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Abstract: Safety is one concern that hinders the acceptance of ridesharing in the general public.
Several studies have been conducted on the trust issue in recent years to relieve this concern. The
introduction of trust in ridesharing systems provides a pragmatic approach to solving this problem.
In this study, we will develop a trust-aware ridesharing recommender system decision model to
generate recommendations for drivers and passengers. The requirements of trust for both sides,
drivers and passengers, are taken into consideration in the decision model proposed in this paper.
The decision model considers the factors in typical ridesharing systems, including vehicle capacities,
timing, location and trust requirements, etc. The decision model aims to determine the shared rides
that minimize cost while respecting the trust and relevant constraints. As the decision problem
is a nonlinear integer programming problem, we combine a self-adaptive neighborhood search
with Differential Evolution to develop an algorithm to solve it. To assess the effectiveness of the
proposed algorithm, several other evolutionary computation approaches are also applied to solve
the same problem. The effectiveness assessment is done based on the performance of applying
different algorithms to find solutions for test cases, to provide a guideline for selecting a proper
solution approach.

Keywords: shared mobility; trust; ridesharing; evolutionary computation

1. Introduction

Shared mobility refers to transportation services and resources shared among users.
Depending on the resources used, several types of transportation modes emerge, e.g., bike-
sharing, scooter sharing, carsharing and ridesharing. With shared mobility, the number
of e-hailing trips roughly tripled in four years. It has created over 40 million e-hailing
trips daily on major e-hailing platforms [1]. Due to the potential benefits to reduce overall
costs, energy consumption and greenhouse gas emissions, shared mobility sparks many
new research directions and opportunities. Shared mobility may take different forms in
the shared economy era. Ridesharing and carpooling are two well-known transportation
modes in shared mobility. In Ref. [2,3], an early survey of ridesharing problems was
discussed. Ridesharing services rely on an effective recommender system to generate
recommendations for users. A ridesharing recommender system must take into account
the factors of location, time and cost savings. The research issues relevant to the design
of such ridesharing recommender systems include modeling, optimization and allocation
of cost savings. These research issues pose challenges in the development of ridesharing
recommender systems [4,5].

Despite the numerous potential advantages of ridesharing, e.g., reducing energy con-
sumption, travel cost, greenhouse gas emissions and providing a flexible alternative other
than public transport with fixed routing, the concern about safety and trust still hinders
the progress for accepting the ridesharing transportation mode. Safety and trust are the
primary concern for not adopting ridesharing. One approach to ensuring safety and trust

Electronics 2022, 11, 776. https://doi.org/10.3390/electronics11050776 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11050776
https://doi.org/10.3390/electronics11050776
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-0208-9937
https://doi.org/10.3390/electronics11050776
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11050776?type=check_update&version=2


Electronics 2022, 11, 776 2 of 28

is to exploit the social relation information about potential ridesharing participants from
social media [6]. Therefore, several studies on ensuring safety/trust in ridesharing through
social networks have been carried out in recent years [7–12]. The decision models to gen-
erate recommendations for the trust-based ridesharing problem are generally formulated
as non-linear integer programming problems, which consist of non-linear constraints and
discrete decision variables. These problems are typically non-convex and the computational
complexity grows with the scale of the problems. Therefore, an exact optimization method
cannot be applied. Instead, approximate methods, such as evolutionary computation ap-
proaches, are adopted to find solutions. For example, ridesharing systems that consider the
trust factor have been studied in [13–15], based on Particle Swarm Optimization (PSO) [16]
and Differential Evolution (DE) [17] approaches.

In the literature on evolutionary computation, PSO [16] and DE [17] have over two
decades of history and have been successfully applied to problems in several domains.
Many variants of Particle Swarm Optimization approaches and Differential Evolution
approaches have been proposed. For example, a discrete version of a Particle Swarm
Optimization algorithm has been applied to solve to ridesharing problem with trust re-
quirements in [13]. In Ref. [14], a discrete version of Differential Evolution has been
developed to solve the trust-based ridesharing problem. Combining a neighborhood search
with a Differential Evolution approach is adopted in [15] to solve the trust-based rideshar-
ing problem. However, the effectiveness of applying different variants of DE approaches to
solve the trust-based ridesharing decision problem needs to be studied. This study aims to
develop a variant of a metaheuristic algorithm to solve the trust-based ridesharing decision
problem with the goal to find a more effective solution algorithm. To achieve this goal, we
will combine a self-adaptive neighborhood search with Differential Evolution (SaNSDE)
to develop an algorithm. In particular, we will study the influence of the learning period
parameter on the efficiency of the proposed discrete SaNSDE algorithm. We will assess the
effectiveness of the proposed algorithm by comparing the proposed algorithm with other
approaches, based on the results obtained by applying these algorithms to solve several
test cases of the trust-based ridesharing problems.

The decision problem studied in this paper is different from the studies of [18,19], in
that trust requirements are considered. This paper is also different from our recent study on
the allocation of cost savings in [20], where trust requirements are not considered. The trust
model adopted in this paper is different from the ones used in [9,11]. The contributions
of this paper include a problem formulation for trust-based ridesharing systems and the
development of a more effective self-adaptive neighborhood search algorithm for solving
the trust-based ridesharing problem. The remainder of this paper is structured as follows.
In Section 2, we first give a review of the literature relevant to the enhancement of trust
in ridesharing systems. We will present the decision model of trust-based ridesharing
systems in Section 3. We will propose several algorithms based on several variants of the
DE approach in Section 4. In Section 5, we will present the results obtained by applying the
algorithms developed. In Section 6, we will discuss the results and provide suggestions
for selecting an effective solution approach to the trust-based ridesharing problem. We
conclude this paper in Section 7.

2. Literature Review

Although ridesharing is helpful to reduce the number of cars, energy consumption and
cost, there are still concerns from drivers and riders in ridesharing. These concerns are the
primary obstacles for ridesharing. According to [21,22], cost and time are two determinant
factors for the adoption of ridesharing. The issue to maximize monetary incentive has
been studied in [19]. Proper allocation of cost savings is an important issue in ridesharing
systems [20]. In addition to the two determinant factors for the adoption of ridesharing,
according to the review about rideshare crime rates and safety tips in [23], over 3000 sexual
assaults were reported in one year for one major ridesharing company, not including
unreported cases. The study in [24] indicates that women feel less safe and comfortable



Electronics 2022, 11, 776 3 of 28

when they share a ride in the night or with male strangers. In particular, young women
and unemployed women have less trust in ridesharing. Therefore, how to ensure safety
and trust in ridesharing systems is an important research issue to promote ridesharing.

One way to ensure safety/trust is to take advantage of the social relationship of
ridesharing participants in relevant social networks. Social media provides a platform
to extract the information of social networks. A recent survey on the challenges and
opportunities of using social media to support ridesharing services is available in [6].
The types of ridesharing based on social networks are referred to as social ridesharing,
sharing rides with friends or social-aware ridesharing in the literature. There are several
studies relevant to social ridesharing. For example, in [7], the authors proposed a coalition
formation algorithm for sharing rides with friends. A cooperative game-theoretic approach
to the social ridesharing problem was proposed in [8]. The study of [8] considers a social
network described by a graph to describe the social relationship between ridesharing
participants. The social network restricts the formation of groups for creating a feasible
coalition. A set of riders in the social network are a feasible coalition, if there exists a
connected subgraph on the social network and there is at least one rider whose car has
enough seats for all the members. However, the social network used in [8] does not consider
the level of social relationship between ridesharing participants. In Ref. [9], the authors
considered a social-aware ridesharing group query problem. The study of [9] indicates that
the social-aware ridesharing group query problem is NP-hard. In Ref. [10], a relevant study
of [9], an efficient method to match offers and requests in social-aware ridesharing was
developed. A carpooling model based on both social and route networks was proposed
in [11]. In Ref. [11], the degrees of separation concept and user preference are used to specify
trust between ridesharing participants in the social networks. In Ref. [11], two problems
are formulated: one problem aims to optimize trust in a ridesharing team based on social
networks and the other problem is to minimize the cost for a ridesharing team with an
integer programming model based on route networks. A decision model is obtained by
combining the trust optimization problem and cost optimization problem. The concept of
cohesive ridesharing in geo-social networks was studied in [12]. In Ref. [25], the authors
take into account both social relations and revenue in the social-aware ridesharing group
query problem.

The social network considered in the papers above is based on the social distance in
social network model (an undirected graph). However, in the real world, the level that
one participant trusts another may not be totally dependent on the social distance between
them. For example, consider two people, A and B. Suppose A is a friend of B. But A also
knows B often cannot be on time. The level that A trusts B is low. Suppose A is also a
friend of C. Suppose the social distance between A and C is the same as that between A
and B. A also knows C is always on time. The level that A trusts C is higher than the level
that A trusts B. The above example indicates that although the level of trust between two
participants may be linked to social distance, it may be negatively related to social distance
between the two participants. A proper model to capture the level that one participant
trusts another will be introduced in this paper.

Based on the discussion above, the goals of this study are to propose a decision model
for ridesharing, based on a proper trust model, and develop a relevant solution method-
ology for solving the decision problem. For the decision problem to be addressed in this
study, temporal constraints, spatial constraints and constraints due to trust requirements
are considered. The decision model proposed in this paper aims to match multiple requests,
which is different from the ones in [9,25]. The trust model used in this study can flexibly
describe the level that one participant trusts another. In the proposed trust model, the trust
level between two ridesharing participants may or may not be negatively related to social
distance between the two participants. Therefore, the trust model adopted in this paper is
different from the ones used in [9,11,25]. The decision model proposed in this study can
be applied regardless of whether the level of trust between two participants is negatively
related to their social distance.
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The trust-based ridesharing problem is formulated as a non-linear integer program-
ming problem, which consists of non-linear constraints and discrete decision variables.
These problems are typically non-convex and the computational complexity grows with
the scale of the problems. Therefore, an exact optimization method cannot be applied.
Instead, approximate methods, such as evolutionary computation approaches, are adopted
to find solutions. Evolutionary computation is inspired by biological evolution for global
optimization. In evolutionary computation, a population of solutions is generated initially.
The population of solutions is iteratively updated based on mutation and natural selec-
tion. Selection is based on the fitness function. Based on the iteratively updated solutions
of population and natural selection, the quality of individuals in the population will be
improved gradually. In the literature, a lot of evolutionary algorithms have been proposed
to solve optimization problems. These include Differential Evolution [17], Particle Swarm
Optimization [16] and Firefly algorithms [26], and their variants [27–29]. In this study, we
will adopt several variants of Differential Evolution to develop algorithms to solve the
trust-based ridesharing decision problem.

Many variants of DE algorithms have been proposed to improve the original DE
method, including Differential Evolution with Neighborhood Search (NSDE) [30] and
Self-adaptive Differential Evolution (SaDE) [31] and Self-adaptive NSDE (SaNSDE) [32],
where SaNSDE is able to adapt the parameters of DE and combines the neighborhood
search capability of NSDE. As the original DE and variants of DE algorithms are targeted
at problems with continuous search space, these methods need to be modified for the
discrete optimization problem formulated in this paper. In this paper, we will combine
a self-adaptive neighborhood search with Differential Evolution to develop an algorithm
variant of a discrete DE algorithm. In particular, we will study the influence of the learn-
ing period parameter on the efficiency of the proposed discrete SaNSDE algorithm. We
will assess the effectiveness of the proposed algorithm by comparing with two Particle
Swarm Optimization-based algorithms (standard PSO [13] and ALPSO [33]), a Firefly
algorithm [26] and several DE algorithms, by applying these algorithms to the same set of
test cases. We analyze the results of the experiments to compare the effectiveness of the
algorithms mentioned above.

3. The Recommendation Problem of Trust-Based Shared Mobility Systems

In this section, we consider a shared mobility system in which trust requirements are
considered. In shared mobility systems, drivers share rides with passengers to meet the
transportation requirements. In this paper, a shared mobility system that considers the
trust requirements of passengers and drivers is called a trust-based shared mobility system.
A driver and a passenger can share a ride only if their trust requirements can be satisfied.

Although social network provides the social distance information that may be linked
to safety or trust between people, in the real world, the level that one participant trusts
another may not be totally dependent on the social distance between them. For example,
consider two people, A and B, who are friends. Suppose A is always on time whereas B is
rarely on time. The level that A trusts B is low but the level that B trusts A is high. The above
example indicates that shorter social distance in the social network does not always imply
a higher level of trust. That is, social distance may not always be negatively related to the
level of trust. A proper trust model to capture the level that one participant trusts another
is used in this study. The trust model used in this study can flexibly describe the level that
one participant trusts another. In the proposed trust model, the trust level between two
ridesharing participants may or may not be negatively related to social distance between
the two participants. The solution methodology proposed in this study can still be applied,
regardless of whether the trust model is the same as the social distance model. To describe
the decision model in this paper, we summarize the notations used in this paper in Table 1.
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Table 1. Notations of symbols, variables and parameters.

Variable Meaning

P total number of potential passengers
D total number of potential drivers
K total number of locations of passengers, K
p a passenger, where p ∈ {1, 2, 3, . . . P}
d a driver, where d ∈ {1, 2, 3, . . . , D}
k a location, k ∈ {1, 2, . . . , K}
Jd total bids of driver d ∈ {1, 2, . . . , D}
j The j− th bid of driver d with j ∈ {1, 2, . . . , Jd}

Γd the minimal trust level requested by driverd
Λp the minimal trust level requested by passenger p
V the set of nodes associated with drivers and passengers in the social network model
vi a node in V
E the set of edges in the social network model
eij a directed edge in E connecting vi to vj , where vi, vj ∈ V

Θ a |V| by |V|matrix with element Θij for all vi, vj ∈ V, where Θij is the trust level
that vi trusts vj.

S(V, E, Θ)
a graph model of the social network with a set of nodes, V, a set of edges and
weight Θ.

Rp

a passenger′s request; Rp= (Lop, Lep, ωe
p, ωl

p, np, Λp), where Rp is defined
by the origin Lop, destination, Lep, earliest departure time, ωe

p, latest
arrival time, ωl

p, number of passengers, np, and the minimal trust level
requested, Λp.

Rd

a driver′s request; Rd= (Lod, Led, ωe
d, ωl

d, ad, τd, Γd), where Rd is defined by
the origin, Lod, destination, Led, earliest departure time, ωe

d, latest arrival time, ωl
d,

quantity of seats available, ad, maximum detour ratio, τd, and the minimal trust
level Γd. That is, Rd= (Lod, Led, ωe

d, ωl
d, ad, τd, Γd).

D_BIDdj

D_BIDdj= (q1
dj1, q1

dj2, . . . , q1
djk, . . . , q1

djK , q2
dj1, q2

dj2, . . . , q2
djk, . . . , q2

djK , πdj, odj, cdj, ad, Γd),

the j− th bid of driver d, where K is the number of locations, q1
djk is the number of

seats available to pick up passengers at location k, q2
djk is the number of seats

released after dropping passengers at location P + k, odj is the original cos t of
driver d without ridesharing, cdj is the cos t for driver d to transport passengers in the
bid, ad is the total number of seats and Γd is the minimal trust level requested.

P_BIDp

P_BIDp= (s1
p1, s1

p2, s1
p3, . . . , s1

pK , s2
p1, s2

p2, s2
p3, . . . , s2

pK , fp, Λp): the bid of passenger p,

where K is the number of locations, s1
pk is the number of seats requested to pick up

passengers at location k, s2
pk is the number of seats released after dropping passengers

at location P + k, fp is the bid price and Λp is the minimal trust level requested.

xdj
a binary decision variable; xdj equals 1 if the j− th bid of driver d is a winning bid
and xdj equals 0 otherwise

yp
a binary decision variable; yp equals 1 if the bid of passenger p is a winning bid and yp
equals 0 otherwise

F(x, y) overall cos t savings, F(x, y) =

(
P
∑

p=1
yp

(
fp

))
+

(
D
∑

d=1

Jd
∑

j=1
xdjodj

)
−
(

D
∑

d=1

Jd
∑

j=1
xdjcdj

)

Trust between drivers and passengers is described based on their social network.
The trust requirements are directly related to the connection of drivers and passengers in
the social network. A graph-based model is adopted in this study to represent the social
network. To represent drivers and passengers in the social network model, we use V to
denote the set of nodes associated with drivers and passengers. The trust level between
nodes is represented by weight, associated with the set of edges, E, in the social network
model. Let vi and vj be two nodes in V. We use eij to denote a directed edge eij connecting
vi to vj and use weight Θij to denote the trust relation between vi and vj, where the weight
Θij specifies the degree (trust level) that vi trusts vj. As the goal of this study is to develop
a decision model and relevant solution methodology, it is assumed that Θij is available.

Let Θ denote the |V| by |V|matrix with element Θij for all vi, vj ∈ V. The greater the
value of Θij, the more vi trusts vj. If Θij equals zero, vi does not trust vj. More specifically,
there is a directed edge eij connecting vi to vj with weight Θij for each vi and vj in V. We
use a graph S(V, E, Θ) with weight Θ to compactly represent the trust model.

In a trust-based shared mobility system, a driver may request his/her minimal trust
level requirements to share a ride with a passenger. If the minimal trust level requirements
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requested by the driver cannot be satisfied, the driver will not share a ride with the
passenger. Similarly, a passenger may request his/her minimal trust level requirements to
share a ride with a driver. If the minimal trust level requirements requested by the passenger
cannot be satisfied, the passenger will not share a ride with the driver. Furthermore, a
passenger, say A, may request his/her minimal trust level requirements to share a ride with
another passenger, say B. If the minimal trust level requirements requested by passenger A
cannot be satisfied, passenger A will not share a ride with passenger B.

To represent the above trust level requirements requested by drivers and passengers,
we use Γd to denote the minimal trust level requested by driver d and Λp to denote the
minimal trust level requested by passenger p. A driver d will share a ride with passenger p
only if Θdp ≥ Γd. A passenger p can be a rider with driver d only if Θpd ≥ Λp. A passenger
p can be a rider with another passenger p′ only if Θpp′ ≥ Λp.

Potential drivers and passengers express their transportation requirements and trust
requirements by submitting requests to the shared mobility system. The shared mobility
system needs to determine the drivers and passengers for ridesharing.

To formulate the decision problem, information from the requests submitted by drivers
and passengers are briefly described first. A request of passenger p is denoted by Rp, where
Rp is defined by the origin Lop, destination, Lep, earliest departure time, ωe

p, latest arrival
time, ωl

p, number of passengers, np, and the minimal trust level requested, Λp. That is,
Rp = (Lop, Lep, ωe

p, ωl
p, np, Λp).

A driver’s request is denoted by Rd, where Rd is defined by the origin, Lod, destination,
Led, earliest departure time, ωe

d, latest arrival time, ωl
d, quantity of seats available, ad, maximum

detour ratio, τd, and the minimal trust level Γd. That is, Rd = (Lod, Led, ωe
d, ωl

d, ad, τd, Γd).
Let P be the total number of potential passengers that submit requests to the

shared mobility system and let {1, 2, . . . , P} be the set of all potential
passengers. Without loss of generality, it is assumed that there is only one request, Rp,
submitted by each passenger p ∈ {1, 2, . . . , P}. For each passenger p ∈ {1, 2, . . . , P},
a procedure will be invoked by the shared mobility system to generate bid
P_BIDp = (s1

p1, s1
p2, s1

p3, . . . , s1
pK, s2

p1, s2
p2, s2

p3, . . . , s2
pK, fp, Λp) based on Rp, where K is the

number of locations, s1
pk is the number of seats requested to pick up passengers at location

k, s2
pk is the number of seats released after dropping passengers at location P + k, fp is the

bid price and Λp is the minimal trust level requested.
Let D denote the total number of potential drivers that submit requests to

the shared mobility system and let {1, 2, . . . , D} be the set of all potential
drivers. Without loss of generality, it is assumed that there is only one request, Rd,
will be submitted by each driver d ∈ {1, 2, . . . , D}. For each driver d ∈ {1, 2, . . . , D}, a
procedure will be invoked by the shared mobility system to generate Jd bids
D_BIDdj = (q1

dj1, q1
dj2, . . . , q1

djk, . . . , q1
djK, q2

dj1, q2
dj2, . . . , q2

djk, . . . , q2
djK, πdj, odj, cdj, ad, Γd) based

on Rd, where Jd is the total number of bids of a driver d, j is the j− th bid of driver d with
j ∈ {1, 2, . . . , Jd}, K is the number of locations, q1

djk is the number of seats available to pick

up passengers at location k, q2
djk is the number of seats released after dropping passengers

at location P + k, odj is the original cost of driver d without ridesharing, cdj is the cost for
driver d to transport passengers in the bid, ad is the total number of seats and Γd is the
minimal trust level requested.

Based on the bids, P_BIDp, p ∈ {1, 2, . . . , P} and D_BIDdj, d ∈ {1, 2, . . . , D},
j ∈ {1, 2, . . . , Jd}, we define decision variables, xdj∀d ∈ {1, . . . , D} ∀j ∈ {1, . . . , Jd}
for the bids submitted by drivers. The j-th bid placed by driver d is a winning bid if
xdj = 1. Otherwise, xdj = 0. We define decision variables as, yp∀p ∈ {1, 2, 3, . . . P}. The
bid submitted by passenger p is a winning bid if yp = 1 and is not a winning bid if
yp = 0. We define the objective function defined in (1) to maximize the cost savings, where

F(x, y) =
P
∑

p=1
yp fp +

D
∑

d=1

Jd
∑

j=1
xdj(odj − cdj).
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We formulate the problem for trust-based shared mobility systems considering the
constraints that the number of seats supplied and the number of seats requested at each
pick-up location must be the same (defined in (2)), the number of seats released must be
equal to the number of passengers dropped off at each drop-off location (defined in (3)),
the cost savings must be nonnegative (defined in (4)), each driver can have at most one
bid accepted (defined in (5)), the minimal trust level requested by each driver must be
satisfied (defined in (6)) and the minimal trust level requested by each passenger must
be satisfied (defined in (7)). The decision variables must be binary (defined in (8)). The
problem formulation is as follows:

max
x,y

F(x, y)

s.t.
(1)

D

∑
d=1

Jd

∑
j=1

xdjq1
djk = yps1

pk ∀p ∈ {1, 2, . . . , P} ∀k ∈ {1, 2, . . . , P} (2)

D

∑
d=1

Jd

∑
j=1

xdjq2
djk = yps2

pk ∀p ∈ {1, 2, . . . , P} ∀k ∈ {1, 2, . . . , P} (3)

P

∑
p=1

yp fp +
D

∑
d=1

Jd

∑
j=1

xdjodj ≥
D

∑
d=1

Jd

∑
j=1

xdjcdj (4)

Jd

∑
j=1

xdj ≤ 1 ∀d ∈ {1, . . . , D} (5)

K
∑

k=1
qdjkspkxdjyp(Θdpxdjyp − Γd) ≥ 0

∀d ∈ {1, . . . , D}∀j ∈ {1, . . . , Jd}∀p ∈ {1, 2, 3, . . . P}
(6)

K
∑

k=1
qdjkspkxdjyp(Θdpxdjyp −Λp) ≥ 0

∀d ∈ {1, . . . , D} ∀j ∈ {1, . . . , Jd} ∀p ∈ {1, 2, 3, . . . P}
(7)

xdj ∈ {0, 1}∀d ∈ {1, . . . , D} ∀j ∈ {1, . . . , Jd}, yp ∈ {0, 1} ∀p ∈ {1, 2, . . . , P} (8)

4. Development of a Self-Adaptive Neighborhood Search Differential
Evolution Algorithm

In this section, we will present the proposed algorithm. Table 2 lists the symbols
and notations used in this section. In the development of an evolutionary computation
algorithm, a fitness function must be properly designed to guide the evolution process to
find a solution. A proper fitness function needs to take into consideration the objective
function of the problem and the constraints that need to be satisfied. A properly designed
fitness function has to guide the evolution process based on constraint violations. We will
apply a variant of penalty methods to design a fitness function.
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Table 2. Notations of symbols, variables and parameters used in the proposed algorithm.

Variable Meaning

NP population size
G number of generations
g the index of a generation

LP learning period
Fi scale factor of individual i
cri crossover rate of individual i
fp a parameter to influence the scale factor Fi

s a mutation strategy : s= 1 denotes mutation strategy in (9) and s = 2 denotes
mutation strategy in (13)

n1
the number of individuals (offspring) generated by mutation strategy in (9) that
successfully replace the original individual and enter the next generation

m1
the number of individuals(offspring) generated by mutation strategy in (9) that
fail to replace the original individual and are discarded

n2
the number of individuals(offspring) generated by mutation strategy in (13) that
successfully replace the original individual and enter the next generation

m2
the number of individuals(offspring) generated by mutation strategy in (13) that
fail to replace the original individual and are discarded

fp
a parameter to influence the scale factor Fi,
fp = n1(n2+m2)

n2(n1+m1)+n1(n2+m2)

CRrec
an array that records the crossover rate value cri associated with individual i
that enter the next generation

CRm

a parameter to generate the cross over rate cri of individual i defined by

CRm =

|CRrec |
∑

k=1
CRrec(k)

|CRrec |
r A random variable with uniform distribution U(0, 1)

r1
A random variable with Gaussian distribution N(µ, σ2

1 ) with mean µ
and standard deviation σ1

r2 A random variable r with uniform distribution U(0, 1)

The problem formulated in the previous section is an integer programming optimiza-
tion problem, in which the decision variables are binary. A characteristic of this problem
is the exponential growth of solution space with problem size and constraints. The expo-
nentially growing solution space leads to high complexity from a computational point of
view. In the literature, many variants of classical penalty methods have been proposed to
deal with constraints in constrained optimization problems by applying penalty methods.
Although these methods may work under the proper setting of penalty coefficients, they
suffer from parameter tuning problems that are problem/data dependent. It is hard to find
a one-size-fits-all approach to finding the right parameters for classical penalty methods.
The variant of a penalty method, proposed in [34] and adopted in this paper, is different
from the classical penalty methods in that it does not require any penalty parameter. It
applies pair-wise comparison between two solutions in the optimization processes to select
the better solution in the following way. If both solutions to be compared are feasible,
the one with better objective function value will be selected. If one feasible solution and
another infeasible solution is to be compared, the feasible one will be selected. If both
solutions to be compared are infeasible, the one with a smaller constraint violation will
be selected. This approach effectively reduces the constraint violation in the optimization
processes and makes the solution found move towards the feasible region.

We adopt the method proposed in [34] to differentiate feasible solutions and infeasible
ones. Just like classical penalty methods, this approach also captures the effects of constraint
violation by adding several penalties. To describe the above method, we define the follow-
ing notations. Let S f = {(x, y)|(x, y) }, a solution in the current population, (x, y) satisfies
constraints (1)–(8). S f is the set of all feasible solutions in the current population. Let S f min
be the object function value of the worst feasible solution in the current population. More
formally, S f min = min

(x,y)∈S f

F(x, y).
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The fitness function used in this paper is defined by F1(x, y) as follows:

F1(x, y) =
{

F(x, y) i f (x, y) satis f ies constraints (1) ∼ (8)
U(x, y) otherwise

, where

U(x, y) = S f min + U1(x, y) + U2(x, y) + U3(x, y) + U4(x, y) + U5(x, y)

U1(x, y) =

∣∣∣∣∣ P
∑

p=1

K
∑

k=1
(

D
∑

d=1

Jd
∑

j=1
xdjqdjk − ypspk)

∣∣∣∣∣
U2(x, y) =

∣∣∣∣∣ D
∑

d=1
(1−

Jd
∑

j=1
xdj)

∣∣∣∣∣
U3(x, y) = min(

P
∑

p=1
yp fp +

D
∑

d=1

Jd
∑

j=1
xdjodj −

D
∑

d=1

Jd
∑

j=1
xdjcdj), 0.0)

U4(x, y)

=
D
∑

d=1

Jd
∑

j=1

P
∑

p=1
min(

K
∑

k=1
qdjkspk)xdjyp(Θdpxdjyp − Γd), 0.0)

U5(x, y)

=
D
∑

d=1

Jd
∑

j=1

P
∑

p=1
min(

K
∑

k=1
qdjkspkxdjyp(Θdpxdjyp −Λp), 0.0)

As the proposed SaNSDE algorithm is based on an extension of the standard DE
algorithm, a brief introduction to the standard DE algorithm will be presented first. The
details of the SaNSDE algorithm will be described next.

The standard DE algorithm follows a four-step evolution process to iteratively improve
the quality of solutions. The first step of the standard DE algorithm is initialization. Suppose
the problem dimension is L. In the initialization step, the standard DE algorithm creates
a population of NP trial individuals zgi = (zgil), where g is the generation index, i is the
index of an individual, i ∈ {1, 2, . . . , NP}, and l ∈ {1, 2, . . . , L} is the dimension index. In
the second step, the DE algorithm generates a mutant vector vgi = (vgil) for individual i in
the g-th generation by applying a mutation strategy. There are six well-known mutation
strategies for the standard DE algorithm in the literature. These six mutation strategies are
defined based on the best individual Zgbl = (zgbl) and the randomly selected individuals,
zgr1l , zgr2l , zgr3l , zgr4l and zgr5l , in the population, where r1, r2, r3, r4 and r5 are random
integers between 1 and NP. The six mutation strategies are defined as follows:

v(g+1)il = zgr1l + Fi(zgr2l − zgr3l) (9)

v(g+1)il = zgbl + Fi(zgr2l − zgr3l) (10)

v(g+1)il = zgr1l + Fi(zgr2l − zgr3l) + Fi(zgr4l − zgr5l) (11)

v(g+1)il = zgbl + Fi(zgr1l − zgr2l) + Fi(zgr3l − zgr4l) (12)

v(g+1)il = zgil + Fi(zgbl − zgil) + Fi(zgr1l − zgr2l) (13)

v(g+1)il = zgil + Fi(zgbl − zgil) + Fi(zgr1l − zgr2l) + Fi(zgr3l − zgr4l) (14)

The third step is a crossover operation that follows after a mutant vector vgi is gener-
ated. The crossover operation will create a trial vector ugi by selecting the element between
the mutant vector vgi and the original individual zgi with some probability. The last step is
selection. In the selection step, zgi will be replaced by ugi if ugi is better than zgi.

In the proposed Self-adaptive Neighborhood Search Differential Evolution (SaNSDE)
Algorithm, the neighborhood search concept is combined with the self-adaptation of
mutation strategies and scale factor to search solutions. The pseudocode of the SaNSDE
algorithm is shown in Table 3. In SaNSDE, there are two algorithmic parameters, fp and
CRm. These two parameters will be self-adapted to influence the scale factor and the
crossover rate of DE. The scale factor Fi is determined randomly based on the parameter fp.
The crossover rate cri of individual i is generated randomly according to the parameter CRm.
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Table 3. The pseudo code of SaNSDE Algorithm.

Discrete Self-Adaptive Neighborhood Search Differential Evolution with (SaNSDE) Algorithm

Step 0: Initialize a population with NP individuals randomly
CRm = 0.5
fp = 0.5
For g = 1 to G

For i = 1 to NP
Generate a random variable r with uniform distribution U(0, 1)
If r < fp

Generate a random variable r1 with Gaussian distribution N(µ, σ2
1 )

Fi = r1
Else

Generate a random variable r2 with uniform distribution U(0, 1)
Fi = r2

End If
Generate a random variable cri with Gaussian distribution N(CRm, σ2

2 )
Step 1: Create a mutant vector vgi

Generate randi = U(0, 1)
If randi < fp

s = 1
Calculate vgi according to (9)

Else
s = 2

Calculate vgi according to (13)
End If

Step 2: Create a trial vector ugi
For l ∈1, 2, . . . , L

ugil =

{
vgil i f Rand(0, 1) < cri

zgil otherwise
ugil ← BinaryTras f orm(ugil)

End For
Step 3: Select the trial vector if it outperforms individual i

If F1(ugi) ≥ F1(zgi)
z(g+1)i = ugi
Record cri in CRrec
ns = ns + 1

Else
ms = ms + 1

End If
End For
If g > LP

fp = n1(n2+m2)
n2(n1+m1)+n1(n2+m2)

CRm =

|CRrec |
∑

k=1
CRrec(k)

|CRrec |
End If

End For

The SaNSDE algorithm keeps track of four variables, n1, n2, m1 and m2, to adapt the
parameter fp as follows:

fp = n1(n2+m2)
n2(n1+m1)+n1(n2+m2)

, where n1, n2, m1 and m2 are defined as follows:
n1: the number of individuals (offspring) generated by mutation strategy in (9) that

successfully replace the original individual and enter the next generation,
m1: the number of individuals (offspring) generated by mutation strategy in (9) that

fail to replace the original individual and are discarded,
n2: the number of individuals (offspring) generated by mutation strategy in (13) that

successfully replace the original individual and enter the next generation,
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m2: the number of individuals (offspring) generated by mutation strategy in (13) that
fail to replace the original individual and are discarded.

In the SaNSDE algorithm, it records the crossover rate value cri associated with
individual i that enter the next generation in an array CRrec to adapt the parameter CRm.
Adaptation of the parameter CRm is done by the following formula:

CRm =

|CRrec |
∑

k=1
CRrec(k)

|CRrec|
.

As the solution space of the decision problem is discrete, a procedure, BinaryTras f orm,
is used to transform the continuous decision variables to zero or one. The fitness function
is computed based on the transformed binary values of decision variables.

Procedure BinaryTras f orm
Input: a
Output: c
Begin

b =


Vmax i f a > Vmax
a i f −Vmax ≤ a ≤ Vmax
−Vmax i f a < −Vmax

s(b) = 1
1+exp−b

Generate a random variable rsid with uniform distribution U(0, 1)

c =
{

1 rsid < s(b)
0 otherwise

Return c
Based on the notations defined above, the proposed algorithm is shown in Table 3.
The underlying principle of the SaNSDE algorithm is very simple and intuitive. The

learning period (LP) parameter is used to specify the number of generations to learn the
effectiveness of different strategies. During the learning period, the SaNSDE algorithm
attempts to apply different strategies to solve the problem and collects the data based on
the solution found to calculate the probability to select different strategies. If a strategy s
applied can lead to improvement in solution quality, the strategy success counter ns will
be increased by one. Otherwise, the failure counter ms will be increased by one. After
the learning period, the success counter ns and the failure counter ms will be used to
calculate fp, which will influence the probability to select different strategies in Step 1. The
strategy with the higher success count will have higher probability to be selected after the
learning period.

5. Results

The purpose of this section is twofold: (1) to verify the functionality to meet trust
requirements of drivers and passengers, (2) to study the characteristics of the proposed
algorithm and (3) to assess the effectiveness of the proposed algorithm. For the first part,
we apply the proposed algorithm to an example of the trust-based ridesharing problem to
assess its functionality to satisfy the trust requirements of drivers and passengers, based
on the results of the algorithm. For the second part, we study the influence of the learning
period on the performance and efficiency of the proposed algorithm. For the third part, we
study the effectiveness of the proposed algorithm by performing a number of experiments
based on several test cases and analyze the numerical results of the experiments.
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5.1. Two Scenarios

We consider two scenarios with different trust requirements to illustrate the influence
of trust requirements on ridesharing. In Scenario 1 and Scenario 2, below, we consider the
same set of three drivers and ten passengers in a trust-based ridesharing system. However,
some of the trust requirements are not the same.

The data for these two scenarios can be downloaded from the following link: https://
drive.google.com/drive/folders/1W4OdMQ6z8O0fX38TpSVFcVbsbzJkjHy3?usp=sharing
(accessed on 20 January 2022).

5.1.1. Scenario 1

The origins and destinations of the drivers and passengers are listed in Table 4.

Table 4. Origins and Destinations of Participants.

Participant Origin Destination

Driver 1 24.23785, 120.66993 24.11308, 120.65914
Driver 2 24.1692536, 120.6848233 24.20195, 120.56815
Driver 3 24.13425, 120.5539 24.14289, 120.70549

Passenger1 24.21872, 120.6469 24.12877, 120.66223
Passenger2 24.1790507, 120.6657476 24.17369, 120.61354
Passenger3 24.0611, 120.64342 24.1465287, 120.6532456
Passenger4 24.07962, 120.69454 24.12438, 120.66244
Passenger5 24.19422, 120.69538 24.15288, 120.69704
Passenger6 24.16048, 120.69173 24.16359, 120.65138
Passenger7 24.0611, 120.64342 24.11009, 120.64146
Passenger8 24.19422, 120.69538 24.13046, 120.7047
Passenger9 24.13623, 120.60693 24.13527, 120.6571

Passenger10 24.16429, 120.68522 24.15345, 120.65495

The minimal trust level Γd requested by each driver d is listed in Table 5. The minimal
trust level Λp requested by each passenger p is listed in Table 6. The trust level between
driver and passenger is represented by the matrix Θ, shown in Table 7.

Table 5. Γd for Drivers.

Driver ID (d) 1 2 3

Γd 1 1 3

Table 6. Λp for Passengers.

Passenger ID (d) 1 2 3 4 5 6 7 8 9 10

Λp 1 1 1 1 1 1 1 1 1 1

Table 7. Matrix Θ.

1 2 3 4 5 6 7 8 9 10

1 1 2 1 3 2 3 1 2 3 2
2 2 1 1 1 2 2 3 3 1 2
3 1 2 3 2 2 3 3 1 1 2

Tables 8 and 9 show the bids of all drivers and passengers, respectively, generated by
the bid generation procedure in Appendix II [31].

https://drive.google.com/drive/folders/1W4OdMQ6z8O0fX38TpSVFcVbsbzJkjHy3?usp=sharing
https://drive.google.com/drive/folders/1W4OdMQ6z8O0fX38TpSVFcVbsbzJkjHy3?usp=sharing
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Table 8. Bid submitted by Driver 1.

Driver ID (d) qd11 qd12 qd13 qd14 qd15 qd16 qd17 qd18 qd19 qd110 od1 cd1

1 0 0 0 0 1 0 0 0 0 0 50.4025 51.4975
2 0 0 0 0 0 0 0 0 0 1 36.745 41.1575
3 0 0 0 0 0 0 0 0 1 0 57.485 57.485

Table 9. Bids submitted by Passengers.

Passenger ID (p) sp1 sp2 sp3 sp4 sp4 sp4 sp4 sp4 sp4 sp4 fp

1 1 0 0 0 0 0 0 0 0 0 37.0475
2 0 1 0 0 0 0 0 0 0 0 18.3475
3 0 0 1 0 0 0 0 0 0 0 28.12
4 0 0 0 1 0 0 0 0 0 0 19.07
5 0 0 0 0 1 0 0 0 0 0 14.1675
6 0 0 0 0 0 1 0 0 0 0 12.25
7 0 0 0 0 0 0 1 0 0 0 17.1175
8 0 0 0 0 0 0 0 1 0 0 33.11
9 0 0 0 0 0 0 0 0 1 0 14.6925

10 0 0 0 0 0 0 0 0 0 1 9.645

We apply the proposed SaNSDE algorithm to solve the decision problem using the
following parameters:

MAX_GEN = 10,000.
Population size NP = 30.
CR = 0.5.
Fi = 0.3r1 + 0.5, where r1 is a Gaussian distribution N(0, 1).
LP = 10, 50, 100, 200, 1000.
Vmax = 4.

Based on the above input data, the solution found by applying the SaNSDE algorithm
is shown in Tables 10 and 11.

Table 10. Solution x for Drivers.

Driver ID (d) x11 x21 x31

1 1 1 0

Table 11. Solution y for Passengers.

Passenger ID (d) y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

1 0 0 0 0 1 0 0 0 0 1

The cost savings for this solution are 18.305.
The two shared routes generated by the solution found by applying the SaNSDE

algorithm for Example 1 are shown in Figure 1. Please visit the following link to display
the routes of Driver 1 and Driver 2 and the associated ridesharing passengers. https://www.
google.com/maps/d/edit?mid=1_i--xWSlx6_a-ISgTLMzKP8_PPzjYACH&usp=sharing
(accessed on 20 January 2022).

https://www.google.com/maps/d/edit?mid=1_i--xWSlx6_a-ISgTLMzKP8_PPzjYACH&usp=sharing
https://www.google.com/maps/d/edit?mid=1_i--xWSlx6_a-ISgTLMzKP8_PPzjYACH&usp=sharing
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Figure 1. Two shared routes for Case 1 of the Example.

5.1.2. Scenario 2

In Scenario 2, the itineraries of drivers and passengers are the same as those of
Scenario 1. However, the trust requirements between drivers and passengers in Scenario 2
are different from those of Scenario 1. We will study the influence of trust requirements
between drivers and passengers on the number of matched shared rides.

As the itineraries of drivers and passengers in Scenario 2 are the same as those of
Scenario 1, the origins and destinations of the drivers and passengers in Scenario 2 are the
same as the information listed in Table 4.

The minimal trust level Γd requested by each driver d is listed in Table 12. The minimal
trust level Λp requested by each passenger p is listed in Table 13. The trust level between
driver and passenger is represented by the matrix Θ, shown in Table 14.

Table 12. Γd for Drivers.

Driver ID (d) 1 2 3

1 1 3 3

Table 13. Λp for Passengers.

Passenger ID (d) 1 2 3 4 5 6 7 8 9 10

Λp 1 1 1 1 1 1 1 1 1 1

Table 14. Matrix Θ.

1 2 3 4 5 6 7 8 9 10

1 1 2 1 3 2 3 1 2 3 2
2 2 1 1 1 2 2 3 3 1 2
3 1 2 3 2 2 3 3 1 1 2
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We apply the proposed SaNSDE algorithm to solve the decision problem using the
same parameters used in Scenario 1.

Based on the above input data, the solution found by applying the SaNSDE algorithm
is shown in Tables 15 and 16. The results of Scenario 2 indicate that Γd has influence on
the number of matched shared rides. The results of Scenario 2 show that the number of
ridesharing passengers has been reduced to one. This is due to the constraints of the trust
requirement set by driver two.

Table 15. Solution x for Drivers.

Driver ID (d) x11 x21 x31

1 1 0 0

Table 16. Solution y for Passengers.

Passenger ID (d) y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

1 0 0 0 0 1 0 0 0 0 0

The cost savings for this solution are 13.07.
Two shared routes for Case 2 of Example 1 are shown in Figure 2.

Figure 2. The shared route for Case 2 of the Example.

Please visit the following link to display the routes of Driver 1 and Driver 2 and the
associated ridesharing passengers. https://www.google.com/maps/d/edit?mid=1l_XW_
SzWAu3hkvkS5pLrJF3XPqrm6xNh&usp=sharing (accessed on 20 January 2022).

https://www.google.com/maps/d/edit?mid=1l_XW_SzWAu3hkvkS5pLrJF3XPqrm6xNh&usp=sharing
https://www.google.com/maps/d/edit?mid=1l_XW_SzWAu3hkvkS5pLrJF3XPqrm6xNh&usp=sharing
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5.2. Influence of Learning Period on Performance and Efficiency

There is an algorithmic parameter, learning period (LP), in the proposed SaNSDE
algorithm. To apply the proposed method to solve problems, we first study the influence of
the algorithmic parameter LP on convergence speed.

The parameters used in the Self-adaptive Neighborhood Search Differential Evolution
(SaNSDE) algorithm are listed as follows:

MAX_GEN = 10,000.
Population size NP = 30.
CR = 0.5.
Fi = 0.3r1 + 0.5, where r1 is a Gaussian distribution N(0, 1).
LP = 10, 50, 100, 200, 1000.
Vmax = 4.

Table 17 shows the results obtained by setting the algorithmic parameter LP to 10, 50,
100, 200 and 1000, respectively. For each test case, the average fitness values obtained by
setting LP to 100, 200 and 1000 are very close. However, the average number of generations
required to find the best solutions are different for different algorithmic parameters LP.
The average number of generations for Case 1, Case 2, Case 3, Case 4 and Case 5 are shown
in the bar chart of Figure 3. The average number of generations for Case 6, Case 7, Case
8, Case 9 and Case 10 are shown in the bar chart of Figure 4. The results indicate that
the average number of generations required to find the best solutions tend to decrease
by increasing LP for most test cases. This is due to the quality of the best strategy being
improved with the growth of the algorithmic parameter LP. If the algorithmic parameter
LP is too small, the best strategy cannot be learned within the learning period. In this
case, the probability to select the best strategy to create a mutant vector will be lower than
expected. Therefore, the number of generations required to find the best solutions will be
greater. If the algorithmic parameter LP is big enough, the best strategy can be learned
within the learning period. In this case, the probability to select the best strategy to create a
mutant vector will be higher. Therefore, the number of generations required to find the best
solutions will be smaller. Based on the above reasoning, the results in Figures 3 and 4 are
consistent with our expected results for almost all test cases, with the exception of Case 9.
This is due to the fact that the SaNSDE algorithm is a stochastic optimization method.

Table 17. Average fitness values and average number of generations for SaNSDE with algorithmic
parameter LP to 10, 50, 100, 200 and 1000.

Test Case Participant
(D/P)

SaNSDE
(LP = 10)

SaNSDE
(LP = 50)

SaNSDE
(LP = 100)

SaNSDE
(LP= 200)

SaNSDE
(LP = 1000)

1 3/10 18.305/100.3 18.305/32.9 18.305/9.9 18.305/6.4 18.305/2.8

2 5/11 23.518/236.9 23.518/39.3 23.518/21.8 23.518/14.9 23.518/7.6

3 5/12 24.79/288.7 24.79/39.5 24.79/17.6 24.79/15.3 24.79/7.1

4 6/12 36.58/752.8 36.58/127 36.58/53.7 36.58/27.1 36.58/12.9

5 7/13 29.2442/1426.1 30.063/50.9 30.063/92.3 30.063/31.6 30.063/14.7

6 8/14 62.18/116 62.18/38 62.18/22.9 62.18/18.1 62.18/7

7 9/15 74.0355/1746.9 79.64/2055.2 79.64/609.1 79.64/200.4 79.64/45.4

8 20/20 23.644/2582.2 23.644/656.7 23.644/4186.7 23.5513/1005.7 23.644/601.2

9 30/30 135.0137/17,414.6 138.3127/11,675.2 138.3988/16,887 138.0833/23,072.8 139.7357/25,470.7

10 40/40 144.0469/20,968.4 145.3967/21,086 146.4824/16,469.5 144.7231/25,026.3 144.6829/15,030.9
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Figure 3. The average number of generations for Case 1, Case 2, Case 3, Case 4 and Case 5.

Figure 4. The average number of generations for Case 6, Case 7, Case 8, Case 9 and Case 10.

The effectiveness of an evolutionary algorithm is assessed based on two indices: the
average fitness value and the average number of generations needed to find the solutions.
The average fitness value is the primary index to evaluate performance, whereas the
average number of generations is the secondary index to evaluate computational efficiency.
Although the average number of generations for Case 9 with LP = 1000 is the worst,
the average fitness value for Case 9 with LP = 1000 is 139.7357, which is the best of all,
according to Table 17. Therefore, for Case 9, the SaNSDE algorithm with LP = 1000 still
outperforms other LP parameters, in the average fitness value Table 17. The average
number of generations for Case 9 with LP = 1000 is the worst. This is due to the fact that
the SaNSDE algorithm is a stochastic optimization method. The number of generations
to find the best solutions may not always be the smallest, even if it has learned the best
strategy during the learning period. Despite the results of Case 9, the SaNSDE algorithm
with LP = 1000 outperforms other LP parameters in all the other Cases, in terms of the
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average fitness value and the average number of generations. This means that the SaNSDE
algorithm, with a sufficient large learning period, has a higher probability to achieve better
performance and efficiency.

5.3. Effectiveness of the Proposed Algorithm

In this subsection, we will compare the proposed algorithm with several evolutionary
algorithms through the results of the experiments. These evolutionary algorithms include
standard DE [14], NSDE [15], PSO [13], Firefly [26] and ALPSO [33] algorithms. Comparison
with the standard DE algorithm will be presented first, followed by comparisons with
NSDE, PSO, Firefly and ALPSO algorithms.

5.3.1. Comparison with DE

In this subsection, we compare the proposed algorithm with the standard DE algo-
rithm [14]. As there are six mutation strategies in the standard DE approach, we use DE1,
DE2, DE3, DE4, DE5 and DE6 to represent the six standard DE algorithms with the six
mutation strategies.

The parameters used in the DE1, DE2, DE3, DE4, DE5 and DE6 are listed as follows:

MAX_GEN = 10,000.
Population size NP = 30.
CR = 0.5.
F: a value arbitrarily selected from uniform (0, 2).
Vmax = 4.

The parameters used in the Self-adaptive Neighborhood Search Differential Evolution
(SaNSDE) algorithm are listed as follows:

MAX_GEN = 10,000.
Population size NP = 30.
CR = 0.5.
Fi = 0.3r1 + 0.5, where r1 is a Gaussian distribution N(0, 1).
LP = 1000.
Vmax = 4.

Table 18 shows the results obtained by applying the DE algorithm with six strategies
and the SaNSDE algorithm with algorithmic parameter LP set to 1000. The results indicate
that the average fitness function values achieved by applying the DE algorithms are worse
than those of the SaNSDE algorithm for some cases. In addition, the average fitness
function values achieved by the SaNSDE algorithm are either as good as or better than
DE. This indicates that the SaNSDE algorithm can stably find better solutions. In terms of
convergence speed, the average number of generations required for the SaNSDE algorithm
to find the best solutions is significantly smaller than those of the DE algorithm with six
strategies, for most test cases, according to Table 18, Figures 5 and 6.
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Table 18. Average fitness values and average number of generations for DE with six strategies and
SaNSDE with algorithmic parameter LP = 1000.

Test
Case

Participant
(D/P) DE1 DE2 DE3 DE4 DE5 DE6 SaNSDE

(LP = 1000)

1 4/10 18.305/14.3 18.305/20.9 18.305/19.2 18.305/35.9 18.305/15.7 18.305/16 18.305/2.8

2 5/11 23.518/54.6 21.1662/129.1 22.7885/514.3 23.518/577.1 23.518/25.9 23.518/63.5 23.518/7.6

3 5/12 24.79/63.3 24.79/334.9 24.3962/69.6 24.3962/171.8 24.0024/413.2 24.3962/77.9 24.79/7.1

4 6/12 36.58/167.6 35.4095/419.5 36.58/214.2 35.9755/212.9 34.1465/202 36.58/135.1 36.58/12.9

5 7/13 29.2442/968.5 25.482/73.4 29.0007/181 26.2379/139.1 26.8132/478.5 29.2442/203.7 30.063/14.7

6 8/14 62.18/48.7 62.18/42.5 62.18/51.8 60.7055/1056.4 62.18/341.2 62.18/41.7 62.18/7

7 9/15 75.1808/860 70.481/165.5 78.1356/932.7 76.2821/1139.3 59.7039/1054.7 74.4286/1004 79.64/45.4

8 20/20 23.644/475 15.4555/9261.1 23.644/1098.6 16.1718/5027 16.0075/14,904.6 19.3717/6478.8 23.644/601.2

9 30/30 126.2855/26,507.9 81.1175/211.6 133.3518/20,689.3 108.7805/19,178 107.5981/15,306.9 114.6592/15,030 139.7357/25,470.7

10 40/40 120.0865/7556.1 79.7772/21,756.2 122.8838/22,660.2 84.8821/18,684.8 53.8039/18,172.4 55.685/12,640.3 144.6829/15,030.9

Figure 5. The average number of generations obtained by DE1, DE2, DE3, DE4, DE5, DE6 and
SaNSDE with LP = 1000 for Case 1, Case 2, Case 3, Case 4 and Case 5.

Figure 6. The average number of generations obtained by DE1, DE2, DE3, DE4, DE5, DE6 and
SaNSDE with LP = 1000 for Case 6, Case 7, Case 8, Case 9 and Case 10.
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5.3.2. Comparison with NSDE

In this subsection, we compare the proposed algorithm with the NSDE algorithm [15].
The parameters used in the Neighborhood Search Differential Evolution algorithm are

listed as follows:

MAX_GEN = 10,000.
Population size NP = 30.
CR = 0.5.
Fi = 0.5r1 + 0.5, where r1 is a Gaussian distribution N(0, 1).
Vmax = 4.

The parameters used in the Self-adaptive Neighborhood Search Differential Evolution
(SaNSDE) algorithm are listed as follows:

MAX_GEN = 10,000.
Population size NP = 30.
CR = 0.5.
Fi = 0.3r1 + 0.5, where r1 is a Gaussian distribution N(0, 1).
LP = 1000.
Vmax = 4.

Table 19 shows the results obtained by applying the NSDE algorithm and the SaNSDE
algorithm, with algorithmic parameter LP set to 1000. The results indicate that the average
fitness function values achieved by the SaNSDE algorithm are either as good as or better
than the NSDE algorithm for all test cases. In addition, the average number of generations
required for the SaNSDE algorithm to find the best solutions is significantly smaller than
those of the NSDE algorithm, for all test cases, according to Table 19, Figures 7 and 8. In
short, the SaNSDE algorithm is more efficient than the NSDE algorithm.

Table 19. Average fitness values and average number of generations for NSDE and SaNSDE with
algorithmic parameter LP = 1000.

Test Case Participant
(D/P) NSDE SaNSDE (LP = 1000)

1 3/10 18.305/106.9 18.305/2.8

2 5/11 23.518/51.2 23.518/7.6

3 5/12 24.79/49.8 24.79/7.1

4 6/12 36.58/154.54 36.58/12.9

5 7/13 30.063/118 30.063/14.7

6 8/14 62.18/36.9 62.18/7

7 9/15 79.64/2173.4 79.64/45.4

8 20/20 23.5513/911.6 23.644/601.2

9 30/30 137.655/33,899.3 139.7357/25,470.7

10 40/40 137.2235/29,677.1 144.6829/15,030.9
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Figure 7. The average number of generations obtained by NSDE and SaNSDE with LP = 1000 for
Case 1, Case 2, Case 3, Case 4 and Case 5.

Figure 8. The average number of generations obtained by NSDE and SaNSDE with LP = 1000 for
Case 6, Case 7, Case 8, Case 9 and Case 10.

5.3.3. Comparison with PSO, FA and ALPSO

In this subsection, we compare the proposed algorithm with the PSO algorithm [13],
Firefly algorithm [26] and ALPSO algorithm [33].

The parameters used in the PSO algorithm are listed as follows:

MAX_GEN = 10,000.
Population size NP = 30.
c1 = 0.4.
c2 = 0.6.
ω = 0.4.
Vmax = 4.

The parameters used in the Firefly algorithm are listed as follows:
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MAX_GEN = 10,000.
Population size NP = 30.
β0 = 1.0.
γ = 0.2.
α = 0.2.
Vmax = 4.

The parameters used in the ALPSO algorithm are listed as follows:

MAX_GEN = 10,000.
Population size NP = 30.
c1 = 0.4.
c2 = 0.6.
ω = 0.4.
Vmax = 4.

The parameters used in the Self-adaptive Neighborhood Search Differential Evolution
(SaNSDE) algorithm are listed as follows:

MAX_GEN = 10,000.
Population size NP = 30.
CR = 0.5.
Fi = 0.3r1 + 0.5, where r1 is a Gaussian distribution N(0, 1).
LP = 1000.
Vmax = 4.

Table 20 shows the results obtained by applying the PSO algorithm, Firefly algorithm
(FA), ALPSO algorithm and the SaNSDE algorithm, with algorithmic parameter LP set to
1000. The results indicate that the average fitness function values achieved by applying the
PSO algorithm, Firefly algorithm (FA) and ALPSO algorithm are worse than those of the
SaNSDE algorithm, for Test Case 8 through Test Case 10. This indicates that the SaNSDE
algorithm can stably find better solutions. In terms of convergence speed, the average
number of generations required for the SaNSDE algorithm to find the best solutions is
significantly smaller than those of the PSO algorithm, Firefly algorithm (FA) and ALPSO
algorithm, for most test cases, according to Table 20, Figures 9 and 10. Therefore, the
SaNSDE algorithm also enjoys faster convergence speed.

Table 20. Average fitness values and average number of generations for PSO, FA and SaNSDE with
algorithmic parameter LP = 1000.

Test Case Participant
(D/P) PSO FA ALPSO SaNSDE (LP = 1000)

1 3/10 18.305/43.6 18.305/52.7 18.305/82.5 18.305/2.8

2 5/11 23.518/233.1 20.9662/134.9 23.518/266.6 23.518/7.6

3 5/12 24.79/691.8 24.3962/328.3 24.79/406.9 24.79/7.1

4 6/12 36.58/929.1 36.58/573.1 36.58/548.6 36.58/12.9

5 7/13 30.063/969.5 30.063/1618.6 30.063/1196.6 30.063/14.7

6 8/14 62.18/638.3 62.18/546.5 62.18/483.4 62.18/7

7 9/15 79.64/2643.4 77.3834/3206 79.64/1245.1 79.64/45.4

8 20/20 15.6939/27,714.3 10.8847/19,374.3 15.7567/30,399.2 23.644/601.2

9 30/30 27.9224/28,346.9 −2.3761/23,731.4 28.9539/32,209 139.7357/25,470.7

10 40/40 −2.5351/29,242.7 −4.0021/21,267.9 −0.5502/29,617.2 144.6829/15,030.9
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Figure 9. The average number of generations obtained by PSO, FA, ALPSO and SaNSDE with
LP = 1000 for Case 1, Case 2, Case 3, Case 4 and Case 5.

Figure 10. The average number of generations obtained by PSO, FA, ALPSO and SaNSDE with
LP = 1000 for Case 6, Case 7, Case 8, Case 9 and Case 10.

The experiments are conducted on a laptop with Intel(R) Core(TM) i7 CPU, 16 GB of
memory on board and a base clock speed of 2.6 GHz. The average CPU time for SaNSDE
with LP = 1000 is shown in Figure 11. Case 9 takes about (over) 3 min. Case 10 takes about
(over) 5 min. The CPU time can be cut down if a newer laptop with Intel(R) Core(TM) i9
CPU with a base clock speed of 3.5 GHz and a turbo clock speed of 4.8 GHz is used.
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Figure 11. The average CPU time of SaNSDE with LP = 1000 for all Cases.

6. Discussion

Ridesharing has long been recognized as one potential way to improve sustainability
in cities, by reducing energy consumption and greenhouse gas emissions. Besides the
factors of cost and time, due to the relatively high rideshare crime rate, safety and trust
become major determinants for the adoption of ridesharing. This paper aims to propose
a social network assisted decision-making formulation for trust-based ridesharing and a
more effective self-adaptive neighborhood search algorithm for solving the trust-based
ridesharing problem. The proposed SaNSDE algorithm searches solutions by jointly taking
into account scale factor, neighborhood search concept and self-adaptation of mutation
strategies in the stochastic optimization process.

The lack of considering the trust factor is one of the main obstacles for people to adopt
the ridesharing mode of transport in daily life. In this study, we propose a decision model
to take the trust requirements of drivers and riders into account in the ridesharing problem.
In this paper, a shared mobility system that considers the trust requirements of passengers
and drivers is called a trust-based shared mobility system. To consider the trust factor in
the ridesharing problem, it is assumed that a driver and a passenger can share a ride only
if their trust requirements can be satisfied. A directed graph-based social network model is
adopted in this study. Trust between drivers and passengers is described based on their
social network. The trust level between nodes is represented by weight, associated with the
set of edges in the social network model. The trust requirements are related to the trust level
between drivers and passengers in the social network. In a trust-based shared mobility
systems, a driver may request his/her minimal trust level requirements to share a ride with
a passenger. If minimal trust level requirements requested by the driver cannot be satisfied,
the driver will not share a ride with the passenger. Similarly, a passenger may request
his/her minimal trust level requirements to share a ride with a driver. If minimal trust level
requirements requested by the passenger cannot be satisfied, the passenger will not share a
ride with the driver. Based on the trust level specified in the social network model, and
minimal trust level requirements requested by the drivers/passengers, an optimization
decision problem is formulated to find the solution for ridesharing recommendations. Due
to computational complexity, a metaheuristic algorithm based on the Differential Evolution
approach has been developed to solve the trust-based ridesharing decision problem and
assess its effectiveness.

We verified the functionality to meet the trust requirements of drivers and passengers
and studied the characteristics and effectiveness of the proposed algorithm. To verify the
functionality to satisfy the trust requirements of drivers and passengers, we applied the
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proposed algorithm to two examples of the trust-based ridesharing problem and analyzed
based on the outputs of the algorithm. The results indicate the proposed algorithm can
meet the trust requirements of drivers and passengers.

To study the characteristics of the proposed algorithm, we conducted several experi-
ments by changing the learning period parameter. The results indicate that the average
number of generations required to find the best solutions tends to decrease by increasing
LP for most test cases. This is due to the fact that the best strategy can be found only if
the learning period parameter LP is big enough. If the algorithmic parameter LP is too
small, the best strategy cannot be learned within the learning period. In this case, the
probability to select the best strategy to create a mutant vector will be lower than expected
and, therefore, the number of generations required to find the best solutions will be greater.
If the algorithmic parameter LP is big enough, the best strategy can be learned within
the learning period. In this case, the probability to select the best strategy to create a
mutant vector will be higher and, hence, the number of generations required to find the
best solutions will be smaller.

To study the effectiveness of the proposed algorithm, we performed a number of
experiments on several test cases by applying the proposed SaNSDE algorithm and other
algorithms, including DE, NSDE, PSO, FA and ALPSO algorithms, and analyzed the
numerical results of the experiments. The results indicate that the average fitness function
values achieved by the SaNSDE algorithm are either as good as or better than DE, NSDE,
PSO, FA and ALPSO. In terms of convergence speed, the average number of generations
required for the SaNSDE algorithm to find the best solutions is significantly smaller than
those of the DE, NSDE, PSO, FA and ALPSO algorithms for most test cases. Therefore, the
SaNSDE algorithm enjoys faster convergence speed.

The effectiveness of the SaNSDE algorithm is due to the mechanism to learn better
strategies in the optimization. After the learning period, the SaNSDE algorithm will select
better strategies in the evolution processes. The number of generations required for many
evolutionary algorithms to find the best solutions grows dramatically with the problem
scale. Therefore, the number of generations required by the SaNSDE algorithm to find the
best solutions will also increases dramatically. The advantage is that the SaNSDE algorithm
is able to identity better strategies to find better solutions and jointly switch between
strategies. The issue to deal with larger cases is an interesting future research direction.

There are alternatives to deal with passengers and drivers that may enter the rideshar-
ing system sequentially in the real world. Typically, a decision support system for rideshar-
ing makes decisions within a time period. The requests of drivers and passengers arriving
before the start of the decision time period will be considered by the ridesharing decision
support system. The decision support system will determine the matched drivers and
passengers. Unmatched drivers and passengers will be considered in the next time pe-
riod. The decision model proposed in this paper supports multi-drivers/multi-passengers,
multi-drivers/single-passenger and single-driver/multi-passengers. Although the decision
model proposed in this paper is based on the multi-driver/multi-passenger scenario, it can
be applied to multi-driver/single-passenger and single-driver/multi-passenger scenarios.
The proposed decision support system for ridesharing may consider each passenger and
the potential drivers as a matching problem and solves the problem one after another. It
may also consider each driver and the potential passengers as a matching problem and
solves the problem one by one. There is a trade-off between performance and response time
of different application scenarios, mentioned above. A ridesharing decision support sys-
tem based on the multi-driver/multi-passenger scenario may achieve better performance
but need more computational time. A ridesharing decision support system based on the
multi-driver/multi-passenger scenario may achieve better performance but may not be
able to respond to users quickly, as it requires more computational time. A ridesharing
decision support system based on the multi-driver/single-passenger or single-driver/multi-
passenger scenarios need less computational time and provide quick responses to users,
but the performance may be degraded.
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7. Conclusions

Due to the relatively high rideshare crime rate, safety and trust become important
factors for the adoption of ridesharing, besides the factors of cost and time. One way to
ensure safety/trust is to take advantage of the social relationship of ridesharing participants
in relevant social networks. Although trust level may be linked to social distance, it is
not the same as social distance. A proper model to capture the level that one participant
trusts another is to consider both the social distance and other factors not directly relevant
to social distance. In this study, we consider a trust model that takes into account social
distance as well as non-social distance factors. In this paper, we have taken the first step
to develop a well-compatible ridesharing decision-making algorithm, taking into account
the trust factor in the poly-variant stochastic optimization process. This study aims to
develop a decision model and associated solution methods to ensure the satisfaction of
trust requirements of ridesharing participants. In the proposed decision model, the trust
level between nodes is represented by weight, associated with the set of edges in the social
network model. In a trust-based shared mobility system, a driver may request his/her
minimal trust level requirements to share a ride with a passenger. A ride can be shared
between a driver and relevant passengers only if the minimal trust level requirements
requested by the driver and relevant passengers are satisfied. Based on the trust level
specified in the social network model and minimal trust level requirements requested
by the drivers/passengers, an optimization problem is formulated to find the solution.
Due to computational complexity, a self-adaptive DE with neighborhood search (SaNSDE)
algorithm, based on the Differential Evolution approach, has been developed to solve the
trust-based ridesharing decision problem and assess its effectiveness.

To study the effectiveness of the proposed algorithm, we performed a number of
experiments by applying the proposed SaNSDE, DE, NSDE, PSO, FA and ALPSO algo-
rithms to find solutions for several test cases. The results indicate that the solutions found
by the SaNSDE algorithm are either as good as or better than DE, NSDE, PSO, FA and
ALPSO algorithms. In addition, the SaNSDE algorithm outperforms DE, NSDE, PSO, FA
and ALPSO algorithms in terms of convergence speed for most test cases. This study
shows that the SaNSDE algorithm can be applied to generate ridesharing recommendations
effectively. One future research direction is to apply the SaNSDE algorithm to other types
of recommender systems or applications.
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