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Abstract: A novel sliding mode control method is proposed to achieve the trajectory tracking of the
Unmanned Surface Vessel (USV) and effectively deal with the unmodeled dynamics and external
unknown disturbances. First, a fixed-time fractional-order sliding mode control (FTFOSMC) strategy
is proposed, combined with the fixed-time control theory and fractional-order control theory based
on the sliding mode control method. The FTFOSMC strategy can improve the convergence velocity
of the system, and effectively track the desired path, weakening the “chattering” effect in sliding
mode control systems. Second, a fixed-time fractional-order sliding mode control strategy combined
with the radial basis function neural network (RBF-FTFOSMC) was designed, which can effectively
estimate the lumped uncertainties, such as the disturbance of external wind, wave, and current, and
the unmodeled dynamics of the USV model. Then, the stability and effectiveness of the designed
control strategy are guaranteed by the Lyapunov theory and the corresponding lemmas. Finally, a
rigorous simulation experiment is designed to validate the effectiveness and stability of the proposed
control strategy. The simulation results show that the control strategy can effectively achieve trajectory
tracking of the USV, reduce the “chattering” phenomenon of sliding mode, and effectively estimate
the lumped uncertainties.

Keywords: USV; fractional-order theory; fixed-time control theory; sliding mode control; RBF neural
network; trajectory tracking

1. Introduction

As a representative of the water surface intelligence equipment, the Unmanned Surface
Vessel (USV) has a high degree of autonomy and strong advantages in surface target moni-
toring and reconnaissance [1–4]. As a typical type of uncertainty nonlinear system [5,6], the
USV model has the characteristics of nonlinearity, strong coupling, and a large time delay.
In addition, it is also susceptible to disturbances such as external wind, waves, and currents
during navigation [7]. Therefore, it is of great significance for us to solve the problem of
USV trajectory tracking and system disturbances.

In order to solve the USV trajectory tracking problem, many methods, such as PID
control [8], model predictive control [9], date-driven control [10,11], and sliding mode vari-
able structure control [12,13], have been continuously developed and applied to trajectory
tracking. The sliding mode includes terminal sliding mode control [14], fast integral sliding
mode control [15], non-singular terminal sliding mode control [16], and other control meth-
ods which are widely used in various intelligent control fields due to their insensitivity to
external disturbances and fast response speeds [17]. Qiu [18] proposed a scheme based
on the adaptive sliding mode control method for the trajectory tracking of the underac-
tuated USV by using the adaptive and auxiliary dynamic systems to handle unknown
disturbances and input saturation, respectively; Lopac [19] proposed a simple sliding mode
observation (SMO) to estimate the load angle of a salient-pole wound rotor synchronous
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generator, which improves the accuracy during active and reactive power disturbances
during stable generator operation; Yang [20] proposed an event-triggered sliding mode
control strategy to achieve attitude stabilization on a rigid spacecraft; Liu [21] studied the
consensus of the fast sliding mode control method and multi-agent systems, proving that
exponential consensus can be achieved in finite-time if the communication network has
a directed spanning tree. In the actual control process, the inertia and time delay of the
system will continuously cross the sliding mode surface during the reach process, which
will lead to the phenomenon of “chattering”. All of the above control methods have a
slow convergence speed and only guarantee that the system can converge in asymptotic
time or finite time. The fixed time control theory was first proposed by Polyakov [22], and
this method weakens the “chattering” effect. It also overcomes the shortcomings of the
slow convergence speed and ensures that the system convergence time is independent
on the initial state. Fractional calculus theory was first proposed by Manabe [23], which
is an extension of any order of differentiation and integration. It has the advantages of
high freedom of parameter adjustment, rapid response, and low overshoot. Oustaloup and
other scholars [24,25] initially applied the theory to intelligence equipment and proved
its effectiveness. The fractional-order algorithm is still in its infancy and has not been
widely used in the field of USV. In recent years, fractional-order control theory has been
relatively widely used in intelligence applications. Jun [26] designed a fractional-order
PID (FOPID) control strategy, which effectively improved the motion performance of AUV;
Wang [27] proposed a fractional-order motor model of a DC motor and optimized the
parameters of a FOPID through the particle swarm algorithm and eventually concluded
that after tuning the parameters of FOPID, the fractional-order motor model was better
than the integer-order model, and FOPID had a better control effect; Jun [28] combined a
recurrent neural network (RNN) and a FOSMC method proposed a RNNFOSMC control
strategy, which improves compensation performance and robustness to the active power
filter. The fractional-order control theory is still in its infancy and has not been widely used
in the field of USV. This paper intends to design a fractional-order sliding mode surface
(FOSS) by combining fractional-order control theory and sliding-mode control theory. Then
design a fixed-time fractional-order sliding-mode control (FTFOSMC) strategy based on
the fixed-time theory. It can improve the convergence speed and reduce the impact of
“chattering” on the sliding mode surface, so that the USV can quickly converge to track the
desired trajectory and on the initial state of the system.

There will always be external disturbances and unmodeled dynamics that affect the
navigation of the USV. In order to effectively solve these problems, there are many control
methods that can deal with the system’s lumped uncertainties such as the active disturbance
rejection control [29], the disturbance observer [30–32], and the neural network control [33].
The neural network control method has been used since the 1940s, and is widely used in
various fields due to its precise approximation characteristics and parallel computational
capabilities. Wang [34] proposed an adaptive dynamic surface algorithm for collaborative
trajectory by combining the dynamic surface control and the single hidden layer neural
network. The algorithm realized the estimation of the unknown external disturbances.
Zhang [35] used the neural network algorithm to solve the unknown wind, wave, and
current disturbance in the system, which effectively realized the path tracking control of the
USV. Ignacio [36] designed an adaptive controller for AUV based on deep reinforcement
learning and solved the tracking of AUVs control problems by estimating the unmodeled
dynamic. Although the above papers have effectively achieved an effective approximation
of the unknown disturbance, the convergence time is uniformly asymptotically stable, and
therefore it takes a long time to complete the convergence. This paper intends to use the
RBF neural network to estimate the external disturbance of the USV and the unmodeled
dynamics of the system and guarantee system convergence in fixed-time and improve the
convergence accuracy of the system.

To sum up what is discussed above, a fixed-time fractional sliding mode control
combined with the RBF neural network (RBF-FTFOSMC) strategy is designed to track an
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expected trajectory. First, to solve the problem of slow convergence in the US0V trajectory
tracking and control process, a fixed-time fractional sliding mode control (FTFOSMC)
strategy is designed to enable USV to track the desired trajectory quickly and stably.
Second, an RBF-FTFOSMC strategy is proposed to solve the lumped uncertainties of the
system. The lumped uncertainties can be accurately approximated online and the weight
can be automatically updated. The feasibility and stability of the proposed control strategy
are demonstrated theoretically by the Lyapunov stability theory. Finally, compared with
the adaptive fast nonsingular terminal sliding mode (AFNTSMC) [37] and nonsingular fixe-
time terminal sliding mode (NFTSMC) [38] simulation results illustrate the effectiveness
of the proposed control methods. The simulation results show that the control strategy
can quickly realize the trajectory tracking of the USV, improve the convergence speed and
effectively weaken the influence of “chattering”, and the lumped uncertainties can also be
estimated accurately.

In summary, the main contributions of this paper are as follows:

1. To solve the USV trajectory tracking problem, a novel fixed-time fractional-order
sliding mode control (FTFOSMC) strategy is proposed and applied. Compared with
the AFNTSMC and NFTSMC control strategies, it reduces the number of control
parameters and guarantees accurate trajectory tracking control.

2. Considering the external disturbance and unmodeled dynamics as the lumped un-
certainties, a novel fixed-time fractional-order neural network sliding mode control
strategy combined with the RBF-NN (RBF-FTFOSMC) is proposed to ensure that the
system can converge in fixed time and effectively realize an accurate estimation of
lumped uncertainties.

This paper is organized as follows. Section 2 describes some of the necessary prelimi-
naries and problem descriptions. Section 3 proposes the RBF-FTFOSMC control method
and demonstrates the stability of the method. Section 4 presents the simulation results to
verify the effectiveness of the proposed method. Section 5 presents the conclusions.

2. Problem Description and Preliminaries
2.1. Preliminaries

Lemma 1. Consider the following nonlinear systems [39]:{
ẋ(t)= l(x(t))
x(0)=x0, l(0)=0, x ∈ U0 ⊂ Rn.

(1)

where x = [x1, x2 . . . xn]T , l(·) is a continuous nonlinear function defined on the origin neighbor-
hood U0. If the system has the property of negative homogeneity and can be asymptotically stable,
the system (1) is finite-time stable. Suppose that there is a positive definite function V(x):

V̇(x)+µVκ ≤ 0 (2)

where µ > 0, 0 < κ < 1, then the system (1) will be stable in a finite time.

Lemma 2. The following property applies to fractional-order theory [40]:

t0 Dp
t

(
t0 Dq

t g(w(t))
)
=t0 Dp+q

t g(w(t)) (3)

where p, q is the fractional order, D is the fractional-order operator, t0 and t represent the time, and
g(w(t)) represents the function about time.

Lemma 3. If V satisfies the following conditions [41]:

V̇ ≤ −γVm−χVn, V(0)=V0 (4)
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where γ, χ, m, and n are positive numbers that satisfy γ > 0, χ > 0, m > 1, and 0 < n < 1,
respectively, then the system ẋ = l(t, x) will reach the equilibrium in finite-time and the upper limit
time is:

T ≤ Tmax=
1

γ(m−1)
+

1
χ(1−n)

(5)

Remark 1. As shown in Equation (1), the convergence time of finite-time stability is related to the
initial state x0. From Equation (5), it can be seen that the convergence time of fixed-time stability is
only related to the parameters of the controller and independent on the initial state. Therefore, the
upper-bound convergence time of the fixed-time control system is independent on the initial state of
the system and overcoming the shortcomings of the finite-time stability.

Lemma 4. Suppose that there is a continuous radially bounded function V(x) that satisfies the
following conditions [42]:

V(x) ≤ −k1Vp(x)− k2Vq(x) + η0 (6)

where p > 1, 0 < q < 1, and η0 > 0. k1 and k2 are positive numbers satisfying k1, k2 > 0. Then
the system ẋ = l(t, x) is fixed-time stable and the settling-time is bounded by:

T ≤ Tmax=
1

k1φ̄(p−1)
+

1
k2φ̄(1−q)

(7)

where φ is a normal number and satisfies 0 < φ < 1.

2.2. Problem Description

As shown in Figure 1, suppose that the USV is in a two-dimensional plane, establishing
the hull coordinate system and inertial coordinate system in the two-dimensional plane,
where OAXAYA is the inertial coordinate, and OBXBYB is the hull coordinate system. In
the coordinate system, the curve represents the trajectory of the USV, ν is the velocity of the
USV, ψ is the yaw angle of the ship, µ is the surge speed, and v is the sway speed.

OA

YA

XA

v

YB

OB

XB

Figure 1. USV hull and inertial coordinate system.
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The three degrees of freedom kinematics and dynamics equations of the USV in vector
form can be expressed as follows [43]:{

η̇ = R(ϕ)ν
Mν̇ + C(ν)ν + Z(ν)ν = τ + δ(t)

(8)

where the first formula in Equation (8) is the kinematics model of the USV model, where
η = [x, y, ϕ]T is the position vector in the inertial coordinate system, ν = [µ, v, r]Tis the
speed vector in the hull coordinate system, R(ϕ) is the rotation matrix, used for the mutual
rotation between two coordinate systems, and R(ϕ) satisfies the following properties:

Ṙ = RS
RTSR = RSRT= S

(9)

R =

 cos(ϕ) −sin(ϕ) 0
sin(ϕ) cos(ϕ) 0

0 0 1

 (10)

The second formula in Equation (8) is the dynamics model of the USV model, where
δ(t) is the lumped disturbances that include the wind, waves, and currents in the external
environment of USV, ans τ = [τµ, τv, τr]T is the control input of USV. Both C(v) and M(v)
are constant matrices, where the matrix of Coriolis C(v) is a negative symmetric matrix
that satisfies C(v) = −CT(v) . The inertial matrix M(v) is a positive symmetric matrix that
satisfies M = MT . They are given as follows:

C(v)=

 0 0 c13(v)
0 0 c23(v)

−c13(v) −c23(v) 0

 (11)

M(v)=

 m11 0 0
0 m22 m23
0 m32 m23

 (12)

The nonlinear damping matrix Z(v) satisfies the following:

Z(v)=

 z11(v) 0 0
0 z22(v) z23(v)
0 −z32(v) z33(v)

 (13)

The parameters of the M, C, and Z are shown in Table 1. Where mij, i, j = 1, 2, and
3 are the elements of the matrix M, and m is the quality of the USV. X∗, Y∗, and N∗ are
the derivative of hydrodynamics; Iz is the moment of inertia; Zij, i, j = 1, 2, and 3 are the
elements of the matrix of Z and the elements are related with the hydrodynamic parameters;
and c13(v) and c23(v) are the elements of the matrix of C, which is related with the velocity
and the matrix M.

Table 1. The parameters of the M, C, and Z.

Variable Name Definition Variable Name Definition

m11 m− Xµ̇ z22(v) −Yv−Y|v|v|v|
m22 m−Yv̇ z33(v) −Nr−N|v|r|v|−N|r|r|r|
m33 Iz − N ṙ z23(v) −Yr−Y|v|r|v|−Y|r|r|r|
m23 mxg −Yṙ z32(v) −Nv−N|v|r|v|−N|r|r|r|
m32 mxg − N ṙ c13(v) m11 −m23r

z11(v) −Xµ−X|µ|µ|µ| c23(v) m11µ



Electronics 2022, 11, 726 6 of 16

3. Control Strategy Design and Stability Analysis

In this section, based on the theory of fractional-order theory and sliding mode control
theory, a fractional-order sliding mode surface (FOSS) is proposed. A fixed-time fractional-
order sliding mode control (FTFOSMC) strategy is also proposed combined with the fixed-
time control theory and an appropriate sliding mode reaching law. In addition, a novel fixed-
time fractional-order sliding mode control strategy combined with the RBF neural network
(RBF-FTFOSMC) is proposed which realizes the online approximation of the lumped
uncertainties. Finally, the control strategy is guaranteed by the corresponding theory.

3.1. Model Transformation

The USV model in Equation (8) can be rewritten with auxiliary variables x1 = η,
x2 = ẋ1 as follows:

ẋ1= η̇ = x2
ẋ2= η̈ = RM−1τ+I(η, η̇)
y =x1

(14)

where:

I(η, η̇) = RM−1
[

RTδ(t)− (C(ν) + Z(ν))RTx2

]
+ Sx2 (15)

The function of (15) is the lumped uncertainty and the lumped uncertainty is continu-
ously differentiable and has an unknown upper bound, which means ||I(η, η̇)|| ≤ Zl , and
Zl is a positive constant.

3.2. Fixed-Time Fractional-Order Sliding Mode Control Strategy

This section proposes the FTFOSMC control strategy, which improves the convergence
speed and accuracy of the system, and reduces the “chattering” effect of the sliding mode.
First, define the desired position vector xr. The task of the USV is to effectively track the
desired trajectory xr. Define e as the USV position tracking error:

e = x1−xr (16)

According to the position error Equation (16), the fractional-order sliding mode surface
(FOSS) s is designed as follows:

s =D∂−1e+D∂−2(αsλ1(e) + βsλ2(e)) (17)

where:

λi(e) =
{

sigξi (e), e > ε
κie+gie2sign(e), e ≤ ε

(18)

where αs and βs are positive numbers that satisfy αs > 0 and βs > 0, respectively, ε is a
pretty small positive value, i = 1, 2; sig(·)δ=|·|δsign(·), ξ1=m1

sign(|e|−1), ξ2=m2
sign(1−|e|),

m1 > 0, 0 < m2 < 1, and the the definition of the κi and gi is expressed as follows:{
κi=(2−ξi)ε

ξi−1

gi = (ξi − 1)εξi−2 i = 1, 2
(19)

where m1 > 1 and 0 < m2 < 1.
D∂ is the abbreviation of the fractional-order equation, and the equation satisfies

the following:

D∂ f (t)=
1

Γ(z−∂)

∫ t

∂

f (z)(τ)

(t− τ)∂−z+1 dτ (20)
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where Γ(z− ∂) is the gamma function with the independent variable z− ∂, z is an integer,
D∂ is the fractional-order operator, and ∂ satisfies z−1 < ∂ < z.

The derivative of the FOSS according to Equation (17) satisfies:

ṡ =D∂−1 ė+D∂−2(αsλ̇1(e) + βsλ̇2(e)
)

(21)

The reaching law of sliding mode surface is designed as:

ṡ = −αrsigξ3(s)− βrsigξ4(s) (22)

where ξ3 = m3
sign(|s|−1), ξ4 = m4

sign(1−|s|), m3 > 1, 0 < m4 < 1, αr > 0, and βr > 0. By
substituting (21) into (22), the fixed-time fractional-order sliding mode control strategy
(FTFOSMC) can be derived as:

τ = MR−1D2−∂
[
−αrsigξ3(s)− βrsigξ4(s)

]
−
(
αsλ̇1(e) + βsλ̇2(e)

)
+ η̈r (23)

Theorem 1. Considering that under the designed USV model (14) and error system (16), the
proposed control strategy (23) can effectively accomplish trajectory tracking quickly and effectively
in fixed-time, with the upper bound of the convergence time is:

T ≤ 1
βs(m1−1) ln

(
1+ βs

αs

)
+ 1

αs(1−m2)
ln
(

1+ αs
βs

)
+ 1

αr3
1−m3

2 2
1+m3

2
(

1+m3
2 −1

) + 1

βr2
1+m4

2
(

1− 1+m4
2

) (24)

Proof of Theorem 1. First, in the stage of the sliding mode arrival, the tracking error e can
reach the sliding surface within a fixed time.

Choose the following Lyapunov function:

V =
1
2

sTs (25)

The time derivative of V along with (24) satisfies:

V̇ = sT ṡ

=sT
[

D∂−1 ė+D∂−2(αsλ̇1(e) + βsλ̇2(e)
)]

=sT D∂−2
[
Sη̇ + RM−1τ−η̈r

]
+sT D∂−2(αsλ̇1(e) + βsλ̇2(e)

)
=sT

[
−αrsigξ3(s)− βrsigξ4(s)

]
≤−αrsTsigm3(s)− βrsTsigm4(s)

≤−αr3
1−m3

2 2
1+m3

2 V
1+m3

2 − βr2
1+m4

2 V
1+m4

2 (26)

According to Lemma 3, the USV system states can convergence to the FOSS in a fixed
time and the upper bound of convergence time is:

Tr ≤
1

αr3
1−m3

2 2
1+m3

2

(
1+m3

2 − 1
) +

1

βr2
1+m4

2

(
1− 1+m4

2

) (27)

During the sliding stage, the FOSS satisfies:

D∂−1e+D∂−2(αsλ1(e) + βsλ2(e)) = 0 (28)

When |e| < ε, we can obtain that:

ė+αssigξ1(e) + βssigξ2(e) = 0 (29)
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where |e| satisfies the following: ė+αssigm1(e) + βssig
1

m2 (e) = 0, |e| ≥ 1

ė+αssig
1

m1 (e) + βssigm2(e) = 0, |e| < 1
(30)

When |e| ≥ 1, let:

U =|e|1−m1 (31)

The derivative of U can be written as:

U̇ =(1−m1)|e|−m1 esign(e) (32)

The Equation (29) can be modified as:

1
1−m1

U̇ = |e|−m1 esign(e) = −αr − βr|e|
1−m1m2

m2 = −αr − βrU
1−m1m2

m2−m1m2 (33)

According to the above formula, the system on the sliding mode surface will reach the
equilibrium point within a fixed time and is independent on the initial state of the system.
The upper bound of the convergence time is:

T1 =
1

m1−1

∫ 1

0

1

αs + βsU
1−m1m2

m2

dU <
1

βs(m1−1)
ln
(

1+
βs

αs

)
(34)

It can also be derived that when |e| < 1, the system will also reach the equilibrium
point in a fixed time and the upper bound of convergence time is:

T2 <
1

αs(1−m2)
ln
(

1+
αs

βs

)
(35)

Therefore, when the system reaches the equilibrium point on the sliding mode surface,
the upper bound of the convergence time is:

Ts =
1

βs(m1−1)
ln
(

1+
βs

αs

)
+

1
αs(1−m2)

ln
(

1+
αs

βs

)
(36)

Theorem 1 is proven complete.

Remark 2. The FOSS and FTFOSMC control strategy can be described continuously. During
the sliding motion, due to the inertia and the time delay of the system, the sign function will cause
the ”chattering” phenomenon, while the sat function is continuity, which ensures that the signs
will not change suddenly during the sliding stage. Therefore, in order to reduce the impact of the

“chattering” better, the sat function will be used instead of the sign function in the stage of reaching
of sliding mode control strategy in the actual simulation and experiment process.

3.3. RBF-FTFOSMC Control Strategy

This section will consider the external disturbance of the USV and the unmodeled
dynamics of the system. A control strategy combined with the RBF neural network and the
FTFOSMC is proposed to estimate the lumped uncertainties online.

The RBF neural network functions can be shown as:{
y = WTh(x) + ς

hi = g
(
‖x−ci‖2/b2

i

)
, i = 1, 2, . . . , n

(37)
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In function (37), WT = [w1, w2, w3, . . . , wn]T is the weight of the neural network; x and
y denote the input and output vector in the RBF neural network, respectively. The second
formula is the Gaussian activation function. hi = [h1, h2, h3, . . . , hn]T is the linear activation
function from the hidden layer to the output layer, ci is the center of the vector, and bi is the
width of the activation function.

Redefine f (x) as the lumped uncertainties of the ship:

f (x)= I(η, η̇) (38)

Define f̂ (x) as the estimated value of the RBF neural network function, which is the
best approximation function. The estimation error of the lumped uncertainties is

f̃ (x)= f ∗(x)− f̂ (x) (39)

Assuming the estimation error is bounded:

f̃0(x)= sup|| f ∗(x)− f̂ (x)|| (40)

Combined with the (39), the control strategy (23) can be rewritten as:

τ = MR−1D2−∂
[
−αrsigξ3(s)− βrsigξ4(s)

]
−
(
αsλ̇1(e) + βsλ̇2(e)

)
+ η̈r − Sη̇ + f̂ (x) (41)

The time derivative of the FTFOSS satisfies:

ṡ = D∂−1 ė+D∂−2(αsλ̇1(e) + βsλ̇2(e)
)

=D∂−2(ë+αsλ̇1(e) + βsλ̇2(e)
)

=−αrsigξ3(s)− βrsigξ4(s)− D∂−2 f̃ (x) (42)

where W̃ is the estimated weight of the RBF-FTFOSMC:

W̃ = W − Ŵ (43)

The ˙̂W can be designed as:

˙̂W =
1
γ

D∂−2sh(x) (44)

Theorem 2. When there are lumped uncertainties (15) in the USV model, the RBF-FTFOSMC
control strategy (41) can accurately identify the lumped uncertain items within a fixed time, ensuring
that the USV can track and converge to an equilibrium position within a fixed time.

Proof of Theorem 2. Choose the following Lyapunov function L:

L =
1
2

sTs +
1
2

γW̃TW̃ (45)
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The time derivative of L along with (24) and (44) satisfies:

L̇ = sṡ + γW̃T ˙̃W

=sT
(
−αrsigξ3(s)− βrsigξ4(s)−D∂−2

(
W̃Th(x) + ς

))
−γW̃T ˙̂W

=sT
(
−αrsigξ3(s)− βrsigξ4(s)− ς

)
≤−αrssigξ3(s)− βrssigξ4(s)

≤− αr|s|ξ3+1 − βr|s|ξ4+1

≤− αr

(
|s|2
) 1+m3

2 − βr

(
|s|2
) 1+m4

2

≤−αr

(
L−1

2
γW̃TW̃

)m3+1
2
− βr

(
L−1

2
γW̃TW̃

)m4+1
2

≤−αrL
m3+1

2 − βrL
m4+1

2 + d
(
W̃
)
+

(
1
2

γW̃TW̃
)m3+1

2
(46)

where d
(
W̃
)

is the negative expansion and d
(
W̃
)
> 0. According to the Equation (46) and

Lemma 4, the system can converge in fixed time and the upper bound of convergence
time satisfies:

TL ≤
1

αrφ̄
(

m3+1
2 −1

) +
1

βrφ̄
(

1−m4+1
2

) (47)

The Proof of Theorem 2 is completed.

4. Simulation and Discussion

To validate the effectiveness and stability of the proposed control strategy, numerical
simulation will be conducted with the simulation software. The adaptive fast non-singular
terminal sliding mode control strategy (AFNTSMC) is selected to compare with the pro-
posed control strategy. Cybership II USV is selected as the simulation object, with the
parameters shown in Table 2.

Table 2. The parameters of USV.

Parameters Values Parameters Values Parameters Values

m 23.8000 Yv −0.8612 Xµ̇ −2.0
Iz 1.7600 Y|v|v −36.2823 Yv̇ −10.0
xg 0.460 Yr 0.1079 Yṙ 0.0
Xµ −0.7225 Nv 0.1052 Nv̇ 0.0

X|µ|µ −1.3274 N|v|v 5.0437 Nṙ −1.0
Xµµµ −5.8664

If the expected initial position vector of the USV is xr(0) = [0.1, 0.1, 0]T , the actual
position is x1(0) = [0, 0, 0]T , the expected initial speed vector is νr(0) = [0, 0, 0]T , and the
actual ship speed is ν(0) = [0, 0, 0]T . In order to ensure the accuracy and validity of the
simulation results, the specific control parameters are shown in Table 3; the hidden layer
node of the RBF-FTFOSMC control strategy network is 8, the value range of ci is between
[−1.5, 1.5], and the parameter of bi is set to 3.0.

The disturbance is defined as:

δ(t)=


11
12 (1+0.1sin(0.2t))
25

179 (1+0.3cos(0.4t))
950
636 (1+0.4sin(0.1t))

 (48)
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Table 3. The control parameters of AFNTSMC and FTFOSMC.

Control Strategy Sliding Mode Parameter Control Rate Parameter

αs = 0.2, βs = 0.2 αr = 2.3, βr = 2.3
AFNTSMC m1 = 5, n1 = 3, q1 = 5 m2 = 5, n2 = 3

p1 = 9, ε = 0.1 q2 = 7, p2 = 9

αs = 0.2, βs = 0.2 αr = 2.3, βr = 2.3
NFTSMC m1 = 5/3, m2 = 5/9 n1 = 5/3, n2 = 7/9

h = 0.1, D = 0.2

αs = 0.2, βs = 0.2 αr = 2.3, βr = 2.3
FTFOSMC m1 = 5/3, m2 = 5/9 m3 = 5/3, m4 = 7/9

ε = 0.1, ∂ = 0.3

The simulation results are shown in Figures 2–7. The USV trajectory tracking curve and
the trajectory tracking in various directions are depicted in Figures 2 and 3. From the above
figures, it is observed that each method can achieve the desired trajectory tracking in the
presence of lumped uncertainties. However, compared with the AFNTSMC control strategy
and the NFTSMC control strategy, the proposed control strategy in this paper can track
control of the desired trajectory faster and more effectively. Combined with the derivation
of (47), the proposed control strategy can track the trajectory accurately and the upper limit
of the convergence time is 0.55 s, while the AFNTSMC control strategy and the NFTSMC
control strategy need at least 5 s to track the desired trajectory. It can be concluded from the
simulation results that the RBF-FTFOSMC control strategy improves convergence velocity.
The trajectory tracking error curve in Figure 4 shows that the AFNTSMC control strategy
has a slower convergence speed and lower control accuracy than the proposed control
strategy in the presence of lumped uncertainties. The NFTSMC control strategy has a better
convergence velocity than the AFNTSMC control strategy, but has a lower convergence
accuracy. The proposed control strategy effectively guarantees that the trajectory tracking
error can converge to zero in fixed-time accuracy, which effectively improves the USV
tracking speed and control accuracy.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

1

0.5

0

0.5

1

1.5

r

AFNTSMC

FTFOSMC

NFTSMC

0.44 0.46 0.48

0.44

0.46

0.48

0.5

Figure 2. USV trajectory tracking curve.
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Figure 3. USV trajectory tracking curve in all directions.
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0

AFNTSMC FTFOSMC NFTSMC
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0
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0

Figure 4. USV trajectory tracking error curve.

The speed tracking curve is shown in Figure 5. The three figures show the tracking
curves of the surge, sway, and yaw angular speed, respectively. It can be seen that all
control strategies can effectively track the velocity of the USV. However, compared with the
proposed control strategy in this paper, the NFTSMC control strategy and the AFNTSMC
control strategy converge slowly, and the convergence accuracy of the AFNTSMC control
strategy is relatively poor. It can be concluded that the proposed control strategy in this
paper has faster tracking convergence velocity and accuracy to the desired speed in the
presence of uncertainties. Figures 6 and 7 are the control input curves and the estimated
curve of the lumped uncertainties, respectively. Figure 6 shows that the control input of
the proposed control strategy in this paper has a small overshoot and can achieve the
control effect of the trajectory tracking of the USV in fixed-time in the presence of lumped
uncertainties. It also reduces the “chattering” phenomenon of the sliding mode control
strategy. The robustness of the whole system is effectively improved. In Figure 7, f1 and f2
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are the estimation curve of the surge uncertainties and the sway uncertainties, respectively,
and f3 is the yaw uncertainties estimation curve of the USV by the RBF neural network. It
can be seen that the proposed control strategy in this paper can achieve the estimation of
the uncertainties quickly after a short fluctuation in the early stages of the process. It can
be concluded that the control strategy proposed in this paper has a faster estimation speed
and better estimation effect of the lumped uncertainties, which effectively improves the
USV tracking control speed and control accuracy.

0 5 10 15 20 25

0

r
AFNTSMC FTFOSMC NFTSMC

0 5 10 15 20 25

0

0 5 10 15 20 25

0

Figure 5. Speed tracking curve.
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Figure 6. Control input curve.
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Figure 7. Lumped uncertainties estimation curve.

5. Conclusions

A novel fixed-time fractional-order sliding mode control strategy was proposed for
the trajectory tracking of the USV. This paper proposed sliding mode control surface FOSS
that combines fractional-order theory with sliding mode control theory. Additionally, com-
bined with fixed-time control, an appropriate sliding mode reaching law was selected and
proposed and a novel control strategy was proposed for trajectory tracking of USV. The
FTFOSMC control strategy realized the optimization of the sliding mode control and the
accurate tracking of the desired trajectory, effectively improving the convergence speed and
reducing the “chattering” phenomenon of the sliding mode. The RBF-FTFOSMC control
strategy was proposed to deal with the influence of the lumped uncertainty, which realized
the accurate compensation and online approximation of the unmodeled dynamics of the
USV model and the unknown external disturbance. Then, the stability was proven accord-
ing to the corresponding lemma and the Lyapunov theory. Finally, the simulation result
shows that the proposed control strategy proposed in this paper can effectively achieve
path tracking in fixed-time, and improve the convergence speed and control accuracy.

6. Future Recommendation

There are some open questions and limitations that need to be considered. The
proposed control strategy is only validated by numerical simulation. Although the USV
model has been widely used in many papers, an actual experiment is still needed to
provide more rigorous and convincing experimental results. Additionally, the study of the
collaborative control between the USV, UAV, and AUV is also worth studying. The fixed-
time fractional-order sliding mode control with input saturation can also be considered.
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