using stochastic CKF sampling, and considering an error estimated
for position and velocity of RFI emitters achieved by the He,/GHQF filtering with different
values of 7y (performance bound) and we will work to improve emitter-tracking estimation
with developed filtering in circumstances of sensor position uncertainty.
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Appendix A

The covariance matrix of X; has a lower bound expressed as [9,57].
A ~ ~ _
Cr = E{ (X — %) (R — %)} =T L, (A)
]k_1 is PCRLB. It is inverse of Fisher Information Matrix (FIM) that can obtain by

Tisr = (Qu+ 6T ) 7+ E{ (hir) Re(hyyr) (A2)

where

B1 = [V it (41)], (A3)

The Jacobian of hy,q(xx;1) and f; are the dynamics, and observation Jacobian
matrices, respectively.

Jip1 =DP, -DI'(Jy+D{) D (k>0) (A4)

where

D;! = E[(Vxlog p(Xi1 %)) (Vg 1og P (xir1/x0))'] [x=true x, (A5)
Dllcz = E[(kalog P(xkﬂ IXk)) (VXkJrllOg P(xk+1 |xk))/] |xk:true Xk, X1 =true xp 1 — (Dil)/ (A6)

D1 = E[(Vxy 10g P (%1 %)) (Vi 108 P (6 [%6)) Tl =true .y

(A7)
+ E[(kaﬂ log P(Yk+1 [Xk11)) (ka+1log P(Yk+1 |xk+1))/] |Xk+1:truex/c+1

where D{!, D{?k , and Dﬁl are apparently all estimated at the true value of x; and xj 1.
The probability density function (PDF) is referred to as the score function. From that, the
iterative computation the initial FIM J, Jacobian of J, as

Jo =E[(Vxlog p(x0)) (Vx,log p(x0))'] lxy=true x, (A8)

Appendix B

Figure Al illustrates the log files of extracted data from Orolia, which we used it in
the proposed approaches by MATLAB simulation scenarios.
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Figure A1. Log files generated by Orolia used for geolocation and tracking measurements. (a) An-

tenna.CSV. (b) Transmitter.CSV (UAV). (c) Receiver.CSV (LEO satellite).
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