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Abstract: Photoinduced halide segregation in mixed halide perovskites is an intriguing phenomenon
and simultaneously a stability issue. In-depth probing this effect and unveiling the underpinning
mechanisms are of great interest and significance. This article reviews the progress in visualized
investigation of halide segregation, especially light-induced, by means of spatially-resolved imaging
techniques. Furthermore, the current understanding of photoinduced phase separation based on
several possible mechanisms is summarized and discussed. Finally, the remained open questions and
future outlook in this field are outlined.
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1. Introduction

Metal halide perovskites (MHPs), as a class of unique semiconductor materials, have
sparked unprecedentedly intense research activities globally over the past decade. This is
mainly due to their splendid optoelectronic properties and ease of processing, enabling
efficiently fabricating high-performance photovoltaic devices with low-cost. Tremendous
advances of perovskite solar cells (PSCs) have been achieved in terms of power conversion
efficiencies (PCEs), large-area fabrication and device stability since their emergence in
2009, especially after 2012, making PSCs become significant candidates for next-generation
photovoltaic technologies [1–12]. In addition, MHPs are attractive and promising for
other applications beyond photovoltaics, including light-emitting diodes (LEDs) [13–15],
photocatalysis [16,17], photodetectors [18,19], lasers [20,21], transistors [22,23], thermo-
electrics [24], and even nonlinear optics [25], spintronics [26] and so forth, demonstrating
MHPs are indeed a type of versatile and fascinating materials.

In general, MHPs feature a chemical formula of ABX3, where A refers to methylam-
monium, formamidinium or cesium cation (MA+ = CH3NH3

+, FA+ = HC(NH2)2
+, or Cs+),

B is lead or tin cation (Pb2+ or Sn2+), X denotes halide anion (I−, Br− or Cl−). The BX6
octahedra with corner-sharing form a three-dimensional framework, and A-site cations
are centrally located in the cuboctahedral cavities [27,28]. The unique crystal structure,
moderate Pb-I bonding energy, and weak electrostatic interaction together with hydrogen
bonding between the organic A cations and halogen anions coherently dictate MHPs fea-
turing soft nature [27]. This character makes MHPs be of easy preparation and processing,
but also face inherent instability issues, such as ion migration, halide segregation, phase
transition and degradation [29–33].

As is known, bandgap tunability is one of the most attractive characteristics for MHPs
(from about 1.2 to 3.0 eV) [34,35], which can be readily achieved through compositional
engineering, offering immense opportunities to fabricate perovskite based multijunction
photovoltaics and multicoloured LEDs by meticulously regulating the energy bandgap to
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the target values of the perovskites. However, an apparitional phenomenon existing in
MHPs, called halide segregation, makes such anticipations far from favorableness [31]. The
halide segregation occurs when MHPs exposed to photoirradiation or subjected to charge
carrier injection. As a result, coessential aggregation of iodide (I) and bromide (Br) occurs,
leading to the formation of I-rich and Br-rich regions. The I-rich domains feature narrower
energy bandgaps, acting as radiative recombination centers due to carriers funneling from
adjacent Br-rich regions, thus giving rise to redshifted photoluminescence (PL) emission.
What is even more peculiar is that when the perovskite films are kept in the dark on a
timescale of from minutes to hours, remixing processes take place and the corresponding
films could recover to their original states. Since photoinduced halide segregation in MHPs
was first reported by Hoke et al. in 2015 [31], numerous studies have been devoting to this
subject, striving to uncover the microscopic mechanism and reveal what is the driving force
behind the phenomenon or seek effective strategies to suppress it.

The fast-growing publications related to halide segregation in MHPs, as shown in
Figure 1, indicate that halide segregation has been arousing tremendous attention in the
perovskite community. However, thus far, a consensus has yet to be reached on the full un-
derlying mechanisms for light-induced halide segregation. The construction of an ultimate
theory or mechanism necessitates the guidance and support from direct observation on
halide segregation using imaging techniques with high spatial resolution. Over the past few
years, a number of studies have focused on this research direction. Some microscopy tech-
niques, including PL mapping, cathodoluminescence (CL) imaging, transmission electron
microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), atomic force microscopy
(AFM), have been utilized to visualize halide demixing process and image spatial distribu-
tion and evolution of I-rich and Br-rich domains in MHPs. The obtained results provide
direct and powerful evidences that help the perovskite community to get in-depth insight
into halide segregation and ultimately uncover the underlying mechanism.
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Figure 1. The number of publications in each year regarding halide segregation in metal halide
perovskites. Note that the data might be somewhat overestimated.

Several review papers focusing on halide segregation in MHPs have been published,
most of which take great attention on reviewing and discussing the origin, impact and
suppression of halide segregation [36–45]. While we notice that the research progress on
imaging halide segregation has yet to be comprehensively reviewed, which is of particular
importance to deep understand this effect. Herein, we present this review article to system-
atically summarize and discuss the findings and advances in visualized investigation on
phase separation, especially photoinduced, in terms of different characterization methods.
Additionally, we review and discuss the currently prevailing possible mechanisms or theo-
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retical models accounting for this phenomenon. Finally, the remained open questions and
future outlook in this field are outlined.

2. Visualization of Halide Segregation

Several years ago, Hoke and coworkers first noticed that the PL spectra of MAPb(BrxI1−x)3
MHPs could undergo a red-shift when the perovskite films were exposed to illumination
in less than one minute, which, interestingly, would recover to their original states when
the films were kept in the dark for a few minutes [31]. Inspired by this behavior, they dis-
covered the light-induced halide segregation phenomenon in MHPs. Since then, significant
research activities have been focusing on this subject. During this process, recording the
variation of steady-state PL spectra, ultraviolet–visible (UV–vis) absorption spectra, and
transient absorption spectra are simple and effective ways to monitor and evaluate the
phase segregation. While, in-depth understanding of this phenomenon necessitates locally
multimodal microscale imaging of halide segregation. In this section, the advances in visu-
alized investigation of halide demixing in many cases based on different characterization
methods are systematically reviewed and discussed.

2.1. Photoluminescence Mapping

Photoluminescence (PL) measurements represent the most extensively adopted method
to characterize the charge carrier recombination behavior of perovskites. A photoexcited
electron from the excited state returns to ground state through radiative pathway, leading
to a photon emitting. As electron–hole pairs generally thermalize to the band edges before
recombination, the wavelength of emission peak directly correlates with the bandgap of
the perovskite material. Thus, detecting and analyzing the emitted photons provides
insight into the photoelectric quality and band gap of the perovskite in terms of emission
intensity and wavelength [46]. Furthermore, spatially resolved PL mapping enabled by
PL microscopy technique can give significant information of spatial variations in the pho-
togenerated carrier recombination dynamics, which can be used to determine the film
quality, heterogeneity, trap state distribution, ion migration, local phase transformation
and so forth [29,47–55]. PL microscopy generally includes confocal and widefield types.
The former can deliver PL images with much higher spatial resolution than the latter,
owing to adopting a point light source and single point detector. For local visualization of
halide segregation in MHPs under external stimuli, PL mapping, featuring noninvasive,
nondestructive characteristics, desirable operational flexibility, and relative ease of access,
is naturally becoming the most widely used characterization method.

Some previous works based on confocal PL spectroscopy or PL microscopy charac-
terization suggested that halide segregation is preferable to occur at the grain boundaries
for polycrystalline films and the edges for monocrystalline microplates. Tang et al. [56]
compared the PL emission behavior evolution over time of the grain boundaries and grain
interior under illumination by using shear-force scanning probe microscopy combined
with confocal optical spectroscopy. They observed distinct PL emission variation with a
new emission peak appearing at the longer wavelength when the laser spot was focused
on grain boundaries just after 100 s of illumination. When the laser spot was placed on the
center of grain, the PL emission was invariable over a period of 600 s (see Figure 2A). This
suggests that light-induced phase segregation is initially preferable to occur at the grain
boundaries. This result was confirmed by another group using the same characterization
method [57]. Additionally, in this work, the researchers found that photoinduced phase
segregation selectively appears at grain boundaries for MA-perovskite films with 35% Br
concentration, while for 65% Br samples, halide demixing occurs over the whole films,
including grain interior (Figure 2B). Furthermore, the results of PL mapping performed on
CsPbIBr2 polycrystalline films upon light exposure reported by Yin et al. [58] also support
this conclusion. Red shifted PL emission can be clearly observed at the grain boundaries
after light soaking for 240 s, indicating the formation of I-rich phase in these places. While,
more interestingly, they noticed that sporadic I-rich regions assigning to some entire grains
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promptly appeared throughout the perovskite films under illumination, forming emission
islands with longer wavelength.
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perovskite film and corresponding PL spectra evolution over time at different locations as marked.
Reproduced with permission [56]. Copyright 2018, American Chemical Society. (B) Shear-force
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time at grain interior and grain boundary. (C) Shear-force topographic images of a MAPb(I0.35Br0.65)3

perovskite film and PL spectra evolution with respect to time at grain center and grain boundary.
Reproduced with permission [57]. Copyright 2020, Nature Publishing Group.

In another work, Tiede and coworkers [59] demonstrated that the PL dark regions of
the origin film were more susceptible to photoinduced halide segregation to form I-rich
phase under illumination, suggesting that halide segregation rate is positively correlated
with defect density. Moreover, they also observed that halide demixing domains expanded
far beyond the illuminated area, which is indicative of light-induced halide ion migration
extends beyond the illuminated region. Hence, this work provides visualized evidence of
the strong correlation between halide segregation and defects or trap states, which has also
been widely demonstrated by other works, despite lack of such direct and spatial resolved
observation [60–65]. Although the exact mechanism of how defects or trap states accelerate
phase segregation have yet to be well understood, halide vacancies mediated halide anion
migration and trap states induced photogenerated carriers trapping are considered to play
crucial roles in phase separation [38,60,61,63,66,67]. In this context, it is easy to understand
why halide demixing generally occurs at the grain boundaries and some entire grains at
first, as observed by PL mapping. Because grain boundaries are commonly high defective
regions [54,68,69]. Besides, the heterogeneity of halide perovskite thin films has been
extensively demonstrated [47–49,54,68,70]. The electronic quality could vary from grain
to grain, and photoexcited carriers in some grains can dominantly recombine through
non-radiative channels, leading to the formation of PL dark regions [48,49]. Furthermore,
there are some other works that utilize PL mapping to investigate halide segregation of
polycrystalline MHP films. While due to relatively long illumination time and/or low
spatial resolution, they are unable to clearly deliver the information about local variation or
distribution of phase segregation at the nanoscale or microscale [71–74]. Thus, we would
like to skip over them.

As discussed above, defects in perovskite films have great impact on halide segregation.
Thus, it is natural to wonder whether halide segregation is an intrinsic material property or
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not for MHPs [75]. Besides, in polycrystalline perovskite films, there exists many factors,
such as morphology, grain size, grain boundaries, halide defects, and surface states that can
influence phase segregation, making it unable to decouple the role of each factor [75,76].
Thus, investigation of halide segregation in monocrystalline MHPs is essential. Bischak
et al. [75] prepared monocrystalline MAPb(BrxI1−x)3 nanoplates and used confocal PL
microscopy to visualize the halide demixing behavior over time in these single crystals
under illumination. They found that phase segregation phenomenon also readily occurred
in these as-prepared monocrystalline nanoplates under light soaking just for 10 s. This
might indicate that photoinduced phase separation is an intrinsic property of MHPs, at
least for MA cation based MHPs. While, by partially replacing MA cation with Cs cation,
significantly suppressed halide segregation are observed, as seen in Figure 3. The authors
attribute this phenomenon to the reduced electron–phonon coupling strength upon addition
of Cs cation. It is noted that the addition of Cs cation into mixed halide perovskites has
been widely proven to be one of the most effective strategies to mitigate phase segregation,
even though a consensus in the community has yet to be reached on the full underlying
mechanism how Cs cation affect halide segregation dynamics, that is, the reduction in
electron–phonon coupling strength is not the only explanation in the literature [77–83].
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Figure 3. Confocal PL maps of (A) MAPb(I0.14Br0.86)3 and (B) Cs0.39MA0.61Pb(I0.15Br0.85)3 monocrys-
talline nanoplates. The blue channel shows the PL emission of the original mixed phase (500–560 nm),
and the yellow channel corresponds to the PL emission of segregated I-rich domains (650–750 nm).
Reproduced with permission [75]. Copyright 2018, American Chemical Society.

Visualizing halide segregation in MHP single crystals using PL imaging technique
was also conducted by Mao and colleagues [76]. I-rich clusters are observed throughout
the entire MAPb(BrxI1−x)3 monocrystalline microplate, which is in agreement with the
result reported by Bischak et al. [75], highlighting grain boundaries are not essential for
phase segregation. However, there also exists some incompatible results between the two
studies. First, in the work reported by Mao et al. [76], microplate edges exhibit much
notable red-shifted PL emission than the interior after light soaking, which may mean
that the formation of I-rich phase at the edges is much more favorable than in the interior.
While in the work reported by Bischak and coworkers [75], it is not this case. In turn,
it is the mixed phase shows more notable PL emission at the edges of the microplate,
which is considered to likely stem from either photonic waveguiding effect [84] or a lower
concentration of MA vacancies at the edges [85], and there is no such phenomenon of red-
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shifted PL emission. Second, what is even more contradictory is that the two reports hold
evidently different standpoints regarding whether the locations of segregated I-rich regions
are fixed or changed when the light on/off induced halide demixing/remixing cycles are
performed. Bischak et al. [75] observed that I-rich clusters would not repeatedly appear in
the same locations based on CL imaging (see Figure 4A), while Mao and colleagues [76]
found that I-rich domains constantly formed in fixed places by using PL mapping, as
shown in Figure 4B. The reason accounting for this contradiction is remained unclear.
Besides, Mao and coworkers [76] also found that the segregated I-rich clusters feature two
different emission wavelength regions, indicating the compositions of the I-rich phase are
far from homogeneous.
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Figure 4. (A) CL images of a specific region of a MAPb(I0.14Br0.86)3 monocrystalline nanoplate from
the first and second light-induced segregation steps, and an overlay of the local emission maxima in
the first (blue) and second (pink) segregation steps, respectively. Reproduced with permission [75].
Copyright 2018, American Chemical Society. (B) PL maps of a target region of a MAPb(BrxI1−x)3

single crystal in four light on/off cycles. Reproduced with permission [76]. Copyright 2019, John
Wiley & Sons. The scale bars are 1 µm for the three images in (A), and 2 µm for the images in (B).

One year later, Mao and Chen et al. [86] reported their further investigation and
understanding on the phase segregation dynamics in MHP single crystals by comparing
one-photon and two-photon absorption based PL mapping. They ascertained that surface
and edge states significantly impact photoinduced phase segregation. In the case of one-
photon excitation, charge carriers are principally generated from the vicinity of perovskite
surface with a minor contribution from the bulk, while two-photon excitation can penetrate
the perovskite crystal, allowing the examination of bulk effects [86,87]. Similar to their
previous work, I-rich phase related PL emission exhibits an obviously enhanced intensity
at the edges of the perovskite monocrystalline microplate. Furthermore, under one-photon
excitation, PL mapping shows that the I-rich PL emission is localized at the edges and
almost unchanged over time. While, according to the time-resolved PL mapping under
consecutive two-photon excitation, they observe that I-rich phase correlated PL emission
firstly appears at the crystal edges, especially the corners where two edges are joining, and
then gradually diffuse into the interior with the decrease of PL intensity corresponding to
the parent phase, suggesting a direct I-Br substitution during this process. To interpret the
halide segregation dynamics in MHPs single crystals observed in this study, the authors
proposed a mechanism that upon light excitation, photogenerated charge carriers undergo
diffusion, recombination, and surface trapping processes and the survived free carriers
accumulate at the edges, which serve as a dam of the diffused carriers. The cumulation of
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charge carriers may result in strong electron-phonon coupling or higher potential energy in
the crystal edges, thus triggering halide ions migration and ultimately phase segregation.
In this context, the distinctions observed in one-photon and two-photon PL maps over time
are considered to be derived from the different locations that charge carriers generated and
the impact of surface defects on carrier recombination under one-photon and two-photon
excitation situations.

2.2. Cathodoluminescence Imaging

Similar to PL mapping, cathodoluminescence (CL) imaging technique is also an im-
portant way to probe local halide segregation at the nanoscale. CL microscopy is generally
equipped into scanning electron microscopy (SEM) system, imaging the luminescence of a
material induced by electron beam. CL is quite sensitive to the optoelectronic properties of
the materials and can achieve high spatial resolution with about 20 nm, compared with a
low spatial resolution of around 300 nm given by PL mapping at typical excitation/emission
wavelengths due to diffraction limitation [88–90]. Simultaneously detecting secondary
electrons and fluorescence emission enables to directly correlate microstructure with local
carrier radiative recombination characteristics of the perovskites, thus shedding light on
the spatial distributions of segregated I-rich phase with nanoscale resolution. While, of
particular note is that care must be taken to avoid beam-induced damage during measure-
ment, especially for hybrid perovskites with soft nature. Therefore, significantly reducing
acceleration voltage and the probing current, even coupled with low-temperature cooling
are required [88,89].

Bischak and coworkers [77] first took advantage of the CL imaging method to visualize
the spatial distribution of photoinduced I-rich clusters in MAPb(I0.1Br0.9)3 film after light
soaking, which are demonstrated to primarily locate at the grain boundaries in steady
state, as displayed in Figure 5B. Figure 5A is the corresponding SEM image, showing the
morphology of the perovskite film. It is in this work that the authors proposed the famous
polaron model to interpret the origin of photoinduced halide segregation based on experi-
mental observations and multiscale modeling, which will be further discussed in the next
section. They pointed out that reducing defect concentrations to restrict vacancy-mediated
halide migration or weakening electron-phonon coupling can significantly suppress light-
induced phase separation, which are in good agreement with broadly experimental results.
Subsequently, CL imaging focusing on all-inorganic CsPbIBr2 films to study local charge
carrier recombination and phase segregation under illumination and electron beam irra-
diation was reported [91]. The researchers also observed that halide demixing preferred
to occur at the grain boundaries and some grains, as shown in Figure 5C,D. They deem
that phase segregation gives rise to massive mobile ions migrating along grain boundaries
as ion movement highways and piling up at device interfaces, thus causing pronounced
current density–voltage hysteresis of the corresponding photovoltaic cells. Duong et al. [71]
also employed CL microscopy to imaging halide demixing and remixing processes of
the as-prepared Rb0.05(Cs0.1MA0.15FA0.75)0.95PbI2Br quadruple-cation perovskite film after
light soaking under one-sun illumination and after being stored in the dark. According
to the obtained CL images, significant photoinduced phase segregation occurred in many
entire grains throughout the perovskite film after illumination for 12 h, which could not
completely recover to its original state even after being placed in the dark for 12 h. On
the basis of their previous work as introduced above [77], Bischak and colleagues [75] per-
formed CL imaging, as a complementary tool for PL microscopy, to examine photoinduced
phase separation in monocrystalline MAPb(BrxI1−x)3 nanoplate. They observed that red-
shifted CL corresponding to I-rich clusters quickly appeared and propagated throughout
the perovskite nanoplate within tens of seconds under illumination at 405 nm with a light
intensity of 100 mW cm−2, which is consistent with the PL mapping results. Moreover, by
comparing the CL images of an identical area, researchers noticed that I-rich domains did
not repeatedly appear in the same locations when the halide demixing/remixing reversible
cycles were performed. However, such a viewpoint is under debate since an opposite
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experimental observation was reported by another group using PL mapping [76], which
has been discussed above.

2.3. Transmission Electron Microscopy

Transmission electron microscopy (TEM) is also a powerful and widely used technique
to probe the microstructures of materials by detecting the transmitted electrons through the
specimen, enabling to achieve a resolution down to sub-angstrom [92]. Thus, the thickness
of sample is generally controlled to be in the range of 5 to 100 nm [93], which depends on the
elemental composition of the observed material and the acceleration voltage, to guarantee
enough electron transparency. Funk et al. [94] have monitored halide segregation behavior
in CsPb(Br0.8I0.2)3 perovskite under electron beam irradiation using in situ TEM. The
authors hold the viewpoint that light and electron irradiation are equivalent in the aspect
of inducing phase separation in various MHPs. They directly prepared the CsPb(BrxI1−x)3
samples on a carbon-coated TEM grid by spin-coating. After five minutes of electron beam
irradiation, the abundance maps derived from the HRTEM images showed that the phase
in the center of the nanoparticle was converted into CsPbBr3, while the phase close to
the edges was in agreement with CsPb(Br0.6I0.4)3, indicating a Br/I substitution process
upon electron beam exposure, consistent with previous works using PL and CL imaging
techniques as discussed above [76,77,86].

2.4. Energy-Dispersive X-ray Spectroscopy

Energy-dispersive X-ray spectroscopy (EDS or EDX) is a basic and widely used tech-
nique to probe elemental composition and distribution, which is a typical accessory equip-
ment integrated into the SEM and TEM systems. When the electron beam is irradiated onto
the specimen, detecting and analyzing the characteristic X-rays generated from the atoms
using energy dispersive detector allows performing qualitative and quantitative elemental
analysis [92]. The constant advance of SEM technique enables a spatial resolution down to
one nanometer. While for general EDS, the resolutions are still restricted to about several
hundred nanometers or beyond one micrometer for bulk specimens, which depend on
material characteristics, sample thickness, acceleration voltage, and so forth. This restriction
is due to the scattering of electrons inside the sample, leading to a large tear-drop shaped
excitation volume below the surface where the characteristic X-rays are generated [95]. By
contrast, the spatial resolution of several nanometers for EDS in TEM is realizable due to
the sample size is generally in the order of a few tens to hundred nanometers in thickness.
As such, it is impracticable to get insight into the local halide segregation at the nanoscale
using SEM-EDS, but in principle, feasible by means of TEM-EDS system.

By employing STEM-EDS, Hentz et al. [96] have demonstrated that the darker do-
mains in the dark field STEM image of a MAPbI3 perovskite lamella was enriched with
iodide, which displayed an enhanced CL intensity. Moreover, Doherty and coworkers [68]
performed low-dose scanning electron diffraction (SED) microscopy coupled with STEM-
EDS measurements to visualize local crystallography of heterogeneous grains and their
correlation with trap clusters at grain boundaries, revealing the presence of an inhomoge-
neous grain with non-uniform Br/I ratio (Figure 5F). Nevertheless, owing to the special
requirements for sample preparation, concerns about electron beam induced damage, and
accessibility issue, etc., as seen, only a few works dedicating to study halide segregation or
local halide variations in MHPs using TEM or EDS-TEM have been reported thus far.
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Figure 5. SEM image (A) and CL image (B) of a MAPb(I0.1Br0.9)3 perovskite film. Reproduced with
permission [77]. Copyright 2017, American Chemical Society. (C) A superposition image of two
CL images individually corresponding to the mixed phase emission and I-rich phase emission. The
color code indicates the emission wavelength, that is orange domains suggest a longer fluorescence
wavelength than the green domains. (D) A superposition image of two CL images. The pseudo
color represents different fluorescence emission wavelengths. Reproduced with permission [91].
Copyright 2017, John Wiley & Sons. (E) Phase contrast image obtained from AFM measurement
of a Cs1.2PbI2Br1.2 film after continuous light soaking for 20 h. Reproduced with permission [97].
Copyright 2021, John Wiley & Sons. (F) Ratio I(Br Kα)/(I(I Lα) + I(Br Kα)) extracted from a STEM-
EDX map of a region of interest of a (Cs0.05FA0.78MA0.17) Pb(I0.83Br0.17)3 film. The dark region denotes
iodide rich. Reproduced with permission [68]. Copyright 2020, Nature Publishing Group.

2.5. Atomic Force Microscopy

Atomic force microscopy (AFM) is an imperative and the most extensively used
scanning probe microscopy (SPM) technique that has been well developed for imaging
various material surfaces with nanoscale spatial resolution. This technique works based
on the interaction forces between the atoms at sample surface and the probe tip, usually
made of Si, SiO2, or Si3N4, which is attached to a cantilever [46]. When closing to a material
surface, the tip and the cantilever can be deflected by forces such as mechanical contact
forces, van der Waals forces, and electrostatic forces. Meanwhile, a displacement sensor
measures the deflection of the cantilever with a sensitivity better than 0.1 nanometer by
detecting the angle variation of a laser beam reflected from the backside of the cantilever,
thus enabling to determine the specimen surface topography with resolutions in the order
of a few nanometers [93]. Moreover, some derivative techniques, including kelvin probe
force microscopy (KPFM), conductive-AFM (c-AFM), have been exploited. KPFM measures
the contact potential difference (CPD) between the material surface and the tip, allowing to
map the work function or surface potential [97,98]. While c-AFM method is an electrical
model in the SPM family, which is used to study the conductivity and imaging electrical
properties of the samples, such as charge transport and charge distribution at the nanoscale.
AFM based techniques have been used to unveil variations of the topography, phase
contrast, surface potential or photocurrent of the MHPs under illumination or electric field.

By utilizing photoconductive AFM (pc-AFM) coupled with PL imaging, Gomez
et al. [99] have revealed that photocurrent changes initiated at the grain boundaries and
gradually propagated into the grain interior of the as-prepared mixed cation and mixed
halide perovskite films under continuous light soaking or applied voltage, which was
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performed in a dry air condition with relative humidity lower than 6%. Additionally, they
observed that this variation could be fully reversible in the grain interior, but unchanged
at the boundaries due to severe degradation of the perovskite in these regions when the
film was applied with an opposite voltage. More interestingly, targeting on a degraded
area, the researchers found that the initial photocurrent could be fully recovered if the force
on the tip was strong enough to penetrate several nanometers from the surface. Given
this phenomenon, the authors inferred that ion migration and accumulation at the shal-
low surface occurred when the perovskite layer was subjected to light exposure and/or
applied bias, which is in line with the work reported by Chen and coworkers using PL map-
ping, as discussed above [86]. Moreover, spatially resolved visualization of light-induced
halide segregation over time in CsPbI2Br and Cs1.2PbI2Br1.2 films using in situ AFM was
reported [97]. In this experiment, the illuminated region was continuously and repeatedly
scanned to monitor any changes in topography, phase contrast and surface potential of the
film. The Cs1.2PbI2Br1.2 film exhibits much higher stability performance than the CsPbI2Br
counterpart owing to the stabilizing effect of the over-stoichiometric CsBr species. New
phases firstly appearing at the grain boundaries were clearly observed in terms of the phase
contrast images, as presented in Figure 5E. By determining and comparing the typical work
functions of a suite of CsPbI3−xBx based materials with different I/Br ratios, the authors
assign the segregated phases at the grain boundaries in CsPbI2Br and Cs1.2PbI2Br1.2 films
to orthorhombic CsPbI3 and cubic CsPbI3, respectively. Therefore, the researchers con-
clude that I-rich phase is selectively expulsed from the bulk to grain boundaries under
illumination, which matches previous studies well [48,83,91,100].

3. Mechanism of Halide Segregation in MHPs

The underpinning mechanism of halide segregation in MHPs, especially induced by
light irradiation, is the subject of great interest and intense debate in the perovskite com-
munity. Significant efforts have been made to get insight into the origin of this intriguing
phenomenon. As a result, plentiful interpretations and models with multi-disciplinary
background are proposed. However, an ultimate and comprehensive framework for unam-
biguous unveiling the mechanism and kinetics at the atomic scale has yet to be constructed.
In this section, we will introduce and discuss the proposed mechanisms for photoinduced
phase separation existing in the literature, which are classified into four categories, i.e.,
thermodynamic models, polaron/strain models, carrier gradient/carrier trapping models
and redox models.

3.1. Thermodynamic Models

From a thermodynamic standpoint, Brivio et al. [101] calculated the free energy of
MAPb(I1−xBrx)3 alloy as a function of the bromide content and temperature using first-
principles total energy calculations, showing in Figure 6A. The curve is asymmetric at
low temperature. While with the temperature increase, the shape of the curve becomes
more symmetric. They further constructed a phase diagram of the MAPb(I1−xBrx)3 alloy
based on the variation of Helmholtz free energy (Figure 6B). The obtained phase diagram
suggests that the MAPb(I1−xBrx)3 compound features a miscibility gap below a critical
temperature of 343 K. It means that the alloys in this gap are miscible above the miscibility
temperature and become unstable at lower temperature. Typically, the phase diagram
displays a miscibility gap involving 0.3 < x < 0.6 for MAPb(I1−xBrx)3 at 300 K, indicating that
the compounds in this region are prone to spinodal decomposition and halide separation
at room temperature. The authors considered that phase separation is spontaneous, even
though this process could be very slow without external stimuli. Thus, light irradiation
can expedite halide segregation by overcoming these kinetic barriers. This model can
rationalize the existence of terminal x-value, but also predict an irreversible halide demixing
process, which is obviously contradictory with the fact. Moreover, the conclusion that
MAPb(I1−xBrx)3 (0.3 < x < 0.6) MHPs are unstable at room temperature is unreasonable
because MAPb(I1−xBrx)3 with any x value can keep stable at such temperature [43].
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Subsequently, by combining experimental and theoretical studies, Bischak and col-
leagues [77] provided a deep and comprehensive insight into photoinduced phase separa-
tion in MHPs. By using molecular dynamics simulations performed on MAPb(IxBr1−x)3,
they found that elastic effects from lattice mismatch are much larger than specific chemical
interactions, which leads to a demixing transition that depends strongly on strain. Fur-
thermore, high spatial overlap between the lattice and a single-charge density distribution
generates enough strain to be able to drive local phase separation at room temperature.
Notably, with excess charge, the free energy as a function of composition appears two
minima located at X = 0.2 and X = 0.8, respectively (Figure 6C). Previous PL studies
demonstrate that the composition of segregated iodide-rich phase is fixed, approximate
to MAPb(I0.8Br0.2)3, and regardless of the parent phase compositions, which verifies this
prediction. Moreover, they established a thermodynamic model by modeling the phase
segregation using a Landau–Ginzburg Hamiltonian with linear coupling between strain
and composition fields and employing a semiclassical description of the excess charge.
Free energies per unit cell for MAPb(IxBr1−x)3 with varying composition in the ground and
photoexcited states predicted by this theory are in good agreement with the results obtained
from molecular dynamics simulations. They constructed the temperature–composition
phase diagram of MAPb(IxBr1−x)3 for both ground- and photoexcited states by adopting
mean field approximation (Figure 6D). Besides, the extent of halide demixing with respect
to electron–phonon coupling and temperature was mapped based on mean field theory in
the photoexcited state. We can see that the thermodynamic model is capable of rationalizing
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a wide range of experimental observations. This model highlights that the photogenerated
charge carriers localized in the I-rich clusters are essential for stabilizing the segregated
I-rich phase through electron–phonon coupling. The reversibility of halide segregation in
the dark and the existence of terminal x value are predicted. Besides, decreasing electron–
phonon coupling in the system is expected to suppress halide demixing, which can explain
why doping the perovskites with Cs cation enables to enhance their photostability. Since
the kernel of this model is invoking local lattice deformation induced by photogenerated
charges as the origin of halide segregation, this model is thus also regarded as a polaron or
strain model, which will be further discussed in the next subsection.

On the other hand, a type of thermodynamic models based on band gap difference
between the parent and I-rich phases which leads to photocarriers funneling to lowering the
free energy are proposed [102–104]. Draguta et al. [102] conclude that bandgap reduction
in I-rich domains is responsible for the driving force that leads to halide segregation. I-rich
phases feature lower valence band edges and nearly isoenergetic conduction band edges
with respect to the mixed phase, thus favoring photogenerated carriers diffusing into I-rich
regions and then recombining radiatively. Reducing carrier diffusion lengths and lowering
illumination intensity contribute to suppressing halide segregation. To verify the second
prediction, the authors compared the light-induced separation behavior of CsPb(I0.5Br0.5)3
thin films and nanocrystal-based films. They attributed the much enhanced photostability
of the nanocrystal-based films to the reduction in carrier diffusion lengths. However,
we note that it could be unpersuasive and the diffusion lengths do not directly dictate
phase segregation. The underlying reason for this case, instead, from the perspective of
thermodynamic or rather nucleation theory, is that the interfacial energy cost of forming
new interface in nanocrystals becomes significant, thus removing the thermodynamic
driving force for phase separation [105–109]. Moreover, assuming a perovskite film with
high defect density, the carrier diffusion lengths are short, while photoinduced halide
demxing effect would be pronounced. Whereas, this analytical model has made success in
explaining the existence of excitation intensity threshold, the observed non-linear intensity
dependencies in kinetic rate constants and self-limited growth of I-rich domains.

Recently, the same group [103] further supported their band gap difference based ther-
modynamic model. It is worth noting that a distinguishing feature of this model compared
with thermodynamic miscibility gap models [77,101], as claimed, does not exist free energy
minimum value varied with temperature. This is due to the free energy primarily arises
from band gap difference between I-rich phase and mixed phase. With this regard, they ex-
amined the impact of temperature on the terminal x value of segregated I-rich phase using
PL measurements. In the case of MAPb(I0.5Br0.5)3 thin film, the PL emission corresponding
to the segregated I-rich phase at 185 K show a small red-shift (~20 meV) as compared with
the emission wavelength at 295 K. As for MA0.5Cs0.5Pb(I0.5Br0.5)3 thin film, this variation
was smaller. Thus, the authors concluded that the terminal x value did not change sig-
nificantly with temperature, supporting band gap difference as the dominant contributor
to free energy that drives photosegregation. Almost at the same time, Chen et al. [104]
reported a unified thermodynamic theory for photoinduced halide segregation based on
the band gap difference between the parent phase and the I-rich phase. The photogener-
ated carriers lower their free energy by funneling to the I-rich inclusions. They adopted
Boltzmann statistics model to determine the distribution of photogenerated electrons or
holes over the two phases in the system at equilibrium state. Using this theory, they have
constructed the phase diagrams for MA-, FA-, Cs-, MA/Cs-, and FA/Cs-based MHPs in the
dark and under illumination and shown the dependence of threshold photocarrier density
for halide segregation on Br concentration and temperature. This theory is capable of
accounting for many experimental findings, such as a highly composition and temperature
dependent illumination intensity threshold for halide segregation, the stabilization effect of
alloying Cs cation into the perovskites, and flash formation of pure iodide clusters at the
initial stage of halide demixing [72,110]. However, this model predicts a boundless phase
separation behavior with the increase of light intensity, which is contradictory with the
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observed light-induced halide remixing phenomenon under sufficient high light intensity
reported by Mao et al. [111] and Guo et al. [112].

3.2. Polaron/Strain Models

The formation of polarons, originating from the coupling of free carriers with the
lattice, has also been proposed as a promising mechanism to explain the photoinduced
halide segregation effect in MHPs [75,77,109,111,112]. Owing to the soft nature of the
inorganic lattice frameworks with small bulk modulus, the photogenerated charge carriers
could induce sizable local lattice deformation, bringing excessive strain energy in the
systems. Thus, the releasing of strain energy through the redistribution of halide ion leads
to ultimate phase separation [109]. Besides, there has another report which considers that
localized strain arising from crystal growth process could also play an important role in
light-induced halide segregation [57].

Bischak et al. [77] were the first to propose the polaron model to explain the origin
of halide segregation, which has been partially discussed above. Figure 7A illustrates the
generation of free carriers upon light photoexcitation and the formation and trapping of
polarons. Owing to the small exciton binding energies in MHPs, photogenerated excitons
could rapidly dissociate and form free carriers. These charges deform the surrounding lat-
tice through electron–phonon coupling and thus change the free energy landscape of the sys-
tem. They suggest that halide demixing would happen to reduce free energy when the local
lattice strain is sufficiently large, as diagramed in Figure 7B. This model highlights that the
segregated I-rich inclusions could only maintain stable with the presence of continuously
generated charge carriers. In this context, some key experimental observations of halide
segregation can be rationalized, including the reversibility [31], light intensity dependence
of demixing rate [57,102], self-limited growth of I-rich domains [77,102], preferentially
appearing at the regions featuring high defect density [59,63,75], the existence of light inten-
sity threshold [66,102,104,113,114], stabilization effect of Cs cation [67,75,77,78,80–82,115],
suppressed phase separation under the circumstance of fast charge extraction [71,116,117],
etc. Some articles deem that the polaron model does not dictate an excitation intensity
threshold and thus even the lowest excitation should initiate segregation [38,42]. However,
we think that such a view is unreasonable because the loss of photogenerated charge
carriers due to the trap-state mediated non-radiative recombination should be taken into
consideration. Besides, as said above, only when the local lattice deformation induced by
free carriers is sufficiently large such that the free energy of the system turns into positive,
halide demixing could take place.

Subsequently, Bischak et al. [75] deem that photoinduced phase segregation is an
intrinsic property of MHPs by examining the halide demixing behavior in monocrystalline
perovskite nanoplates. Furthermore, suppressed light-induced halide segregation upon
partially substituting MA cation with Cs cation was observed, supporting the polaron
model because the presence of Cs cation can reduce electron−phonon coupling strength
in the perovskites due to lattice stiffening. Wang and coworkers [109] have also invoked
the polaron model combined with thermodynamic model based on nucleation theory to
explain the origin of the excellent photostability of the CsPb(BrxI1−x)3 nanoparticles, which
are confined in the Cs4Pb(BrxI1−x)6 host matrix. The as-prepared composite thin films with
a host-guest structure could even withstand an ultra-high light intensity of 440 W cm−2,
that is 4400 suns illumination, and remain PL emission stable after 4 h of irradiation if
the CsPb(BrxI1−x)3 nanocrystals feature a x value no more than 0.6. The average size of
the CsPb(BrxI1−x)3 nanocrystals is about 7.5 nm. They think that photoinduced polarons
bring in excessive strain energy due to the deformation of the lattice, contributing to the
increase of Gibbs free energy. While in the case of such small nanocrystals embedded in the
matrix, the cohesive energy would dominate over the photoinduced strain energy, enabling
a highly stable homogenous phase even under extremely intensive illumination. From a
nucleation theory standpoint, I-rich domains could never nucleate out of the parent phase
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to reach a certain critical size because the average domain size of the mixed phase is smaller
than the critical size, thus halide segregation is energy unfavorable.
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Figure 7. (A) Diagram of photoinduced polaron trapping and associated energy scales associated with
phase separation. (B) Snapshot of the 99% isosurface of excess charge density taken from the molecular
dynamics simulation. Reproduced with permission [77]. Copyright 2017, American Chemical Society.
(C) Normalized PL emission spectra over time of a MAPb(Br0.8I0.2)3 monocrystalline microplate
under illumination with two different light intensity using a laser as the light source (10 W cm−2

and 200 W cm−2). (D) Schematic illustration of halide ion distributions for a MAPb(Br0.8I0.2)3 per-
ovskite lattice in response to low carrier density (left) and high carrier density (right). The proposed
lattice model includes three driving mechanisms: (1) iodide diffusion along polaron strain gradients,
(2) polaron diffusion along iodide concentration gradients and (3) halide mixing in the absence
of strong strain gradients. Reproduced with permission [111]. Copyright 2021, Nature Publish-
ing Group.

Recently, a very interesting finding that halide remixing under sufficiently high light
intensities has been reported [111]. As shown in Figure 7C, when the light-induced segre-
gated perovskite film is subjected to ultra-high illumination irradiation (200 W cm−2), the
halide species would be remixed. The researchers elucidated the underlying mechanism
based on the polaron model, as illustrated in Figure 7D. In the case of low illumination
intensity, photogenerated carriers induced strain gradient favors halide demixing. Whereas,
under sufficiently strong light irradiation, the strain gradient can be significantly reduced,
owing to the polarons overlap or merging, thus halide remixing occurs driven by entropy.
Similar photoinduced halide demixing and remixing phenomenon has also been reported
by another work [112]. In this contribution, the authors found that phase transformations
from halide mixing to demixing and then to remixing could always occur in polycrystalline
CsPb(BrxI1−x)3 films under continuous light soaking. Intriguingly, the film after halide
remixing is immune to light-induced halide segregation. Meanwhile, nanoscale cracks
were observed in the perovskite film, which were thought to be the consequence of strain
release. This finding can be regarded as a concrete and direct evidence for supporting
the polaron/strain model responsible for photosegreagtion. In addition, there is another
study which points out that the strain generated from film fabrication process should play a
significant role in facilitating light-induced phase separation [57]. The authors demonstrate
an averaging 0.3% strain in MAPb(I1−xBrx)3 polycrystalline perovskite film is much larger
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than that in single crystal (~0.0004%), which prefers to concentrate at the grain boundaries.
Notably, they conclude that the driving force might deriving from bandgap reduction or
polaron is not enough to induce halide segregation within the strain-activated regime if
without the synergy of strain.

3.3. Carrier Gradient/Carrier Trapping Models

Another category of the proposed mechanisms, as has been reviewed and discussed
in previous articles [38,42], invokes carrier gradient/carrier trapping as the internal causes
for light-induced halide segregation [61–63]. These types of empirical models highlight the
essential role of perovskite defects in determining the photoinduced halide segregation.

Given the excellent light absorption properties of the lead halide perovskites, Barker
et al. [61] hold the view that internal gradient in carrier generation rate under illumination
along the vertical direction of MHP films may be responsible for halide demixing. As for
how carrier gradient could lead to halide species migration and segregation, the authors
consider that it could be due to the photoinduced strain gradient or the thermalization
energy from hot carriers near the illuminated surface. To verify their model, the researchers
have compared the photostability of thick perovskite films (280 nm) and thin ones (70 nm)
with identical composition. Interestingly, the thin films exhibited much better photosta-
bility than the thick films, which could ascribe to a more homogeneous carrier generation
throughout the thin perovskite layers. Particularly, they demonstrate that halide ion segre-
gation takes place via halide defects, or rather halide vacancies, resulting in I-rich inclusions
close to the illuminated side of the film, owing to a slower hopping rate of iodide compared
with bromide ions away from the film surface. Notably, suppressed photosegregation by
adding over-stoichiometric halide species in the precursor solution confirms the important
role of vacancy defects in influencing halide ion migration and demixing [60,61,97].

Subsequently, McGehee group [62] proposed that carrier trapping by surface defects
could induce the formation of electric fields. The as-formed electric fields, pointing toward
the surface, lead to halide vacancies migration and accumulation near the perovskite sur-
face, which is likely to be equivalent to a preferred drift of bromide ions away from the
surface, thus resulting in halide demixing and I-rich phase emerging at these regions. In
this study, they suggested that reducing surface defects or preventing positive charge cu-
mulation at the surface would benefit the suppression of photoinduced halide segregation,
which indeed make sense, and the latter has been underpinned by other works [100,116,118].
However, we note that any explicit evidences of the electric fields existing near the surface
and bromide migrating away from the surface were not presented in this work. Certainty
about which kind of vacancies, bromide or iodide, are dominant in the MHP films under
light soaking has remained debatable [119,120].

Similarly, Knight et al. [63] also hold the view that halide segregation is driven by
electric fields in the film, which are generated between the trapped electrons in defect states
and the confined holes in I-rich regions, due to funneling effect. Following this logic, the
authors propose such a scenario that an electric field stimulates halide demixing, which, in
turn, promotes charge separation, thus increasing the strength of the electric field, that is,
forming a positive feedback loop between the electric field and halide segregation, until
reaching a maximally segregated state. In light of this mechanism, they have explained
why atmospheric environments display significant impacts on halide segregation dynamics.
They believe that it is derived from the variation of trap-state density in perovskite films
under different atmospheric environments over time. In this way, they have shown that
encapsulation of MAPb(Br0.5I0.5)3 films with a poly(methyl methacrylate) (PMMA) coating
enables halide segregation to be fully reversible and repeatable.

3.4. Redox Models

Recently, a kind of redox models for halide segregation centered on holes induced io-
dide oxidation and migration of oxidized species have been proposed and
developed [45,97,100,116]. Since 2018, several works correlated with hole trapping leading
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to expulsion of iodide from the lattice in the form of neutral iodine have been successively
reported [83,100,116,118,120].

Initially, to unveil the underlying mechanism of photoinduced ion conductivity en-
hancement in perovskite films, Kim et al. [120] performed one of a simple experiment
that immersing MAPbI3 films in toluene with or without light irradiation and recording
the in situ ultraviolet–visible (UV–vis) absorption signal of I2 in toluene over time. They
found that the amount of iodine in toluene was significantly increased under illumination,
suggesting light-induced expulsion of iodine from the perovskite lattice. They suggested
that this is due to iodide oxidation in the presence of photogenerated holes, resulting in the
formation of interstitial neutral iodine and iodide vacancies.

Moreover, Kamat and coworkers found that selectively electrochemical injection of
holes into MHP films could lead to iodide expulsion and halide segregation, as diagramed in
Figure 8A [100]. Additionally, they also observed that the perovskite films prepared on the
TiO2 electron transporting layers exhibited pronounced halide segregation when subjected
to laser irradiation (Figure 8B), while, intriguingly, the perovskite films deposited on the
ZrO2 layers remained stable within a same period of time. Furthermore, photosegregation
was suppressed upon coating a hole transporting layer [116]. In this context, the authors
believe that hole trapping at the iodide site gives rise to iodide species moving toward grain
boundaries via halide vacancies in the form of iodine and/or triiodide ions, thus leading
to halide segregation. That is to say, hole accumulation and trapping are responsible for
phase separation.
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Figure 8. (A) Illustration of halide demixing and iodide expulsion induced by hole injection into the
MHP lattice. Reproduced with permission [100]. Copyright 2019, American Chemical Society.
(B) Schematic illustration of TiO2-assisted halide segregation in MHP film under pulsed laser
excitation. Reproduced with permission [116]. Copyright 2020, American Chemical Society.
(C) Diagram of a series of microscopic events (including timescales) that a halide experiences dur-
ing its oxidation-mediated redistribution. (D) Possible mechanisms and pathways for vertical and
lateral mass transport of the oxidized iodine species. Reproduced with permission [45]. Copyright
2021, Elsevier.

Subsequently, Frolova et al. [97] claimed that reversible Pb2+/Pb0 and I−/I3− redox
chemistry drives the photoinduced halide segregation in inorganic MHPs, supporting the
model proposed by Kamat and colleagues [100,116]. On the basis of the results obtained
from in-situ AFM measurements, they deem that the segregated I-rich phase at grain
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boundaries is derived from light triggered photochemical processes, which results in the
formation of I3− and Pb0 species. These species would be expelled to the perovskite
surface and grain boundaries through halide vacancies or locally produced in these regions.
Then they undergo reversible redox processes and convert into perovskite phase again.
According to this explanation, the content of Pb0 species in perovskites should be much
higher under light soaking than in the dark, while such evidence is lacking.

Very recently, on the basis of previous works, Kerner and coworkers [45] have devel-
oped this type of model and expounded it in great detail. They highlight the key role of
photoelectrochemistry processes in halide segregation, and iodide oxidation induced by
photogenerated holes appears to initiate the halide demixing event. The authors consider
that all oxidized halide species are much more mobile than halide ions at the lattice sites,
and any factors causing iodide oxidation rate discrepancy, including defects, heterogeneity,
film thickness, etc., could promote halide segregation by generating local gradients in
the concentration of oxidized halide species. Figure 8C,D illustrate their electrochemical
perspective where preferential redox of iodide leads to halide segregation in MHPs and the
transport pathways of the oxidized species in perovskite films. Notably, they emphasize
that the valence band maximum (VBM) of the perovskites should be deep enough, thus
enables the photogenerated holes to activate relevant iodide oxidation pathways. In this
regard, it necessitates a threshold bromide content for the perovskite compositions, might
rationalizing why halide segregation only takes place within specific x value ranges as
observed in the experiments [31,57,121]. Additionally, vapor phase (I2 vapor) transport
is thought to be an important mass transport form of the oxidized iodine species in the
perovskites, which thus is capable of explaining why the reversibility of halide segregation
is undermined under vacuum condition, possibly due to the loss of iodide component [63].
Overall, the redox model developed here provides an alternative perspective to reinterpret
a wide range of experimental observations in regard to halide segregation reported in
the literature.

4. Summary and Outlook

In this review, we have systematically summarized the research efforts on visualized
observation of halide segregation under external stimuli, especially light soaking. Mi-
croscopy techniques, including PL mapping, CL imaging, TEM, EDS, AFM, have been
utilized to probe local halide demixing behaviors at the nanoscale or microscale. Among
them, PL mapping is the most widely used spatially resolved method to imaging phase
segregation of MHPs, owing to its noninvasive, nondestructive characteristics and desir-
able operational flexibility. There is a general consensus that highly defective regions of
the perovskites are more susceptible to halide segregation, where the segregated I-rich
phase aggregate, for instance, the grain boundaries. However, halide demixing observed at
monocrystalline MHPs demonstrated that grain boundaries are not necessary for it to hap-
pen. Instead, edge and surface states are shown to play a critical role in altering the phase
segregation. Additionally, a consensus has yet to be reached on whether halide demixing
repeatedly appears at the same locations in different light on/off cycles, necessitating
further clarification.

After that, mechanisms existing in the literature for explaining the origin and evolution
of photoinduced halide segregation, involving thermodynamic models, polaron/strain
models, carrier gradient/carrier trapping models and redox models, are comprehensively
introduced and discussed. These established models promote the community’s understand-
ing of this effect. Currently, however, no one has been able to rationalize all experimental
observations. It is quite clear now that nonequilibrium charge carriers (photogenerated,
electron beam induced or electrochemically injected), the content of bromide, and crystal
defects are imperative for phase segregation. While, whether it is an intrinsic property of
this type of materials or not is still under debate. That is, could halide segregation still
happen in a perfect monocrystalline MHP crystal without any defect? Thermodynamic
models stand photoinduced phase segregation is an intrinsic property of the MHPs [77,101].
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Whereas, since carrier gradient/carrier trapping models as well as redox models are es-
tablished based on the inhomogeneity and crystal defects of the materials, thus halide
demixing phenomenon is expected to disappear in a perfect MHP crystal in view of the
two types of models [45,61–63,97,100,116]. Which prediction is correct is thus far unclear.

Moreover, there still exists some other open questions that general consensuses are still
lacking. For example, what is the exact mechanism behind Cs cation and Cl anion improv-
ing the resistance to halide segregation of the perovskites [75,77,82,104,113,115,118,122,123]?
What is the real reason for the decreased reversibility of light-induced halide demixing
and remixing in vacuum observed in experiments [45,63]? What directly dictate halide
segregation? Is it due to the migration of iodide species, or bromide species, or both?
Which one moves faster? Does there exist direct halide substitution or exchange pro-
cesses between iodide and bromide ions during halide segregation? Which kind of mo-
bile species dominate photoinduced phase separation? Is halide ions or oxidized halide
species [45,61,62,83,86,97,100,120,124]? Clarifying these questions is conducive to con-
structing a definitive model for photoinduced halide segregation. Overall, we believe that
through collaboration across many scientific disciplines, the painted veil of light-induced
phase separation in MHPs will be completely unveiled, thus enabling the community to
precisely inhibit or utilize it for a broad range of applications in the future.
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