
����������
�������

Citation: Bilel, H.; Taoufik, A.

Radiation Pattern Synthesis of the

Coupled almost Periodic Antenna

Arrays Using an Artificial Neural

Network Model. Electronics 2022, 11,

703. https://doi.org/10.3390/

electronics11050703

Academic Editors: Pavlos Lazaridis,

Zaharias Zaharis, Raed A.

Abd-Alhameed and Bo Liu

Received: 4 January 2022

Accepted: 13 February 2022

Published: 24 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Radiation Pattern Synthesis of the Coupled almost Periodic
Antenna Arrays Using an Artificial Neural Network Model
Hamdi Bilel * and Aguili Taoufik

Communication System Laboratory Sys’Com, National Engineering School of Tunis (ENIT), University of Tunis
El Manar, BP 37, Le Belvédère, Tunis 1002, Tunisia; taoufik.aguili@gmail.com
* Correspondence: hbilel.enit@gmail.com; Tel.: +216-466422407

Abstract: This paper proposes radiation pattern synthesis of almost periodic antenna arrays including
mutual coupling effects (extracted by Floquet analysis according to our previous work), which in
principal has high directivity and a large bandwidth. For modeling the given structures, the moment
method combined with the generalized equivalent circuit (MoM-GEC) is proposed. The artificial
neural network (ANN), as a powerful computational model, has been successfully applied to antenna
array pattern synthesis. Our results showed that multilayer feedforward neural networks are rugged
and can successfully and efficiently resolve various distinctive, complex almost periodic antenna
patterns (with different source amplitudes) (in particular, both periodic and randomly aperiodic
structures are taken into account). An ANN is capable of quickly producing the synthesis results
using generalization with the early stopping (ES) method. Significant advantages in speed and
memory consumption are achieved by using this method to improve the generalization (called early
stopping). To justify this work, several examples are shown and discussed.

Keywords: radiation pattern synthesis; almost periodic structures; mutual coupling effects; artificial
neural network (ANN); early stopping method

1. Introduction

Today, the synthesis of the radiation patterns of almost periodic planar structures is
the subject of research, mostly in space and defense applications, communication systems
and electronic devices such as phased array radar systems, frequency selective surface (FSS)
applications [1], millimeter waves, and optical wave regions (other examples: reflection gratings,
phased arrays, electromagnetic bandgap structures, leaky wave antennas, etc...) [2–5].

In general, smart antenna arrays involve intelligent systems, including genetic al-
gorithms and neural networks, to synthesize the radiation pattern [6–10]. The genetic
algorithm (GA) is used basically for sidelobe reduction in antenna pattern synthesis [11–13].
As well, artificial neural networks (ANNs) have been employed for various purposes, e.g.,
as pattern recognition systems, and have been put to use for input–output mapping, system
identification, adaptive prediction, etc. Consequently, the present work is centered on a
neural network technique for the synthesis of almost periodic network models, and we
point out their most prominent features and distinctive characteristics [14–16].

Several other methods of synthesis of coupled periodic and aperiodic arrays have
shown their reliability in electromagnetic calculations [17,18], one of which is MoM GeC,
which we use as a comparison method herein.

Other methods based on machine learning have been shown to simplify the electro-
magnetic calculations and to approximate with great accuracy the electronic performances
of coupled, decoupled, periodic, and aperiodic arrays [19–33].

Our objective was to develop a feedforward neural network with supervised training
to approximate the function of a radiation pattern which is provided by the method of
moments and simplified by an equivalent circuit scheme.
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For clarity, this paper presents some basic details on the optimum size of a feedforward
neural network to prevent overfitting problems. Next, we describe how we divided the
radiation model datasets for training, testing, and validation. Then, we describe how the
feedforward neural network was generated and trained [34]. We report how the output
values were generated and denormalized; and finally, the neural network’s performance is
examined by checking the output values against the numerical target values [15,16].

The equivalent circuit scheme reduces the complexness of the problem by setting and
adapting the neural network patterns, such as training, architecture, and parameters, which
will enhance and give more accurate input–output relations [13]. Our main idea here is
to address the synthesis of antenna arrays for coupled almost periodic array geometries,
especially future complex extended aperiodic configurations [35,36].

This paper is organized as follows: In Section 2, the fundamental theoretical back-
ground of the numerical analysis, including the computation of the radiation field, is
recalled, particularly for almost periodic arrays. In relation to the synthesis of a radiation
pattern, the basic concepts of artificial neural networks (ANNs) and their applications are
recalled in Section 2. Some fundamental networks are examined in detail for their capability
to deal with the problem of simple pattern synthesis. Then, we describe the development
and construction of new architectures for the synthesis of complex almost periodic antenna
arrays (e.g., randomly aperiodic phased arrays). The next section presents the numerical
results and discussion. In the last section, some conclusions are presented.

2. Problem Formulation: (Radiation Patterns of the Almost Periodic Structures)

This section shows the main expression of the radiation pattern related to the pro-
posed almost periodic planar structures (see Figure 1 for the periodic antenna array
example) [37–39], which was discussed in our previous work [2,3,5]. To extract such
a radiation pattern, it is claimed that an integral method based on the method of mo-
ments combined with the generalized equivalent circuit (MoM-GEC) [37,38,40] should
be implemented.

Figure 1. Diagram of periodic planar phased array dipoles: the walls of the environment can be
selected from EEEE (waveguide with electric walls), EMEM (waveguide with two electric walls and
two magnetic walls), EPEP (waveguide with two electric walls and two periodic walls), and PPPP
(waveguide with periodic walls).

Therefore, the relation of the total near-field distribution set on the surface of the
discontinuity (rectangular opening aperture) (metal form + dielectric substrate) of the
global almost periodic structures can be defined according to the Galerkin procedure as
follows [4,37–39]:
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• On the metallic part, the electric field can be given by:

|E(x, y)〉 = ∑
p

∑
q
[Z]pqXpq|gpq〉 (1)

• On the discontinuity plane (or on the radiating aperture), the electric field is expressed
in function of the guide’s modes as:

|E(x, y)〉 = ∑
m,n

∑
p

∑
q
[Z]pqXpq〈 fmn|gpq〉| fmn〉 (2)

with:
[Ẑupper,down

pq,st ] = [∑
m,n
〈gpq| fmn〉zupper,down

mn 〈 fmn|gst〉] (3)

and the inner product is yielded by:

〈u|v〉 =
∫ ∫

D
uv∗ ds (4)

(* refers to the complex conjugate).
| fmn〉 denotes the modes |TEmn〉,|TMmn〉.
|gpq〉 indicates the test functions used and Xpq the inconnue weights of this function

to be evaluated and z̃mn are the total modal impedance related to the guide modes.
A specific selection of test functions must be used to express the unknown current

density established on the metal parts of the selected structures.
Based on the Fourier transform, the far field of the given total structure can be written as:

Ẽx,y,θ0,φ0(θ, φ) =
∫ c

−c
{
∫ L

0
Eaperture(x, y) (5)

e(jk0(sin(θ)cos(φ)−sin(θ0)cos(φ0))x)dx}
e(jk0(sin(θ)sin(φ)−sin(θ0)sin(φ0))y)dy.

Eaperture(x, y) is obtained by a spatial calculation with the MoM method. The pair
(θ0, φ0) is seen as the orientation direction of the main beam (steering direction) and the
pair (θ, φ) indicates the shape of the radiation pattern.

Note that a midpoint sum approximating double integrals is used to compute the
far-field (refering to Appendix A), followed by a Matlab source code that explains how to
implement it with the MoM GEC, as given in Appendix B.

To restrain the electromagnetic calculation to one unit cell, the dependence on Flo-
quet modes (α or (α, β)) is taken into account [2–4,36]. Then, the field components can
be expressed in generalized Fourier series expansions, and the analysis region can be
reduced to only one periodicity cell bounded by the known periodic walls, as presented in
Figure 2 [41,42]. In this case, the interaction between cells can be taken into consideration
using a novel expression of the mutual coupling shown in the previous work [2,3]. All
details about the electromagnetic modal calculation based on the Floquet analysis are
proven in [2–4]. To remind the reader of the radiating pattern expression Ẽx,y(θ, φ) devel-
oped through the modal decomposition in the spectral domain, we detail the steps given
below [4]:

The total electric field radiated by the structure is:

E(x, y)aperture =
1√

Nx Ny

Nx
2 −1,

Ny
2 −1

∑
p=− Nx

2 ,q=− Ny
2

Ẽαp ,βq ,aperture(x, y)ejαp(idx)ejβq(sdy) (6)
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Then, the normalized radiating pattern is given by:

Ẽx,y,θ0,φ0(θ, φ) ==
1√

Nx Ny

Nx
2 −1,

Ny
2 −1

∑
i=− Nx

2 ,s=− Ny
2

(7)

Eaperture(x, y)e(jk0(sin(θ)cos(φ)−sin(θ0)cos(φ0))idx)

e(jk0(sin(θ)sin(φ)−sin(θ0)sin(φ0))sdy)

Figure 2. Section of periodic phased array microstrip lines (planar dipoles): unit cell delimited by
periodic walls.

Moreover, the far radiating field in the Floquet domain when the z > 0 region, is
written as follows:

Ẽα,β
x,y (θ, φ) =

∫ c

−c
{
∫ L

0
Eα,β

aperture(x, y) (8)

e(jk0(sin(θ)cos(φ)−sin(θ0)cos(φ0))x)dx}
e(jk0(sin(θ)sin(φ)−sin(θ0)sin(φ0))y)dy

After that, the expression of the directivity (in Floquet space) is obtained as [43]:

Dα,β(φ0, θ0) =
|Ẽα,β(φ0, θ0)|2

1
4π

∫ 2π
0

∫ π
0 |Ẽα,β(θ, φ)|2sin(θ)dφdθ

(9)

Therefore, to study the spatial electromagnetic behavior of periodic antenna arrays (as
explained in the previous section in Equation (6)), another way to proceed is based on the
superposition of Floquet states (superposition theorem) in a finite or infinite periodic array:

• For small and large finite arrays:

We must indicate that the Floquet states are considered discrete (with their physi-
cal fields):

The spatial electric and current fields are deduced as:

E(idx, kdy) =
1√

Nx Ny

Nx
2 −1

∑
p=− Nx

2

Ny
2 −1

∑
q=− Ny

2

Ẽ
αp ,βq
aperture(x, y) (10)

ejαp(idx)ejβq(kdy)
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J(idx, kdy) =
1√

Nx Ny

Nx
2 −1

∑
p=− Nx

2

Ny
2 −1

∑
q=− Ny

2

J̃
αp ,βq
aperture(x, y) (11)

ejαp(idx)ejβq(kdy)

Then, the total radiating electric field is:

E(θ, φ) =
1√

Nx Ny

Nx
2 −1

∑
p=− Nx

2

Ny
2 −1

∑
q=− Ny

2

Ẽx,y,θ0,φ0
αp ,βq

(θ, φ) (12)

• For infinite arrays:

The Floquet states are taken as continuous values which belong to the brouillin domain
α ∈ [− π

dx
, π

dx
], β ∈ [− π

dy
, π

dy
]. Then, the spatial electric and current fields are defined as:

J(x, y) =
dxdy

4π2

∫ π
dx

−π
dx

∫ π
dy

−π
dy

J̃α,β
aperture(x, y)ejαxejβy dα dβ (13)

E(x, y) =
dxdy

4π2

∫ π
dx

−π
dx

∫ π
dy

−π
dy

Ẽα,β
aperture(x, y)ejαxejβy dα dβ (14)

Consequently, the radiation field is written as:

E(θ, φ) =
dxdy

4π2

∫ π
dx

−π
dx

∫ π
dy

−π
dy

Ẽx,y,θ0,φ0
α,β (θ, φ) dα dβ (15)

The directivity values always obey the superposition theorem in the finite and infinite
cases, as has been proven for the electric, current, and radiation fields. A well-detailed
explanation of Floquet’s modal analysis and its results has been provided in [44].

To study the aperiodic configuration, it is possible to change the amplitudes/phases
weights between periodic elements. Note that the electromagnetic calculation remains
valid (though some modifications are required) at the level of the excitation values.

Thus, the numerical electromagnetic radiation pattern of the whole coupled almost
periodic array can be presented as database content to build a feed-forward neural net-
work training with supervised learning that approximates the following array pattern’s
function [14,45,46].

3. Concept of Artificial Neural Networks (ANNs)

As shown in our previous work, this section explains how to conjoin artificial neural
networks and almost periodic antenna array systems [14,45,46].

A neural network is a way to model any input to an output by establishing connections
between their related radiation model data, especially if nothing is known about the model.
In fact, the neural network technique is commonly used in two stages: the training phase
and the performance phase. For more precision, the MLP network architecture structure
is fixed: the number of hidden layers and neurons (nodes) in each layer. The activation
functions of each layer are also chosen at this stage—i.e., they are supposed to be known.
The unknown parameters to be estimated are the weights and biases. Many algorithms exist
to define the network parameters. Here, we will focus only on the use of the Levenberg–
Marquardt method, which is generally more efficient than other algorithms but requires
more memory than most [15,16,47–51]. We briefly summarize the learning algorithm
procedure for multilayer perceptron networks:
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1. The structure of the network is first defined. In the network, activation functions are
chosen and the network parameters, weights, and biases are initialized.

2. The parameters associated with the training algorithm—the error goal, the maximum
number of epochs (iterations), etc.—are defined.

3. The training algorithm is called.
4. Once the neural network is determined, the result is first tested by simulating the

output of the neural network with the measured input data. This result is compared to
the measured output. The final validation must be performed with independent data.

In general, three different types of dataset (input) are employed, known as the training
set, validation set, and test set. The training set is a set of values that hold information
about the target function for training the network. The validation set is assigned to the
early stopping technique. During the training phase, the validation error is monitored to
prevent the network from overfitting the training data. Normally, the test set is just used to
assess the performance of the network afterward. Ordinarily, 60% of the data are used for
training the network and the remaining 40% are used equally for validating and testing the
network on unlearned inputs [13,45]. Specifically, MATLAB (commonly used) randomly
divides the input vectors and target vectors into three known sets.

• Sixty percent are used for training.
• Twenty percent are used to validate that the network is generalizing and to stop

training before overfitting.
• The last 20% are used for a completely independent test of network generalization.

The structure of an ANN is provided in Figures 3 and 4, when the learning phase
allowed to elaborate the synaptic weights taken from each formal neuron. In this example,
we are using a feed-forward network with a default tan-sigmoid transfer function in the
hidden layer and a linear transfer function in the output layer.

Figure 3. Basic structure of an artificial neuron.

Figure 4. An illustration of a typical feedforward network.

Table 1 lists the training parameters of our artificial neural network (ANN) and the
architectural parameters prepared for the implementation of the ANN models [13,45].
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Table 1. ANN training parameters [21,31].

Number of input neurons 100
Number of hidden layers 2
Number of output neurons 1
Algorithm lm
Learning rate 0.01
Momentum 0.95
MSE goal 1× 10−3

Minimum performance gradient 1× 10−5

Initial mu 0.001
mu decrease factor 0.1
mu increase factor 10
Maximum mu 1× 1010

Epochs between displays 25
Generate command-line output false
Show training GUI true
Maximum time to train in seconds inf
Maximum number of epochs 300
Regularization parameter 0.8
Transfer function in hidden layer tan-sigmoid (“tansig”)
Transfer function in output layer linear(“purelin”)

After the training phase, the performance phases of the almost periodic array were
performed to obtain the optimal weights for the new incoming signals. The performance
analysis of this application can be examined by changing the number of antenna ele-
ments, the radiation value, the target applications and the angular separation between the
incoming signals [15,16].

In this work, the Levenberg–Marquardt minimization algorithm (LMA) was used to
train the ANN. The accuracy of its models was evaluated by the mean sum of squared error
(MSE) between the calculated (desired) radiation pattern obtained using numerical analysis
and the predicted values for the training dataset [15]. We executed a linear regression
between the network outputs and the corresponding targets [50].

4. Results and Observations
4.1. Numerical Results

In previous work, we studied the convergence level of the input impedance and
the current distributions as functions of the guide’s modes and the trial functions, to
demonstrate the coupling terms of the almost periodic array [2,3]. This study focused
essentially on creating the radiation pattern associated with the planar almost periodic
structures [37–39]. First, the electromagnetic states in electric and current fields of the
proposed configuration examples must be taken, which are present at the waveguide
aperture. Then, the desired radiation pattern (or the electric far-field) can be computed
using the main Fourier expression written and explained in the previous Section [4,37–39],
where the near field distribution defined on the discontinuity plane is weighted by a
numerical MoM-GEC formulation [2,3,5]. To validate the structure, a comparison curve
between the MoM-GEC and HFSS tool is presented in terms of input impedance, as shown
in Figure 5.

Figures 6–8 illustrate numerical current densities and their corresponding electric
fields that were calculated for a unit cell of a periodic planar dipole antenna surrounded
by periodic walls. As a result, the far-field of the given unit structure can be described by
Figure 9 [2–5,52].

In this way, the preceding case of the basic element should be generalized to an
almost periodic array configuration [2,3,37–39]. Thus, based on the formulation problem
detailed in [2,3], the electromagnetic fields (E, J) of the whole structure can be shown. Thus,
Figures 10–12 allow one to verify all the proposed boundary conditions in terms of current
and electric fields associated with the periodic planar structure.
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Figure 5. Validation of the evaluated input impedance obtained by the MoM-GEC and the HFSS tool
for a unit cell of a dipole: α0 = 0 rad m−1, β0 = 0 rad m−1, w = 1 mm, δ = 0.75 mm (w� λ0, δ� λ0),
dx = 108 mm, dy = 108 mm, L = λ0 ≈ 54 mm (at the fixed frequency f = 5.4 GHz), h = 1.25 mm, and
ε = εr = 1 (air).

Figure 6. Current density for a unit cell of an almost periodic 2D array (half-wave and full-wave
dipoles) defined over the guide aperture, described by the test functions using: f = 5.4 GHz,
α0 = 0 rad m−1, β0 = 0 rad m−1, w = 1 mm, δ = 0.75 mm (w � λ0, δ � λ0), dx = 108 mm,
and dy = 108 mm. (a) L = λ0

2 ≈ 27 mm; (b) L = λ0 ≈ 54 mm, h = 1.25 mm and ε = εr = 1
(air) (see [1] for a comparison).

Figure 7. Current density for a unit cell of 2D almost periodic array (half and full wave dipoles)
defined by the guide wave’s aperture, described by the basis functions (guide’s modes) using:
f = 5.4 GHz, α0 = 0 rad m−1, β0 = 0 rad m−1, w =1 mm, δ = 0.75 mm (w � λ0, δ � λ0),
dx = 108 mm, dy = 108 mm. (a) L = λ0

2 ≈ 27 mm; (b) L = λ0 ≈ 54 mm, h = 1.25 mm and ε = εr = 1
(air) (see [1] for a comparison).
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Figure 8. Electric field of 2D almost periodic array’s unit cell (half and full wave dipoles) defined by
the guide wave’s aperture, described by the basis functions (guide’s modes) using: f = 5.4 GHz, α0 = 0
rad m−1, β0 = 0 rad m−1, w = 1 mm, δ = 0.75 mm (w� λ0, δ� λ0), dx = 108 mm, dy = 108 mm.
(a) L = λ0

2 ≈ 27 mm; (b) L = λ0 ≈ 54 mm, h = 1.25 mm, and ε = εr = 1 (air) (see [1] for
a comparison).

Figure 9. Radiation pattern calculated using the MoM-GEC method for a half-wave and full-
wave dipole antenna: f = 5.4 GHz, α0 = 0 rad m−1, β0 = 0 rad m−1, w = 1 mm, δ = 0.75 mm
(w� λ0, δ� λ0), dx = 108 mm, dy = 108 mm. (Blue color) L = λ0

2 ≈ 27 mm; (Green color)
L = λ0 ≈ 54 mm, h = 1.25 mm, and ε = εr = 1 (air).

Figure 10. Current density of an example of almost periodic 2D array (half-wave dipoles) defined
by the guide wave aperture, described by (a) test functions or (b) basis functions (guide modes)
at the operating frequency (f) of 5.4 GHz. The physical parameters used were: α0 = 0 rad m−1,
β0 = 0 rad m−1, w = 1 mm, δ = 0.75 mm (w� λ0, δ� λ0), dx = 108 mm, dy = 108 mm, L = λ0

2 ≈
27 mm, h = 1.25 mm, and ε = εr = 1 (air) (see [1] for a comparison).
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Figure 11. Current density of the almost periodic network (half-wave dipoles) defined on the
aperture of the waveguide, described by (a) the test functions or (b) the basic functions (guide modes)
at the operating frequency (f) of 5.4 GHz. The physical parameters used were: α0 = 0 rad m−1,
β0 = 0 rad m−1, w = 1 mm, δ = 0.75 mm (w � λ0, δ � λ0), dx = 108 mm, dy = 108 mm,
L = λ0

2 ≈ 27 mm, h = 1.25 mm, and ε = εr = 1 (air) (see [1] for a comparison).

Figure 12. Electric field of the almost periodic array (half-wave dipoles) defined by the waveguide’s
aperture, described by the basis functions (guide’s modes) using (a) three cells or (b) seven cells at the
operating frequency (f) of 5.4 GHz. The physical parameters were: α0 = 0 rad m−1, β0 = 0 rad m−1,
w = 1 mm, δ = 0.75 mm (w � λ0, δ � λ0), dx = 108 mm, dy = 108 mm, L = λ0

2 ≈ 27 mm,
h = 1.25 mm, and ε = εr = 1 (air) (see [1] for a comparison).

Identically, the 1D and 2D quasi-periodic structures will follow the same pattern when
representing the current and electric fields, as indicated in Figures 13–17. It is shown that
the electromagnetic coupling is expressed by the lying of a weak current surface on the
non-exciting elements of the aperiodic configuration (which explains also the phenomenon
of leaky waves). As shown in Figure 14, a Gibbs effect appears when the guide’s modes
number has not correctly reached the convergence level.

In the same way, the radiating pattern of the whole planar almost periodic dipole
antenna array can be given by Figures 18–20. The mutual coupling effects are taken
into account by varying the separation periods and the number of elements when the
electromagnetic calculation is achieved, as illustrated by the same figures.

According to Figures 18 and 19, the proposed structure offers high directivity with a
reduced main radiation beam, but suffers from a high sidelobe level (SLL), especially when
the number of elements is high and the array elements are decoupled (has a separation
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period (dx � λ). The good radiation pattern description was obtained in both E-plane and
H-plane cuts at the operative frequency f = 5.4 GHz, as shown in Figure 20.

Figure 13. Current density of 1D aperiodic array’s example (half-wave dipoles) defined by the
waveguide’s aperture, described by the test functions at the operating frequency (f) of 5.4 GHz.
The physical parameters used were: α0 = 0 rad m−1, β0 = 0 rad m−1, w = 1 mm, δ = 0.75 mm
(w � λ0, δ� λ0), dx = 13.5 mm, dy = 108 mm, L = λ0

2 ≈ 27 mm, h = 1.25 mm, and ε = εr = 1 (air).

A good comparison was achieved between periodic and aperiodic structures in terms
of the radiation pattern, as given in Figure 21. To validate the latter result, an array factor
formulation was proposed, which is applicable for a periodic array containing isotropic
elements with separation dx ≥ λ

2 .
Figure 22 shows the radiation beam steering (with φs = 0◦, θs = 45◦) of different

periodic and aperiodic arrays, and explains how to reduce side lobe levels by varying the
voltage configurations. As shown, the proposed antenna structures have a good beam
steering property, which is highly effective at the spherical beam coverage.

Figure 14. Current densities: examples of 1D aperiodic arrays (half-wave dipoles) that appeared on
the guide wave’s aperture, described by the basis functions (Guide’s modes) (without convergence)
at the operating frequency (f) of 5.4 GHz: (a) for an aperiodic exitation of type 10101, (b) for an
aperiodic exitation type 10001. The physical parameters were: α0 = 0 rad m−1, β0 = 0 rad m−1,
w = 1 mm, δ = 0.75 mm (w � λ0, δ � λ0), dx = 27 mm, dy = 108 mm, L = λ0

2 ≈ 27 mm,
h = 1.25 mm, and ε = εr = 1 (air).
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Figure 15. Current densities: 1D and 2D of aperiodic array examples (half-wave dipoles) lying
on the guide wave’s aperture and described by the basis functions (guide’s modes) at the operat-
ing frequency (f) of 5.4 GHz. The physical parameters were: α0 = 0 rad m−1, β0 = 0 rad m−1,
w = 1 mm, δ = 0.75 mm (w � λ0, δ � λ0), dx = 13.5 mm, dy = 108 mm, L = λ0

2 ≈ 27 mm,
h = 1.25 mm, and ε = εr = 1 (air).

Figure 16. Distribution of the electric density for (5× 1) aperiodic phased half-wavelength planar
dipoles (with (1,0,1,0,1) voltage configuration) described with the basis functions (guide’s modes) at
f = 5.4 GHz (using EEEE electric walls).

Figure 17. Distribution of the electric density for (5× 1) aperiodic phased half-wavelength planar
dipoles (with (0,0,1,0,0) voltage configuration) described with the basis functions (guide’s modes) at
f = 5.4 GHz (using EEEE electric walls).
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Figure 18. Radiation pattern computed with a MoM-GEC method against the motifs number at the
operating frequency (f) of 5.4 GHz (periodic array).

Figure 19. Radiation pattern computed with a MoM-GEC method against the periods at the operating
frequency (f) of 5.4 GHz (periodic array).

Figure 20. E-and H-plane cuts of the radiation pattern computed with a MoM-GEC method at the
operating frequency (f) of 5.4 GHz (periodic array).
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Figure 21. Radiation patterns for distinct aperiodic configurations and periodic arrays using electro-
magnetic and analytic formulations (MoM-GEC and analytic formulations) [22].

Figure 22. 3D Electronically scanned radiation pattern examples for distinct aperiodic array configu-
rations compared to the periodic array obtained using the electromagnetic calculation (MoM-GEC
method): φs = 0◦, θs = 45◦ angles of steering: (a) An aperiodic configuration of type (0,0,1,0,0), (b) An
aperiodic configuration of type (1,0,1,0,1), (c) A periodic configuration of type (1,1,1,1,1) [22].

In Figure 23, representations of the electric field at the waveguide aperture (the
discontinuity plane) are shown for different cases of electric and periodic walls, and
compared to the HFSS software results, which show different magnitudes of electric field
(by checking boundary conditions). Figures 24 and 25 show the resulting radiation patterns
for the cases in Figure 23. The same shape of the main lobe is visualized (differences
detailed in Figure 24). Differences are due to the weight of the electric field defined at the
guide aperture in each case shown in Figure 23. As well, Figure 26 shows validation of the
radiation pattern (in the main direction θs = 0) obtained with MoM-GEC and HFSS tools
for a coupled antenna array of five elements and a period equal to 27 mm (≈ λ0

2 ). The main
lobe has the same shape, but our method produced a more accurate sidelobe (very poor
with HFSS). The use of HFSS soft for scanning and covering the space around the antenna
system is possible; however, our method is more flexible for electronic scanning [47,53].
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Figure 23. Electric field at the opening of a waveguide composed of 5 coupled planar dipoles
(calculation provided by the MoM method and the HFSS software): dx ≈ λ0

2 = 27 mm (period):
(a) MoM-GEC with electric walls, (b) MoM-GEC with periodic walls, (c) HFSS Tool.

Figure 24. 3D radiation patterns proven with the MoM-GEC method (with electric and periodic
walls) compared to the HFSS software for a coupled periodic antenna array with 5 elements and
dx ≈ λ0

2 = 27 mm (period): (a) MoM-GEC with electric walls, (b) MoM-GEC with periodic walls,
(c) HFSS Tool.

Figure 25. Normalized polar radiation patterns proven with the MoM-GEC method (with electric
and periodic walls) compared to the HFSS software for a coupled periodic antenna array with 5
element and dx ≈ λ0

2 = 27 mm (period): (a) φ = 0 deg, (b) φ = 90 deg.
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Figure 26. Validation of the radiation pattern obtained using the MoM-GEC and HFSS tools for a
coupled periodic antenna array with 5 elements and dx ≈ λ0

2 = 27 mm (period).

4.2. ANN Application

The diagram presented in Figure 27 describes the rest of the process of generating
the optimized radiation pattern. Firstly, the necessary data collection for training was
performed by employing a numerical calculation of the moment method combined with
an equivalent circuit, using the parameters of the almost periodic array structure already
given. Then, the architectural parameters of the default ANN model were established,
and a comprehensive analysis of the ANN’s training was carried out in order to develop a
predictive performance. To propose an optimal ANN representation with high performance
and to improve the generalization capabilities of the ANN models, the early stopping (ES)
method was mainly used in ANN training [34].

Figure 27. Flow diagram illustrating the numerical radiation pattern optimization using an artificial
neural network algorithm.

In general, two frequently used ways to overcome the overtraining condition, i.e., to
decide when to terminate the training process, are the early stopping (ES) and regularization
methods. Early stopping (ES) is typically used because it is easy to be understood and
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implemented and has outperformed the regularization methods. In order to utilize the ES
method, the existing data must be divided into three sets [13]:

1. The training set was used to determine ANN weights.
2. The validation set was used to check the ANN’s performance and decide when to

stop the training process.
3. The test set was used to assess the performance capabilities of the developed ANN

model.

A more detailed explanation of the ES method is illustrated graphically in
Figures 28–30. The methodology of the ES approach can be found in [13,34].

As seen in Figures 29 and 30, a good accuracy improvement in the generalization of
the normalized radiation field was proven with the early stopping (es) technique. However,
an ANN based on the ES method (network with early stopping) was able to generate
the results of the synthesis very quickly compared to the default artificial neural network
(network without early stopping) which required much more CPU time and memory. In
consequence, the network with the ES method could better adapt to the test dataset with
fewer divergences, so the early stopping feature can be used to prevent the over adaptation
of the network towards the training data.

To obtain the computation time acceleration, the difference in computation time
between the default training and training with the early stopping method (using the
Levenberg algorithm) is given in Table 2. It shows that the time consumption of the
early stopping method was less than the time required for the default method (without
early stopping).

Table 2. Time consumption of learning for artificial neural networks with and without early stopping.

Training Time Consumed by the Algorithm (s)

Default training (with levenberg algorithm) 126.863

Training with early stopping method
(using levenberg algorithm) 19.276

Figure 28. Radiation field data were divided into three subsets: a training set, validation set, and
testing set. The parameters chosen to simulate the suggested almost periodic array antennas were:
φ = 0 deg, Nx = 3 elements, and dx = 2λ = 108 mm.
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Figure 29. Radiation pattern function approximation with early stopping (ES): improving generaliza-
tion with early stopping (ES). The parameters chosen to simulate the suggested almost periodic array
antennas were: φ = 0 deg, Nx = 3 elements, and dx = 2λ = 108 mm (For periodic array example).

Figure 30. The ANN output as a radiation pattern with early stopping (ES) (improving generalization
with early stopping): for (5× 1) aperiodic phased half-wavelength planar dipoles with (10101) voltage
configuration [22].

Due to the results in Table 3, the optimization and synthesis using ANN with the
Floquet moment method [2–4] was superior to the ANN with the spatial method, when the
motifs were considered coupled, because of the CPU time of the modal analysis was more
efficient and short compared to the old spatial MoM.

Table 3. Total CPU time (in seconds) used by electromagnetic calculation optimized through an ANN
algorithm.

EM Calculation Using ANN
Optimization

ANN with Spatial MoM
Coding

ANN with Floquet MoM
Coding

Elapsed CPU Time
(in seconds) 2704.502344 1750.368348

As the elapsed CPU time, the used memory is proven and discussed in our previous
work, where the modal Floquet analysis remains more appreciated in comparison to the
classical spatial MoM [2–4].
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4.3. ANN Performance

When the training process and the application of the multilayer neural network were
complete, the network’s performance was checked to determine if any changes needed to
be implemented in the training algorithm, the network architecture, or the datasets. We
measured the network’s performance according to the mean of squared errors. The accuracy
of the ANN models was evaluated by the mean sum of squared error (MSE) between the
target and output values using the training dataset [30]. A plot of the training errors is
shown in Figure 31. The mean squared error of the aperiodic configuration is presented in
Figure 32. This training was stopped when the training error decreased with convergence to
the optimal solution. As is clear, the training process for the ANN model was concluded at
31 training epochs when the MSE reached the value of 0.12953 (for the aperiodic structure,
the MSE was 0.59252 at 11 training epochs). The early stopping technique was employed
when 11 validation checks were failed before epoch 40; the maximum gradient descent
value was 0.27225. (The gradient decent value of the aperiodic structure was 0.0475 when
11 validation checks were failed at epoch 11). A reasonable Mu value of 1.00 was reached,
which would cause convergence of the network rapidly, as presented in the overall progress
of the ANN [13,15,16].

The next validation step in the network was to create a regression plot showing the
relationship between the outputs of the network and the targets. If training is perfect, the
network outputs and the targets match, but the relationship is rarely perfect in practice.
The dotted line in the training graph represents the perfect result: outputs = targets. The
solid line indicates the best-fit linear regression line between the outputs and the targets.
The R-value is an indication of the relationship between the outputs and the objectives. If
R = 1, this indicates that there is an exact linear relationship between outputs and targets.
If R is close to zero, there is no linear relationship between outputs and targets. In this
example, the training data have a good fit. Regression analysis was performed with the
ANN model when the network finished training. It is a statistical process for estimating
the relationships between the outputs and targets of a network. The regression function
takes two parameters’ values (targets, outputs) and plots the linear relationship. According
to all the graphs in Figure 33 (in the same manner for the aperiodic antenna array), the
best regression result for the validation was R = 0.99993 (concerning the aperiodic array,
R = 0.9958), that for the testing data was R = 0.99996 (for the aperiodic array, R = 0.99993),
and that for the training data was R = 1. The overall regression value was R = 0.99996
(for the aperiodic array, R = 0.99857). This proves the developed model and the network
procedure of training, testing and validation are significantly valid [50].

Figure 31. Evaluation of mean squared error (for the periodic array example).
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Figure 32. Evaluation of mean squared error (for the quasi-periodic array example).

Figure 33. Regression plot of the network (for the periodic array example).

5. Conclusions

We aimed to synthesize the radiation pattern of planar almost periodic arrays, in-
cluding the mutual coupling effects, which were modeled by the known moment method
combined with a generalized equivalent circuit (MoM-GEC). We used a novel ANN as a
computational model to create the array pattern.

Many advantages were shown for synthesizing the numerical radiation pattern using
an artificial neural network. For example:

• Reduced computational time and memory usage, especially when adopting the early
stopping method, which eliminates the overfitting problem.

• It is suitable for use with a coupled and complex quasi-periodic configuration.
• It is simple and easier to use than other optimization techniques (genetic, LMS, etc.).
• It is adaptable to complex electromagnetic calculations taking into account the effects

of mutual coupling.

This analysis will be the basis for future work on neural network solutions for the
synthesis of non-uniform, irregular, and sparse antenna arrays.

In future research, we suggest using other optimization techniques (genetic, LMS, etc.)
for modeling complex almost periodic arrays to predict the desired radiation that can be
adopted to increase the gain and to scan the range by suppressing the sidelobe level (SLL).
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Abbreviations

MoM-GEC Method of Moment with Generalized Equivalent Circuits
FSS Frequency Selective Surfaces
EEEE Electric walls
EMEM Electric and Magnetic walls
EPEP Electric and Periodic walls
PPPP Periodic walls
1-D Uni-dimensional
2-D Two-dimensional
ANN Artificial Neural Network
GA Genetic Algorithm
ES Early Stopping technique
MLP Multilayer Perceptron
LMA Levenberg-Marquart Algorithm
MSE Mean Squared Error
CPU Central Processing Unit
LMS Least Mean Squares algorithms
EM Electromagnetic Calculation
HFSS High-Frequency Structure Simulator, a high frequency electromagnetic simulation software

Appendix A

Midpoint Sums Approximating Double Integrals to calculate the far field of the
Equations (5) and (8) [54].

In this work, the proposed double integrals of the far-field expressions are evaluated
by means of the midpoints sums approximation:

When

Smn =
n

∑
i=1

m

∑
j=1

f (ui, vj)∆x∆y ≈
∫∫

R
f (x, y)dxdy (A1)

with
ui = a +

i− 1
2

∆x (A2)

and
vj = b +

j− 1
2

∆y (A3)

ui and vj are the midpoints of the ij-aperture subrectangle [xi−1, xi][yj−1yj].
Denote the midpoints of the ith x-subinterval and the jth y-subinterval (respectively),

then ∆x and ∆y are the m and n subintervals length of the waveguide aperture.
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Appendix B

Matlab’s code to express the far-field (radiation pattern) cuts of the Equations (5) and (8) [55].
Here, the main Matlab code used to calculate the far-field expression (based on the

Fourier transform) that obtained by the moment method simplified by the equivalent circuit
(electromagnetic calculation): Matlab’s code to express the far-field (radiation pattern) cuts.

Listing A1. Source code of the different radiation pattern cuts generated with the MoM-GEC (E and
H plans) (For example in the Figures 20 and 25).

1 % Steering angles
2 Phi_s=0;
3 Theta_s=0;% Theta_s=pi/6;
4

5 Phi=0;
6 Theta=0; % Theta=pi/6; (The maximum of radiation change with the steering ...

angle Theta_s)
7 a = 0; b =d_x; c =0; d =d_y;
8 m = 8; n = 12;
9 dx = (b − a)/m; dy = (d − c)/n;

10 i = 1: m; j = 1: n;
11 u = a + (i − 1/2)*dx;
12 v = c + (j − 1/2)*dy;
13 [u,v] = meshgrid(u,v);
14 intgralmax=sum( ...

sum(abs(calcul_E_{aperture}(u,v,A,Xs,alfa_moins1,beta_moins1))
15 .*exp(1i.*k.*((u.*sin(Theta).*cos(Phi)+v.*sin(Theta).*sin(Phi))−
16 (u.*sin(Theta_s).*cos(Phi_s)+v.*sin(Theta_s).*sin(Phi_s))))*dx*dy;
17 radiationmax=intgralmax;
18 Theta=−pi/2:pi/100:pi/2;
19 for j=1:length(Theta)
20 Integral(j)=sum( sum(abs(calcul_E_{aperture}(u,v,A,Xs,alpha,beta))
21 .*exp(1i.*k.*((u.*sin(Theta).*cos(Phi)+v.*sin(Theta).*sin(Phi))−
22 (u.*sin(Theta_s).*cos(Phi_s)+v.*sin(Theta_s).*sin(Phi_s))))*dx*dy;
23 En(j)=Integral(j)./radiationmax;
24 Edb(j)=20.*log10(abs(En(j)));
25 deg(j)=Theta(j).*180./pi;
26 value(j)=Edb(j);
27 end
28 figure,plot(deg,value,'g');
29 % figure,polar(Theta,abs(En)); % Possible to draw the normalized polar ...

pattern

Where Calcul E aperture (u,v,A,Xs,alpha,beta) is the radiating field calculated at the
waveguide’s aperture (discontinuity plane) through the moment method combined by the
equivalent circuit (as described in Figures 12, 16 and 17).
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