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Abstract: A structure suitable for implementing power-law low-pass and high-pass filter transfer
functions is presented in this work. Through the utilization of a field-programmable analog array
device, full programmability of the characteristics of the intermediate stages, as is required for
realizing the rational integer-order transfer function that approximates the corresponding power-law
function, was achieved, making the structure versatile. In addition, a comparison between power-law
and fractional-order filters regarding the effect of the non-integer order was performed. The presented
design examples are fully supported by experimental results.

Keywords: power-law filters; fractional-order filters; curve-fitting approximation technique; field-
programmable analog array

1. Introduction

Integer-order analog signal processing requires the employment of fundamental fil-
tering operations, such as the low-pass (LP) and high-pass (HP) filter functions described,
respectively, by:

HLP(s) =
ω0

s + ω0
, (1a)

HHP(s) =
s

s + ω0
. (1b)

The characteristic frequency ω0 is the pole frequency of the transfer function and
determines the half-power frequency (ωh), where a−3 dB deviation of the maximum value
of the gain is observed.

Non-integer order signal processing has received significant research interest in the
following fields [1–6]. The first field is electrical engineering, for implementing filters and
oscillators [5,7–15], chaotic systems [16], sensor systems [17], and control systems [2,18–21].
This originates from the fact that both filters and oscillators offer additional degrees of
freedom due to the non-integer order, which opens the door for scaling the characteristic
frequencies of the filters/oscillators, as well as for precisely controlling the gradient of
the transition from the pass-band to the stop-band. The first fact is very important in
biomedical applications, where large time constants are required, while the second is a very
attractive feature in acoustic applications (e.g., shelving filters) for implementing equalizers
with fine tuning [22], as well as in control applications (e.g., mechatronic systems), where
loop-shaping tuning is performed to achieve the required frequency domain specifications,
such as gain, margin etc. [23]. The second field is biology/bio-medicine and chemistry,
including electrochemical impedance spectroscopy (EIS), for the description of the behavior
of biological tissues, and electrical models of human organs/systems [24–28]. The third
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field is renewable energy systems, for the modeling of super-capacitors, batteries, and fuel
cells [29]. It has been proven that when employing non-integer order transfer functions,
the behavior/characteristics of the aforementioned systems are represented in a more
realistic way compared with their representation with integer-order counterparts.

Non-integer order transfer functions can be derived through:
(a) the employment of non-integer Laplace operators. Considering (1a) and (1b),

this can be done through the substitution operation s → sα, with 0 < α < 1 being the
order of the operator. The resulting filters are denoted in the literature as fractional-order
filters [7,8,15].

(b) the employment of transfer functions, which are derived from their integer-order
counterparts, raised to a non-integer exponent. Following this, the corresponding transfer
functions, which are derived from (1a) and (1b), will have the form of H β

LP and H β
HP

respectively, with 0 < β < 1 denoting the associated order. These types of filters are
referred to as power-law filters in the literature [22,30].

Fractional-order filters cannot be implemented directly because fractional-order el-
ements are not currently available. Their realization can be based on emulators that
approximate the elements’ behavior and substitute the corresponding integer-order ele-
ments, or based on an integer-order rational transfer function, which approximates the
original fractional-order function. The situation in power-law filters is different, in the sense
that fractional-order elements are not required and, consequently, their implementation is
always performed on a transfer-function basis using appropriate approximation techniques.
Power-law filters were initially introduced and studied in [30], where an op-amp-based
implementation was presented. In [22], voltage current conveyors (VCII) were utilized
as active elements for implementing power-law filters for acoustic applications. In [12],
an optimization of power-law filter functions was performed, and the presented implemen-
tation was performed using Current-Feedback Operational Amplifiers (CFOAs) as active
elements The aforementioned configurations are simple solutions, perfectly working for
cases of filters with pre-defined type and frequency characteristics, as no programmability
or tuning of the resistors’ and/or capacitors’ values is provided.

The contribution made in this work is the utilization of a field-programmable analog
array (FPAA)-based power-law filter configuration, which offers tuning capability in power-
law filters. According to the authors’ best knowledge, such a structure has not yet been
presented in the literature.

The paper is organized as follows: a comparison between fractional-order (FO) and
power-law (PL) filters is performed in Section 2 to demonstrate their main differences. A
functional block diagram (FBD) realization of power-law filters is presented in Section 3,
and its FPAA-based implementation, as well as the derived experimental results, are given
in Section 4.

2. Comparison between Fractional-Order and Power-Law Filters
2.1. Fractional-Order Filters

The transfer function that describes a low-pass filter of order 0 < α < 1 is given by:

HFO−LP(s) =
ωα

0
sα + ωα

0
, (2)

with the magnitude frequency response being described by the expression:

| HFO−LP(ω) |= 1√(
ω
ω0

)2α
+ 2
(

ω
ω0

)α
cos
(

απ
2
)
+ 1

. (3)
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Although the pole frequency is still equal to ω0, the half-power frequency is different
from the pole frequency [8], and is expressed as:

ωh,FO−LP = ω0

[√
1 + cos2

(απ

2

)
− cos

(απ

2

)]1/α

. (4)

In the case of a fractional-order high-pass filter, the transfer function in (1b) becomes:

HFO−HP(s) =
sα

sα + ωα
0

. (5)

The magnitude response of (5) is given by the expression:

| HFO−HP(ω) |=

(
ω
ω0

)α√(
ω
ω0

)2α
+ 2
(

ω
ω0

)α
cos
(

απ
2
)
+ 1

, (6)

and the half-power frequency by the expression:

ωh,FO−HP = ω0

[√
1 + cos2

(απ

2

)
+ cos

(απ

2

)]1/α

. (7)

2.2. Power-Law Filters

The transfer function of a power-law low-pass filter of order 0 < β < 1 is given by:

HPL−LP(s) =
(

ω0

s + ω0

) β

, (8)

and the expressions of the magnitude frequency response and the half-power frequency
are given in (9) and (10), respectively.

| HPL−LP(ω) |= 1[(
ω
ω0

) 2
+ 1
] β/2 , (9)

ωh,PL−LP = ω0 ·
√

21/β − 1 . (10)

The corresponding expressions of a power-law high-pass filter are given by (11)–(13).

HPL−HP(s) =
(

s
s + ω0

) β

, (11)

| HPL−HP(ω) |=

(
ω
ω0

) β

[(
ω
ω0

) 2
+ 1
] β/2 , (12)

ωh,PL−HP =
ω0√

21/β − 1
. (13)

The slope of the stopband attenuation for the fractional-order and power-law filters is
∓20 · α dB/dec and ∓20 · β dB/dec, respectively, making both types equivalent in terms
of the gradient of the magnitude response. According to (2), (5), (8), and (11), they also
have the same pole frequency ω0. Considering (4), (7), (10), and (13), it is derived that the
half-power frequencies of both types of low-pass and high-pass filters depends on the pole
frequency, as well as on the order. The pole frequency determines the reference point, while



Electronics 2022, 11, 692 4 of 11

the order determines the distances (equal in logarithmic scale) around the pole frequency;
i.e., √ωh,FO−LP ·ωh,FO−HP =

√
ωh,PL−LP ·ωh,PL−HP = ω0.

The main difference appertains to the relative location of the half-power frequencies
with regards to the pole frequency. From the aforementioned expressions, the following
conclusions are obtained: the location of the half-power frequencies of the low-pass filters is
determined by the conditions ωh,FO−LP < ω0 and ωh,PL−LP > ω0, while for the high-pass
filters, ωh,FO−HP > ω0 and ωh,PL−HP < ω0. Therefore, power-law filters are preferable
in the case that the cutoff frequency of the low-pass filter must be greater than the pole
frequency, or the cutoff frequency of the high-pass filter must be smaller than the pole
frequency. In order to demonstrate the above findings, let us consider the case of low-pass
filters with α = β = 0.5. The corresponding Bode plots are shown in Figure 1, where
the effect of the type of the filter on the location of the realized half-power frequencies
is evident.

It must be mentioned at this point that power-law filters are also capable of imple-
menting locations of the half-power frequency opposite to the aforementioned ones, just by
considering an order of 1 < β < 2. This is realized by analyzing the transfer functions in
(8) or (11) as products of a power-law term of order (1− β) and an integer-order term.

0

0

-20
1-1 log(ω/ω0)

-0.57
-20dB/dec.

-10dB/dec.

-10dB/dec.

0.24

gain (dB)

-10

Figure 1. Bode plots of fractional-order (red) and power-law (blue) low-pass filters of order
α = β = 0.5, and their integer-order mother function (black).

3. Realization of Power-Law Filters

The approximation of the transfer functions in (8) and (11) can be performed through
the utilization of the curve-fitting-based approximation technique [20,30]. Assuming third
and fifth-order approximations, the derived MATLAB gain and phase frequency responses
are in the ranges

[
100, 10+4]Hz and

[
10−1, 10+5]Hz, respectively, are provided in the plots

of Figure 2. As both cases offer the same level of accuracy, just for demonstration purposes,
the third-order approximation in the range

[
100, 10+4]Hz, will be considered. Therefore,

the derived integer-order rational transfer function has the general form of:

Happrox(s) =
A3s3 + A2s2 + A1s + A0

s3 + B2s2 + B1s + B0
. (14)

Considering that the desired half-power frequency is fh = 100 Hz, the values of these
factor, for approximating the behavior of low-pass and high-pass filters of various orders
within the frequency range

[
100, 10+4]Hz are summarized in Table 1.
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Figure 2. MATLAB gain and phase frequency responses of (8) and (11) for (a) third-order approxi-
mation in the range

[
100, 10+4]Hz and (b) fifth-order approximation in the range

[
10−1, 10+5]Hz.

Table 1. Coefficients of the transfer function in (14) for approximating LP and HP power-law
filters [30].

Parameter
PL LP/HP Filter

β = 0.3 β = 0.5 β = 0.7

A0 2.856 × 10 10/2.738 × 10 5 4.396 × 10 10/5.065 × 10 4 4.68 × 10 10/1.145 × 10 4

A1 4.953 × 10 7/4.925 × 10 4 4.26 ×10 7/1.618 × 10 4 3.025 × 10 7/7119
A2 9128/676.8 4610/378.7 2155/253.1
A3 0.1286/0.9885 0.03656/0.9899 0.008776/0.992
B0 2.889 × 10 10/2.13 × 10 6 4.441 × 10 10/1.386 × 10 6 4.718 ×10 10/1.304 × 10 6

B1 8.696 × 10 7/1.672 × 10 5 1.003 × 10 8/1.087 ×10 5 9.634 × 10 7/9.641 × 10 4

B2 3.099 × 10 4/1188 3.098 × 10 4/891.9 2.919 × 10 4/806.2

The implementation of (14) can be done by the following ways: (a) cascade connection
of intermediate filter sections, (b) multi-feedback configuration of intermediate filter sec-
tions (series connection), and (c) sum of intermediate filter sections. Although the structure
derived from the first technique is simpler than those derived from the other techniques, it
suffers from increased sensitivity. On the other hand, the other two techniques suffer from
increased circuit complexity and, consequently, power consumption. The implementation
of the approximate function is performed following the method introduced in [31]. Ap-
plying the partial fraction expansion (PFE) technique to the function in (14), the obtained
expression is a sum of integer-order low-pass terms and a constant factor, as described in:

HPFE(s) = K0 +
K1 ·ω01

s + ω01
+

K2 ·ω02

s + ω02
+

K3 ·ω03

s + ω03
. (15)

In particular, considering that r and p are the residues and poles of (14), respectively,
the parameters in (15) are calculated following the rules of thumb: K0 = A3, Ki = ri/|pi|
and ω0i = |pi|, i = 1, 2, 3. The associated functional block diagram is formed as described
in Figure 3.

The calculated values of scaling factors and time constants (τi = 1/ω0i) indicatively for
LP and HP power-law filters of orders β = {0.3, 0.5, 0.7} are summarized in Table 2. The
realization of filters of orders greater than 1 can be performed using an extra integer-order
bilinear filter of the same type as the power-law filter.
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υout

ω01
s+ω01

+1 K1

+1 K2

+1 K3

K0

υin +
ω02
s+ω02

ω03
s+ω03

Figure 3. Functional block diagram for implementing (15).

Table 2. Scaling factors and time constants for realizing the LP and HP power-law filters described
by (14) for the coefficients of Table 1, using the PFE-based function in (15).

Parameter
PL LP/HP Filter

β = 0.3 β = 0.5 β = 0.7

K0 0.129/0.988 0.0365/0.99 0.00878/0.99
K1 0.153/−0.445 0.0886/−0.631 0.0374/−0.793
K2 0.262/−0.262 0.233/−0.233 0.1525/−0.1525
K3 0.445/−0.153 0.631/−0.0886 0.793/−0.0374

τ1 (ms) 35.84/0.971 36.5/1.33 39.22/1.506
τ2 (ms) 371.75/6.85 324.7/7.81 321.5/7.87
τ3 (ms) 2.604/70.67 1.9/69.35 1.68/64.52

4. Experimental Results

The experimental evaluation was performed using the Anadigm AN231K04 FPAA
development board, programmed through the AnadigmDesigner®2 EDA software [32].
The PFE-based configuration depicted in Figure 3 was used for realizing the design in
Figure 4, where SumIntegrator, SumDiff, and GainHold configurable analogue modules
(CAMs) were utilized, as described in Table 3. There is a trade-off between the order of
the approximation and the required hardware. As FPAA embeds four AN231E04 chips,
each one having eight CAMs, it is obvious that when increasing the order, the number of
required AN231E04 chips will be also increased. In the specific implementation, one chip is
required. In the case that an approximation of greater order (e.g., 4 or 5) has been employed,
then two or more chips would be required. The maximum frequency of the operation of
the implemented filters depends on the chosen clock frequency, which is fclk = 100 kHz.
Owing to the switched-capacitor nature of the stages included in the FPAA, the maximum
operation frequency of the filters was fmax = 0.1 · fclk = 10 kHz.

The experimental gain and phase frequency responses for the LP and HP filters of
orders β = {0.3, 0.5, 0.7} within the range

[
100, 10+4]Hz are given in Figure 5, indicated

by triangle symbols, along with the respective results derived from the curve-fitting-based
approximation (solid lines) and the theory (dashed lines). In addition, the experimental
values of the critical characteristics for each case are presented in Tables 4 and 5, with the
respective theoretically calculated values given between parentheses.

The corresponding results for orders β = {1.3, 1.5, 1.7}, which were obtained through
the direct connection of the previously derived outputs with a first-order LP/HP filter,
are given in Figure 6 and Tables 6 and 7.

The efficient performance of the presented implementations in the time domain was
also verified by simulating the filter with a sinusoidal signal of frequency f = 100 Hz.
Indicatively, the results in the case of an HP filter of order β = 0.5 and an LP filter of
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order β = 1.5 are presented, with the obtained waveforms being shown in Figures 7 and 8.
The measured values of the gain and phase are −3.1 dB (theor. −3 dB) and 31° (theor.
30.45°) for the HP filter, and −3.09 dB (theor. −3 dB) and −56° (theor. −56.2°) for the LP
filter, respectively. Hence, the obtained results confirm the accurate performance of the
presented topology.

Figure 4. FPAA-based realization of the transfer function in (15).
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Figure 5. Experimental gain and phase frequency responses (triangle symbols), along with the
corresponding approximate (solid lines) and ideal (dashed lines) responses for LP and HP filters of
order β = {0.3, 0.5, 0.7}.
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Figure 6. Experimental gain and phase frequency responses (triangle symbols), along with the
corresponding approximate (solid lines) and ideal (dashed lines) responses for LP and HP filters of
order β = {1.3, 1.5, 1.7}.

Table 3. Realized filter parameters of the CAMs of the design in Figure 4.

CAM CAM Parameter Realized Filter Parameter

GainHold Gain 1
SumIntegrator1 + GainHold1 Integrator Constant × Gain τ1
SumIntegrator2 + GainHold2 Integrator Constant × Gain τ2
SumIntegrator3 + GainHold3 Integrator Constant × Gain τ3

SumDiff

Gain1 K0
Gain2 K1
Gain3 K2
Gain4 K3

Table 4. Frequency characteristics of LP filter responses in Figure 5.

Order

Parameter

fh (Hz) Slope (dB/dec)

Experiment Theory Experiment Theory

0.3 98.9 100 −5.9 −6

0.5 99.4 100 −9.65 −10

0.7 100 100 −13.5 −14

Table 5. Frequency characteristics of the HP filter responses in Figure 5.

Order

Parameter

fh (Hz) Slope (dB/dec)

Experiment Theory Experiment Theory

0.3 98.6 100 +5.7 +6

0.5 99 100 +9.7 +10

0.7 100 100 +13.6 +14
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Table 6. Frequency characteristics of LP filter responses in Figure 6.

Order

Parameter

fh (Hz) Slope (dB/dec)

Experiment Theory Experiment Theory

1.3 99.5 100 −25.6 −26

1.5 100 100 −28.85 −30

1.7 99.4 100 −32.8 −34

Table 7. Frequency characteristics of HP filter responses in Figure 6.

Order

Parameter

fh (Hz) Slope (dB/dec)

Experiment Theory Experiment Theory

1.3 99.2 100 +26.9 +26

1.5 98.8 100 +30.5 +30

1.7 98.6 100 +32 +34

Figure 7. Experimental input and output waveforms of HP filter of order 0.5, stimulated by 0.5 V,
f = 100 Hz sinusoidal signal.

Figure 8. Experimental input and output waveforms of LP filter of order 1.5, stimulated by 1 V,
f = 100 Hz sinusoidal signal.
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5. Conclusions

By exploiting the advantage of the variety of signal processing operations that FPAAs
offer, including integration/differentiation, summation/subtraction, scaling, filtering, and
the fact that the intermediate blocks are interconnected through programmable buses [16,33],
various types of power-law filters were implemented and experimentally verified. The
price paid for the offered on-the-fly programmability is the restriction on the maximum
frequency of operation, which originates from the switched-capacitor nature of the blocks
of the FPAA. Other solutions could be conventional active-RC circuits, where the required
discrete components are commercially available but the benefit of easy programmabil-
ity of the time constants and scaling factors will be lost, or the utilization of active cells
such as operational transconductance amplifiers (OTAs), where the programmability is
performed through appropriate bias voltages/currents [34]. This solution offers a much
higher maximum frequency of operations than that offered by the FPAAs, but it suffers
from limited linearity due to the small-signal nature of the transconductance parameter
used for realizing the time constants and scaling factors [9].
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PFE Partial Fraction Expansion
PL Power-Law
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