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Abstract: In this study, a reconfigurable low-density parity-check (LDPC) decoder is designed with
good hardware sharing for IEEE 802.15.3c, 802.11ad, and 802.11ay standards. This architecture flexibly
supports 12 types of parity-check matrix. The switching network adopts an architecture that can
flexibly switch between different inputs and achieves a low hardware complexity. The check node unit
adopts a switchable 8/16/32 reconfigurable structure to match different row weights at different code
rates and uses the normalised probability min-sum algorithm to simplify the structure of searching
for the minimum value. Finally, the chip is implemented using the TSMC 40 nm CMOS process,
based on the IEEE 802.11ad standard decoder, extended to support the IEEE 802.15.3c standard, and
upwardly compatible with the next-generation advanced standard IEEE 802.11ay. The chip core size
was 1.312 mm × 1.312 mm, the operating frequency was 117 MHz when the maximum number of
iterations was five with the power consumption of 57.1 mW, and the throughput of 5.24 Gbps and
3.90 Gbsp was in the IEEE 802.11ad and 802.5.3c standards, respectively.

Keywords: error correction code; low-density parity-check code; min-sum algorithm; ASIC implementation

1. Introduction

With the rapid development of multimedia equipment and the advancement of tech-
nology, ultra-high-quality equipment with a resolution of 3840 × 2160 (4K2K) pixels, such
as ultra-high-definition television (UHDTV) projectors, has been developed. Most products
use high-definition multimedia interface (HDMI) lines as transmission media, which is
expensive and has length limitations; therefore, wireless transmission is an ideal solution.
Equipment for augmented reality (AR) or virtual reality (VR), mirroring mobile devices,
etc., also tend to use wireless transmission. Thus, 60 GHz wireless transmission plays an
important role in the fifth-generation (5G) era, where a high transmission rate, large data
volume, and low latency are emphasised.

In communication systems, forward error correction (FEC) is used to protect data
from errors caused by noise interference during transmission. After the data are encoded
by the error correction code, even if noise interference occurs in the transmission channel
during transmission, the error message can be recovered at the receiving end through
the decoding process. In 1962, Gallager invented a low-density parity-check (LDPC) [1]
code, and after MacKay added the concept of iterative processing in 1999 [2], the decoding
performance was very close to the Shannon limit. Because LDPC codes have excellent error
correction performance, they are widely used in wireless communication systems, including
the IEEE 802.11ad/ay standard adopted by Wireless Gigabit (WiGig), the IEEE 802.15.3c
standard adopted by Wireless HD (WiHD), and the IEEE 802.11ax standard adopted by
Wi-Fi. Furthermore, LDPC codes can be considered to improve the quality of transmission
of critical applications using the 2.4 GHz-based Zigbee/Bluetooth communications [3,4]
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and artificial-intelligence-assistant wireless sensor networks [5–7] because of their excellent
error correction performance and efficient hardware acceleration. Additionally, the LDPC
code was proposed in the 15th edition of the 5G new-radio (NR) specification published
in 2018. Recently, several studies proposed hardware-efficient LDPC encoders [8,9] and
decoders [10,11] for high-throughput 5G NR communication systems.

In recent years, many communication standards that adopted the LDPC code have
been introduced in HD video wireless transmission, as shown in Table 1. It can be seen that,
compared with the crowded 2.4 GHz band, the standard applied on the 60 GHz frequency
band has the advantage of a high transmission rate. While WiHD uses the IEEE 802.15.3c
communication standard and WiGig uses IEEE 802.11ad and its upgrade standard IEEE
802.11ay, the communication specifications of the three standards are different. If hardware
sets are designed independently for each communication standard, the associated costs are
extremely high. Thus, the previous study in [12] has been proposed a key reconfiguarable
processing unit of LDPC decoding for the IEEE 802.15.3c and IEEE 802.11ad standards.

Table 1. Current wireless transmission technology for 60GHz wireless local area networks.

Application WiHD WiGig

Transmission standard IEEE 802.15.3c IEEE 802.11ad IEEE 802.11ay
Working frequency 60 GHz 60 GHz 60 GHz

FEC code LDPC codes
(Code rate: 1/2–7/8)

LDPC codes
(Rate 1/2–13/16)

LDPC codes
(Rate 1/2–13/16)

Theoretical transmission rate 10~28 Gbps 7~28 Gbps 20~100 Gbps

In this study, we have further designed and implemented a complete LDPC decoder
based on the IEEE 802.11ad standard, extended to support the IEEE 802.15.3c standard and
upwardly compatible with the IEEE 802.11ay standard, with low hardware cost, low power
consumption, and high throughput. To our best knowledge, this study presents the first
reconfigurable multimode LDPC decoder architecture that flexibly supports 12 LDPC matri-
ces of the IEEE 802.15.3c, IEEE 802.11ad, and IEEE 802.11ay standards for HD video wireless
transmission and provides sufficient details through detailed architecture design and the
prototyping chip implementation. To support different standards, block-layer divisions of
the matrices in the different standards are initially proposed to achieve reconfigurability
and good hardware sharing for the reconfigurable LDPC decoding. In order to match
the different row weights of different LDPC matrices, a switchable 8/16/32 hardware-
shared structure is subsequently proposed for the key computational units, memories, and
switching network and employed in the reconfigurable LDPC decoder architecture. The
designed switching network flexibly switches between different inputs and achieves low
hardware complexity. Compared with the traditional switching network, the designed
switching network only requires 0.08% look-up-table bits to reconfigure the switches and
support the multiple standards. The reconfigurable multimode LDPC decoder has been
implemented using the TSMC 40 nm CMOS process in a core size of 1.72 mm2 with the
power consumption of 57.1 mW and throughput of 5.24 Gbps at the maximum operating
frequency of 117 MHz in the IEEE 802.11ad standard. Additionally, the throughput of
3.9 Gbps and power consumption of 57.1 mW are achieved at the same operating fre-
quency in the IEEE 802.15.3c standard. Compared with the LPDC decoders that support
the individual standard, the reconfigurable multimode LDPC decoder implementation
achieves approaching area efficiency and energy efficiency to alternatively support the
IEEE 802.15.3c, IEEE 802.11ad, and IEEE 802.11ay standards.

The rest of this study is organised as follows. In Section 2, the characteristics and
decoding of LDPC code are introduced. In Section 3, LDPC decoding is evaluated using
the matrices of three standards for the 60 GHz wireless local area networks. In addition,
for reconfigurability, the matrixes are divided into block layers. Section 4 describes the
proposed decoder architecture in detail, including the computational units, switching
network, and memory. Section 5 presents the VLSI implementation results of the proposed
LDPC decoder and compares them with other related works. Finally, Section 6 concludes
the study.
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2. Fundamentals of LDPC Code and Decoding

The LDPC code is a type of linear block code composed of a sparse matrix. The
sparse matrix is a parity-check matrix H composed of mostly 0′s and a lesser number of
1′s. There are N columns and M rows in the H matrix, and the code rate is defined as
R = (N −M)/N. In the H matrix, each row represents a check node (CN), and the number
of 1′s in each row is called the row weight (wr); each column represents a variable node
(VN), and the number of 1′s in each column is called the column weight (wc). The 1 in the H
matrix also represents the exchange of data between the CN and VN, as shown in Figure 1.
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Figure 1. Example of (a) H matrix mapping to the (b) Tanner graph.

The quasi-cyclic (QC) LDPC code [13] is a common method for hardware implementa-
tion of LDPC decoding because it achieves different parallelisms in decoding with greater
ease and enables easier memory access owing to its regularity. Figure 2 shows the QC-LDPC
H matrix with R = 13/16 in the IEEE 802.11ad standard. Each block is a submatrix with
an expending factor z. The blank block is a z× z zero matrix. The number represents the
number of shifts in the z× z identity matrix to the right. The entire matrix can be expressed
as m× n where m = M× z and n = N × z.
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The recent soft and hard decoding algorithms of LDPC codes have been significantly
reviewed and summarized in [14]. The original soft decoding algorithm is the sum-product
algorithm (SPA) [2], which has excellent error correction performance; however, the hard-
ware implementation complexity is high. The normalised min-sum algorithm (NMSA) [15]
instead of the SPA was widely used in chip implementations because of its low hardware
complexity and good error-correction capabilities [16]. In terms of decoding, the iterative
layer decoding schedule [17] was utilised, which includes two operations, CN and VN, and
the decoding process, as shown in Figure 3. After receiving the channel information, the
decoder starts iterative decoding. In the NMSA, we initially define yj as the received chan-
nel information, Linit, j as initial log-likelihood ratio (LLR) message, Qk

i,j as prior message,

Rk
i,j as extrinsic message, and Lj as posterior message, where i is the index of the row of H, j

is the index of the column of H, and k is the index of the decoding iteration. The NMSA
includes four steps, and the equations are described as follows.
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1. Initialization: The decoder receives each jth channel message yj to initialise Linit, j.

Linit, j = log

(
P(xj = 0

∣∣yj)

P(xj = 1
∣∣yj)

)
. (1)

2. Prior message updates: If k = 1, Lj is updated as Linit, j and R0
i,j is set to zero.

Qk
i,j = Lj − Rk−1

i,j . (2)

3. CN (extrinsic message) updates:

Rk
i,j = α·

 ∏
j′∈N(c)\j

sign
(

Qk
i,j′

)( min
j′∈N(c)\j

∣∣∣Qk
i,j′

∣∣∣), (3)

where α is a normalisation factor.
4. VN (posterior message) updates:

Lj = Qk−1
i,j + ∑

i∈M(v)
Rk

i,j. (4)

The steps 2–4 iteratively continues until the maximum number of iterations is reached.
When the iteration terminates, a hard decision is made by

hj =

{
0, if Lj ≥ 0
1, if Lj < 0

. (5)

For reference, the study in [18] extends single-decoder decoding to parallel decoding
with multiple sub-decoders and improves decoding performance of an LDPC code.

To reduce the hardware complexity of independently designing a set of decoders
for different standards, this study proposes that it can be used in IEEE 802.11ad, IEEE
802.15.3c, and IEEE 802.11ay multimode LDPC decoders. Instead of using the NMSA,
this study used the normalised probability min-sum algorithm (NPMSA) [19], which has
low hardware complexity. In general, Equation (3) is the critical step with the highest
computational complexity. To further simplify the computational complexity, the NPNSA
was used to simplify the comparator in the sorter. The original comparator compares the
two input data (IN_1 and IN_2) and outputs the minimum value (Min) and the second
minimum value (2nd Min), as shown in Figure 4a. However, the simplified comparator
discards the information of the second minimum value and outputs only that of the first
minimum value, as shown in Figure 4b. According to this method, the second minimum
value obtained was probably correct (Prob. Min), as shown in Figure 5. Dividing the input
of the sorter into G groups and using G to 2 comparators in the last stage of the comparators
slightly reduces the performance, but it can significantly reduce the hardware complexity
of the operation. For reference, several alternative methods [11,20,21] were proposed to
reduce the gap between the accurate second minimum and probabilistic second minimum
and recover the decoding capability.
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3. Proposed LDPC Decoding for the Multi-Standard 60 GHz Wireless Local Area Networks

To design a set of hardware-sharing decoders, it is necessary to understand the matrix
parameters in all standards and to identify the parts that can be shared in different standards.

3.1. Standard Parameters and Matrix Configuration

The QC-LDPC matrix used by IEEE 802.11ad has R = 1/2, 5/8, 3/4, and 13/16, as
shown in Figure 6a,b. M changes according to distinct R, that is, 8, 6, 4, and 3. N is fixed
at 16 and z is 42. Therefore, n is 16 × 42 = 672. The QC-LDPC matrix used in the IEEE
802.15.3c standard also has R = 1/2, 5/8, 3/4, and 7/8, as shown in Figure 7a,b. N is fixed
at 32, and z is 21. It can be observed that n is 32 × 21 = 672, as for IEEE 802.11ad.
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Figure 6. IEEE 802.11ad parity check matrix with R = (a) 1/2, (b) 5/8, (c) 3/4, and (d) 13/16.
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Figure 7. IEEE 802.15.3c parity check matrix with R = (a) 1/2, (b) 5/8, (c) 3/4, and (d) 7/8.

IEEE 802.11ay is the upgraded standard of IEEE 802.11ad, and its QC-LDPC matrix
is made up of the IEEE 802.11ad matrix in-place 2nd lifting, as shown in Figure 8. Taking
R = 13/16 as an example, the first submatrix with a value of 29 is expanded into four
submatrices after the 2nd lifting operation. The 2nd lifting matrix only has two values: 0
and 1. Zero indicates that the value of the original matrix is expanded in the format of
the identity matrix, and 1 indicates that the value of the original matrix is expanded in
the format of the identity matrix and shifted by one unit to the right. The IEEE 802.11ay
matrix and the 2nd lifting matrix are shown in Figures 9 and 10. Finally, we unified the
three standard parameters in Table 2.
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Figure 9. IEEE 802.11ay 2nd lifting matrix with R = (a) 1/2, (b) 5/8, (c) 3/4, and (d) 13/16.
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Figure 10. IEEE 802.11ay parity check matrix with R = (a) 1/2, (b) 5/8, (c) 3/4, and (d) 13/16.

Table 2. Parameters of three standards for 60 GHz wireless local area networks.

Standards IEEE 802.11ay IEEE 802.11ad IEEE 802.15.3c

Rate 1/2 5/8 3/4 13/16 1/2 5/8 3/4 13/16 1/2 5/8 3/4 7/8
Row 16 12 8 6 8 6 4 3 16 12 8 4

Column 32 32 32 32 16 16 16 16 32 32 32 32
Expansion factor 42 42 42 42 42 42 42 42 21 21 21 21

Code length 1344 1344 1344 1344 672 672 672 672 672 672 672 672
Row weight 8 10 15 16 8 10 15 16 8 15 16 32

3.2. Proposed Block Layer Decoding for the IEEE 802.11ad, IEEE 802.11ay, and IEEE
802.15.3c Standards

Before deciding on the hardware architecture, we must consider the characteristics of
the matrix to determine the hardware parallelism and the amount of computation required.
The transmission of decoding information in layer decoding is closely related to the row
weights. As an example, the IEEE 802.11ad R = 1/2 matrix is illustrated in Figure 11a. We
observe that the row weights are staggered between layers 1 and 2, which implies that the
data are not transferred between the two layers for calculation. Therefore, to improve the
decoding efficiency, we can decode the two layers without data dependency together, and
we refer to this as a block layer, as shown in Figure 11b.
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Figure 11. IEEE 802.11ad R = 1/2 block layer: (a) divided block layer and (b) block layer decoded
data update transmission.

In the IEEE 802.11ad R = 5/8 matrix shown in Figure 6b, the row weights of layers 1
and 2 are larger and overlap compared with the R = 1/2 matrix. Therefore, layers 1 and 2
in the R = 5/8 matrix are separately regarded as a block layer. However, layers 3–4 and
layers 5–6 in the R = 5/8 matrix are the same as those of the R = 1/2 matrix; therefore, the
two layers can be regarded as one block layer. R = 3/4 and 13/16 have a high row weight
distribution density; therefore, they can be decoded according to the original layer. All the
matrix layouts marked in the red blocks are shown in Figure 6.

On the other hand, the IEEE 802.15.3c standard can also use the block layer for
decoding operations. It is worth noting that the four matrices of the four code rates of the
IEEE 802.15.3c standard can be divided into four block layers, which are the same as those
of the IEEE 802.11ad standard as shown in Figure 7.

Finally, the IEEE 802.11ay standard can merge more layers into one block layer for
operation. Considering the subsequent hardware parallelism planning, only two layers
were merged into one block layer, making the matrix operation similar to the IEEE 802.11ad
standard, as shown in Figure 10.

3.3. Finite Word-Lengths of Reconfigurable Multimode LDPC Decoder

Before introducing the proposed architecture of reconfigurable multimode LDPC
decoder, it is very important to initially decide the finite word-lengths of the decoder using
the fixed-point simulations. First, the floating-point simulations must be performed for
evaluating the NPMSA compared with the original NMSA. The simulated channel was
AWGN, the normalisation factor was 0.75, and the maximum number of iterations was 5.
We simulated IEEE 802.11ad, IEEE 802.15.3c, and IEEE 802.11ay, respectively, as shown in
Figures 12–14. In the two standards IEEE 802.11ad and IEEE 802.15.3c with a code length
of 672, it can be seen that the use of NPMSA will cause some performance loss, but there
will be the advantage of reduced hardware complexity. However, in the higher code length
IEEE 802.11ay standard, it can be seen that the loss of performance is very small. It can be
seen that the longer the code length of the LDPC, the better the decoding performance.

After confirming the performance of the algorithm through a floating-point simulation,
the fixed-point simulations are used to determine the finite word-lengths required for the
quantised multimode LDPC decoding on the hardware. The integer digits are fixed and the
fractional bits are increased upwards, as shown in Figures 15–17. The bit is represented as
(integer bit, fractional bit), and the integer bit does not include a sign bit. Finally, we set the
integer bits to five, with one fractional bit. The total number of bits, including the sign bit, is
seven. The simulated performance was close to the result of the floating-point simulation.
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4. Architecture Design of Proposed Reconfigurable Multimode LDPC Decoder

This section introduces the architecture of a multi-mode LDPC decoder that supports
the IEEE 802.11 ad, IEEE 802.15.3 c, and IEEE 802.11 ay standards. This can be divided into
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three parts. The first part consists of the memory for the calculation result, which includes
posterior memory and extrinsic memory. The second part comprises an information switch
network with different matrices for different standards. The third part is the computing
kernel that contains the prior message processing unit (PMU) for calculating the prior
messages, the CN processing unit (CNU) for calculating the extrinsic messages, and the VN
processing unit (VNU) for calculating the posterior messages. The architecture is shown in
Figure 18. The entire decoder hardware uses seven quantised bits for data transmission,
and the arithmetic unit is performed at 21 parallelisms. For more details of the entire LDPC
decoder, readers can refer to [22,23].
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4.1. PMU

The PMU receives the prior messages and extrinsic messages of the previous iteration
and updates the prior messages. For the first iteration, as there is no information from
a previous iteration, the extrinsic messages are initialised to zero, and the information is
passed to the CNU for the calculation. In subsequent iterations, the input of the extrinsic
messages selects different split blocks according to different matrices. The PMU architecture
is illustrated in Figure 19.
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4.2. CNU

Figure 20 shows the architecture of the CNU. After receiving the prior message, the
sign and magnitude of the message were separated. Because the value of the minimum
searcher in CNU must be an absolute value, in terms of signs, exclusive OR logic operations
are performed on all signs.
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Figure 20. Reconfigurable CNU architecture.

In the sorter, the number of inputs is mainly determined according to the row weight
in layered decoding, and a set of sorters can perform a row operation. Thus, the expansion
factor z represents the maximum parallelism of the hardware. However, in a multimode
decoder, we can regard the defined block layer as a layer operation, and a block layer
operation requires 21 sets of the 32-input sorter to be realised. We refer to the reconfigurable
architecture of [24], as shown in Figure 21, and apply it to our multimode decoder. This
reconfigurable sorter was originally used in the IEEE 802.15.3c standard; however, we
extended it to the IEEE 802.11ad and IEEE 802.11ay standards. Specific arrangements
are made such that the block layer under different standards and code rates cannot have
redundant idle hardware during the calculation process.
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Figure 21. Reconfigurable 8/16/32 input sorter architecture.
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Figure 22 shows the IEEE 802.11ad R = 1/2 arrangement. Each sorter-8 represents a
minimum value finder (MVF) with eight inputs, and we use 21 sets of parallel hardware
for simultaneous operation. We know that the maximum row weight of the IEEE 802.11ad
R = 1/2 is 8; therefore, each sorter-8 can calculate one row, and 21 parallelisms can calculate
rows 1 to 21. Therefore, sorter-8#1 and sorter-8#2 can only calculate a layer with an expan-
sion factor of 42, and sorter-8#1 to sorter-8#4 can only perform block-layer calculations.
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Figure 22. Reconfigurable sorter configuration in IEEE 802.11ad R = 1/2.

The expansion factor of IEEE 802.15.3c is 21, which is half that of IEEE 802.11ad, but
the number of layers contained in one block layer is twice that of IEEE 802.11ad; therefore,
the same hardware can be used for calculation. Taking the IEEE 802.15.3c R = 1/2 as an
example, as shown in Figure 23, R = 1/2 uses four sets of sorter-8 for calculation. In the
case of a parallelism of 21, sorter-8#1 can handle operations from rows 1 to 21 in one layer,
whereas sorter-8#1 to sorter-8#4 can only operate on one block layer.
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Figure 23. Reconfigurable sorter configuration in IEEE 802.15.3c R = 1/2.

Because IEEE 802.11ay is an extension of IEEE 802.11ad, the arrangement of the IEEE
802.11ay sorter is the same as that of IEEE 802.11ad. The difference is that each block layer
is doubled, so the number of calculations required is doubled. Regardless of the standard,
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the reconfigurable 32-input sorter can support block-level operation. There are a total of 4
schemes that will be used, as shown in Figure 24.
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4.3. VNU

The VNU is similar to the PMU. It contains 32 sets of parallel-computing processors.
The difference is that the prior messages are obtained from the PMU and the extrinsic
messages are obtained from the CNU for calculation. The final calculated posterior message
is stored in the posterior memory for the next iteration operation, as shown in Figure 25.
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4.4. Switching Network

The design of the switching network in the reconfigurable multimode decoder architec-
ture is also a topic that is often discussed. A multimode switching network requires different
input and output sizes in different standards between the memory and processing units,
and the control signal in the reconfigurable design will also be very complicated. Therefore,
the designed switching network architecture is based on the architecture in [25]. Compared
to the traditional Benes network [26], this architecture has the following advantages:

1. The number of inputs may not be a power of 2.
2. The number of bits required for the look-up table is very small.
3. The hardware usage rate of the proposed multi-mode architecture is extremely high.

This switching network is based on the expansion of 2 × 2, 3 × 3, or 5 × 5 switch-
ing networks, so the maximum input size PM may not be a power of 2, where PM = β2i,
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β ∈ {2, 3, 5}, and i ∈ {1, 2, 3, . . .}. When the number of inputs required is 42, a tra-
ditional Benes network will need to use a network with 26 = 64 inputs, and the set of
hardware will use SM/2× (2 log2 SM − 1) = 352, 2 × 2 switches, where SM is the Benes
network input size. However, using the network architecture proposed in [25] requires the
use of a 3× 24 = 48 input network; the set of hardware will use 3× 2i + 3× 2i log2 2i = 240,
2×2 switches, and the number of 2 × 2 switches used will be reduced by 112.

In this study, we employ the similar notations and illustration revealed in [25] to
demonstrate the reconfigurable switching network. Figure 26a illustrates the example of
six-input switching network architecture for (p, c, PM) = (5, 3, 6) used in the reconfigurable
decoder architecture, where p is the size of the submatrix and c is the shifting value. There
are three stages, F1, FL, and L1. F1 stage has three switches with the control signal f 1,j. L1
stage also has three switches with the control signal l1,j. FL stage has six switches with the
control signal flj. Figure 26b shows the values of control signals for this six-input switching
network. When the status of the switch is “CROSS”, the value of control signal is “1”.
When the status of the switch is “BAR”, the value of control signal is “0”. It is noteworthy
that the large switching network architecture can be split into two small switching network
architectures. As shown in Figure 26, (5, 3, 6), switching network is split into (2, 1, 3) and
(3, 2, 3) switching network architectures.
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Figure 26. (a) Six-input switching network architecture and (b) its control signal table for (p, c, PM) = (5, 3, 6).

As PM increases, the switching network architecture becomes complicated. Practically,
the control signal in the switching network can be realised using a lookup table. The
method for determining the control signal is shown in Figure 27. Block (A) is used to
determine the control signal of switches in the F stages, and Block (B) is used to determine
the control signal of switches in the L stages. Finally, the control signal of switches in the
FL layers is determined in Block (C). When PM is large, the control signal of each switch
can be feasibly determined using the above process illustrated in Figure 27. For the more
details of the control signal generation of the switch, readers can refer to [25]. Taking the
24 × 24 shifting network as an example, the control signal generated by a shifting value of
14 is shown in Figure 28. In F1–F3 and L1–L3 stages, each stage has twelve switches. FL
stage has 24 switches. The control signal of each switch (i.e., fi,j, li,j, and flj) was determined
by the method shown Figure 27.
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Figure 28. Control signal table for (p, c, PM) = (21, 14, 24).

Figure 29 illustrates the top 48× 48 shifting network used in the reconfigurable LDPC de-
coder architecture, and the control signals of switches are determined for (p, c, PM) = (42, 29, 48).
It is too complicated and trivial to illustrate the control signal table in this study. We believe
readers can achieve it based on the examples demonstrated in Figures 26–28. Compared
with the traditional Benes network [26], the control signals that we need is simplified and
requires only 588 bits, as shown in Table 3. Applying the architecture in [25] to the designed
architecture successfully reduced the hardware complexity significantly. Compared with the
Benes network, the designed architecture reduces 1792 2× 2 switches. Finally, we used 16 sets
of parallel 48× 48 shifting networks that can meet the parallel computing requirements of the
IEEE 802.11ad and IEEE 802.11ay standards with an input requirement of 42 and a maximum
row weight of 16. In the IEEE 802.15.3c standard, the required number of inputs is 21 and
the maximum row weight is 32, which means that 32 sets of parallel hardware are required,
and the number of inputs of each set must satisfy the requirement of 21 inputs. However, we
observed that a 48 × 48 shifting network transforms into two 24 × 24 shifting networks after
being split into two groups for the first time. According to this, 16 sets of 48 × 48 shifting
networks can meet the requirement of 32 sets of 24 × 24 shifting networks for IEEE 802.15.3c
standard. This only requires the additional multiplexers between the F4 to F3 and L3 to L4
transmission networks, as illustrated in Figure 29. Only adding multiplexers can complete the
switching between different modes, so that hardware sharing is high.
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Table 3. Comparison of distinct switching networks.

Network Benes Network [26] This Work

Network size 64× 64 48× 48
Look-up table (bits) 709,984 (100%) 588 (0.08%)

4.5. Memory Organization

Memory is divided into two parts: posterior memory and extrinsic memory, both of
which are used to save the posterior messages and extrinsic messages required for the next
iteration after the current iteration update. Considering the auto place and route (APR)
congestion problem, the memory design adopts a register-based design that can be placed



Electronics 2022, 11, 733 19 of 23

more flexibly. The posterior memory part adopts a single-port design, and the extrinsic
memory adopts a two-port design. The posterior memory must save the post-probability
value of the code length. In the IEEE 802.11ad and IEEE 802.15.3c standards, the code
length is 672, but the code length of the IEEE 802.11ay standard is 1344; therefore, we must
follow the maximum demand IEEE 802.11ay standard 1344 code length multiplied by our
quantisation bits 7. Thus, the required memory size is 9408 bits (=1344 × 7).

Four pieces of information need to be saved in the extrinsic memory: address informa-
tion of the minimum value, sign, minimum value, and second minimum value. However,
the amount of information that must be stored in different standards and code rates is also
different. Different data-storage arrangements must be made according to the calculation
results of each block layer. The storage requirements of each code rate under different
standards are listed in Figures 30 and 31. Figure 30 shows the extrinsic memory capacity
required by IEEE 802.11ad, and it is worth noting that the IEEE 802.11ay matrix is extended
by the IEEE 802.11ad matrix, so the required extrinsic memory capacity is the same.
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Finally, the extrinsic memory structure, as shown in Figure 32, was divided into two
parts: Memory_1 and Memory_2. Memory_2 is used only in IEEE 802.11ay. Each memory is
divided into 21 memory banks to store 21 pieces of parallel hardware information, and each
memory bank has four memory cells to store four block-level information. The memory
cell size is 84 bits, and the data will be stored in a total of four cases of different sizes. The
total extrinsic memory size is 14,112 bits (=2 × 21 × 4 × 84).
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Cell library TSMC 40 nm 

Work Voltage 0.9 V 

Codeword Size (n) 672 and 1344 

Code Rate (R) 1/2, 5/8, 3/4, 7/8, 13/16 

Core Size 1.312 mm × 1.312 mm 

Gate Count 1772 K 

Frequency 117 MHz 

Power 57.1 mW 

Throughput 5.24 Gbps 

Latency 3.7 ns 

Figure 33. Chip summary and layout of the proposed reconfigurable multi-standard LDPC de-
coder. 

Currently, there are no other studies discussing the integration of LDPC decoders for 
60 GHZ wireless transmission, and there are no related studies on the implementation of 
the IEEE 802.11ay standard on the chip. Therefore, the results can only be compared with 
the single standard studies of IEEE 802.11ad or IEEE 802.15.3c. For a fair systematic com-
parison with other studies, normalised metrics [11,27] are utilised and listed as follows: 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐴𝑟𝑒𝑎 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (𝑁𝐴𝐸) = 𝑇𝑝 × 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐴𝑟𝑒𝑎 𝑓𝑎𝑐𝑡𝑜𝑟(= (𝑆 40⁄ )ଶ)𝐴𝑟𝑒𝑎 × 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ,  (7)

1 2 3 20．．． 21

22 23 24 41．．． 42

43 44 45 62．．． 63

64 65 66 83．．． 84

Bank1 Bank2 Bank3 Bank20 Bank21

85 86 ．．． 104 105

106 107 ．．． 125 126

127 128 ．．． 146 147

148 149 ．．． 167 168

Bank22 Bank23 Bank41 Bank42

Memory_1 Memory_2

Figure 32. Extrinsic memory in reconfigurable multi-standard decoder.

5. VLSI Implementation of Proposed Reconfigurable Multimode LDPC Decoder

Figure 33 reveals the block-level chip implementation results of the proposed re-
configurable LDPC decoder. The chip was implemented using a TSMC 40 nm CMOS
process with an operating voltage of 0.9 V; operating frequency of 117 MHz; and core area
1.312 mm× 1.312 mm, that is, 1.72 mm2. The throughput is described as follows:

Throughput (Tp) =
Codeword× Frequency[

z
parallelism×Sp

× Block layer
]
× Iteration

, (6)

where z is the expending factor and Sp is the standard parameter (=1 for IEEE 802.15.3c;
=2 for IEEE 802.11ad/ay).
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Currently, there are no other studies discussing the integration of LDPC decoders for
60 GHZ wireless transmission, and there are no related studies on the implementation
of the IEEE 802.11ay standard on the chip. Therefore, the results can only be compared
with the single standard studies of IEEE 802.11ad or IEEE 802.15.3c. For a fair systematic
comparison with other studies, normalised metrics [11,27] are utilised and listed as follows:

Normalized Area E f f iciency (NAE) =
Tp× Normalized Area f actor

(
= (S/40)2

)
Area× Frequency

, (7)
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Normalized Energy E f f iciency (NEE) =
Power× Normalized energy f actor

(
= (40/S)× (0.9/U)2

)
Tp× Iteration

, (8)

where S is the scaled technology and U is the scaled supply voltage. Table 4 shows a
comparison with other IEEE 802.11ad studies. In terms of the NEE, the hardware archi-
tecture we proposed is superior to that of other studies. In the NAE, the performance is
particularly outstanding because [28] only operates at one rate. Table 5 shows a comparison
with other IEEE 802.15.3c-related studies. In comparison with IEEE 802.15.3c, the proposed
hardware architectures are slightly inferior. This is because a large part of the proposed
hardware architecture complies with the hardware added by IEEE 802.11ad and IEEE
802.11ay; therefore, the values cannot be compared with a single standard.

Table 4. Chip comparisons among different LDPC decoders for IEEE 802.11ad standard.

Decoders This Study [28] [29] [30] [31]

Implementation Post-layout Measurement Measurement Measurement Measurement
Technology 40 nm 40 nm 40 nm 28 nm 28 nm

Voltage 0.9 V 0.9 V 1.1 V 0.9 V 0.9 V

Standard IEEE 802.11ad/ay
IEEE 802.15.3c IEEE 802.11ad IEEE 802.11ad IEEE 802.11ad IEEE 802.11ad

Code rate (R) 1/2, 5/8, 3/4
7/8, 13/16 13/16 1/2, 5/8, 3/4,

13/16
1/2, 5/8, 3/4,

13/16
1/2, 5/8, 3/4,

13/16
Algorithm NPMSA MSA MSA MSA MSA

Quantization (bits) 7 5 5 5 4
Iteration 5 5 7 10 4

Parallelism 21 42 16 168 42
Frequency (MHz) 117 500 220 202 470

Tp (Gbps) 5.24 5.6 6.16 6.78 18.4
Area (mm2) 1.72 0.16 0.8 1.99 0.78
Power (mW) 57.1 99 203 104 166

NAE (bits/mm2) 0.026 0.07 0.035 0.0082 0.024
NEE (pJ/bit) 2.179 3.53 3.15 2.19 3.22

Table 5. Chip comparisons among different LDPC decoders for IEEE 802.15.3c standard.

Decoders This Study [32] [33] [34] [24]

Implementation Post-layout Measurement Measurement Measurement Measurement
Technology 40 nm 90 nm 65 nm 90 nm 65 nm

Voltage 0.9 V 1.2 V 1.2 V 1.05 V 1.0 V

Standard IEEE 802.11ad/ay
IEEE 802.15.3c IEEE 802.15.3c IEEE 802.15.3c IEEE 802.15.3c IEEE 802.15.3c

Code rate 1/2, 5/8, 3/4
7/8, 13/16

1/2, 5/8,
3/4, 7/8,

1/2, 5/8,
3/4, 7/8,

1/2, 5/8,
3/4, 7/8,

1/2, 5/8,
3/4, 7/8,

Algorithm NPMSA NMSA NMSA NMSA NMSA
Quantization (bits) 7 10 6 6 6

Iteration 5 10 10 5 5
Parallelism 21 21 21 21 21

Frequency (MHz) 117 768 400 157 197
Tp (Gbps) 3.90 7.92 6.72 5.28 5.79

Area (mm2) 1.72 2.67 1.3 2.25 1.56
Power (mW) 57.1 437.2 537.6 182 361

NAE (bits/mm2) 0.019 0.019 0.034 0.075 0.049
NEE (pJ/bits) 2.92 1.98 2.76 2.25 6.21
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6. Conclusions

In this study, a reconfigurable LDPC decoder was proposed to support the applica-
tion of three standards of 60 GHz wireless transmission: IEEE 802.11ad, IEEE 802.15.3c,
and IEEE 802.11ay. To support different standards, we divide the matrix in different
standards into block layers for decoding to ensure good hardware sharing and use recon-
figurable hardware architecture in the CNU and switch network to save a lot of hardware
consumption. Finally, the multi-mode reconfigurable LDPC decoder applied to 60 GHz
wireless transmission is realised using the TSMC 40 nm CMOS process, using 21 par-
allelisms, two pipeline stages, an operating frequency of 117 MHz, and a core area of
1.312 mm× 1.312 mm; the power consumption is only 57.1 mW. The throughput is up to
5.24 Gbps in the IEEE 802.11ad and IEEE 802.11ay modes, and the throughput is 3.9 Gbps
in the IEEE 802.15.3c mode.
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