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Abstract: In this paper, an innovative procedure is proposed for the design of three-dimensional
discrete lens antennas characterized by an extended field of view. While in a companion paper the
design procedure was based on the definition of multifocal constrained lenses and on their evolution
in rotationally symmetric ones, in this paper, lenses are assumed from the beginning to be rotationally
symmetric and are derived by enforcing minimized optical aberrations specifically for the largest
scanning directions. It is shown that, for discrete lenses exhibiting a feeding array with a cross
section, projected in a plane perpendicular to the main lens axis, larger as compared to the back lens
cross section, there are significant improvements (15–20%) in terms of maximum aberrations and,
at the same time, similar or slightly improved accommodation in terms of volume can be obtained
as compared to the architectures considered in the companion paper. Because of this property, the
proposed lens antennas may be particularly useful in emerging applications requiring an extended
field of view.

Keywords: lens antennas; discrete lenses; constrained lenses; bootlace lenses; multibeam antennas;
beamforming networks; satellite antennas

1. Introduction

Discrete lens beamforming networks (BFNs) and antennas are also known as bootlace
lenses, constrained lenses, or discretized array lenses [1,2]. Three-dimensional lenses have
been investigated less as compared to two-dimensional ones. In [3], J.B.L. Rao investigated
three-dimensional bootlace lenses having two, three, and four perfect focal points located in
a single plane containing the longitudinal axis of the lens. The results of the aperture phase
error analysis showed that a lens with a larger number of focal points can be scanned to
much larger angles in one plane at the expense of the scanning capability in the orthogonal
plane. J.L. McFarland and J.S. Ajioka [4] have proposed a bispherical lens, composed by
two portions of spheres with two identical radii, for three-dimensional scanning. J.B.L.
Rao [5] generalized this bispherical lens to include two spheres with different radii in
order to control the accommodation of the lens. McGrath [6] has introduced a simple
three-dimensional lens with flat front and back profiles, homologous elements aligned
radially and exhibiting two superimposed foci located in the lens axis. Immediately after,
Sole and Smith [7] introduced a three-dimensional lens with a flat front profile, back profile
with the shape of a saddle, and four focal points. They showed that similar performance in
terms of optical aberrations as compared to the McGrath lens can be obtained adopting a
more compact lens with a curved back profile. C. Rappaport and A. Zaghloul [8] have also
studied three-dimensional lenses having two, three, and four focal points located in a plane
containing the longitudinal axis of the lens so only able to perform a two-dimensional type
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of scanning. C. Rappaport and J. Mason [9] have considered a five-foci three dimensional
discrete lens; however, only a limited numerical investigation was proposed.

It is important to note that a three-dimensional scanning can be obtained also by
cascading two blocks of two-dimensional bootlace lenses as conducted at Raytheon by
Maybell and colleagues [10,11] and by Chan, Rao and Bhattacharyya in [12,13].

In the last 15 years, several developments on three-dimensional constrained lenses
have been initiated by the European Space Agency [14–20]. In [16–20], in order to improve
the transfer of power within the lens and to better control the amplitude tapering and
sidelobe level, radiating elements characterized by different apertures have been exploited.
In [20], a three-dimensional constrained lens able to operate both in transmission and
reception was proposed for the first time.

The objective of this paper is the present a new type of afocal lenses optimized for
large scanning angles. This work can be considered an extension of the work published in
a companion paper [2]. In particular, discrete lenses exhibiting a feeding array with a cross
section, projected in a plane perpendicular to the main lens axis, larger as compared to
the back lens cross section are primarily considered in this paper. In this condition, where
severe optical aberrations are experienced, it will be shown that the results previously
presented on three-dimensional discrete lens antennas can be further improved. Two
significant improvements are obtained and discussed: a reduction in the optical aberra-
tions and a reduction in the optimized focal distances with an improvement in terms of
accommodation.

2. Enforcing a Chebyshev-Like Condition for the Maximum Aberrations on the Rim of
the Lens

The new lens formulation is derived starting from the following consideration: the
maximum aberrations for an arbitrary pointing angle are typically associated with the
most peripheral points of the lens. Because of this property, generally valid for rotationally
symmetric 3D lenses, the attention can be focused on the evolutions of maximum aberra-
tions along the external rim of the three-dimensional lens. The external rim, being the lens
rotationally symmetric, can be considered circular.

Let us consider an example with unitary zooming factor (i.e., M = 1), maximum
scanning angle 60◦, diameter of the front lens equal to 30 wavelengths, as in the several
examples presented in [1,2]. When considering large scanning angles, such as 60◦, the
differences in performance between various lenses, such as the ones defined in [1,2], tend
to be large so it is useful to focus the attention on this type of large scanning trying
to possibly improve the performance achievable with multifocal bootlace lenses. Let
us assume that the feeding point is located in a point characterized by the following
Cartesian coordinates expressed in wavelengths: (30 sin(60◦), 0, −30 cos(60◦)). The three-
foci constrained lens with flat back and front profile presented in [1,2] is considered in this
case, but similar properties are valid for different configurations. In Figure 1, the optical
aberrations (expressed in degrees) evaluated when illuminating only the peripheral rim of
the back lens are plotted. In the abscise axis, the azimuthal angle ranging from 0◦ to 360◦

is shown.
Real instead of absolute values are plotted in order to better visualize the evolutions of

the aberrations. The curve exhibits a sort of sinusoidal behavior. However, the maximum
and the minimum values, in absolute value, are similar but not identical. This is not a
surprise: in fact, the source illuminating the lenses is not located on the central axis (a skew
incidence condition is considered) so there is no reason to obtain aberrations along the rim
exhibiting identical maximum and minimum values. Certainly, the values obtained when
the azimuth ranges from 0◦ to 180◦ coincide with the ones obtained when the azimuth
ranges from 180◦ to 360◦.

Starting from the previous considerations, a new strategy to define 3D discrete
lenses has been conceived. Let us fix the position of the feed in the point with the
Cartesian coordinates:
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Fx = Fsin(α), Fy = 0, Fz = −Fcos(α),

where, as in [2], sa = sin(α), ca = cos(α) and α is the maximum scanning angle of the lens.
Indicating with R the maximum radius of the back lens and R1 the maximum radius

of the front lens, and assuming the lens rotationally symmetric, the following relations
are valid:

X = R cos(ϕ), Y = R sin(ϕ), X1 = R1 cos(ϕ), Y1 = R1 sin(ϕ),
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The feeding point is considered fixed, as the maximum scanning angle α and the
maximum radius of the front lens R1. The unknowns of the lens are R, Z, W and Z1. Let us
write the aberrations in an arbitrary point of the external rim of the lens:

aberrations = sqrt
(
(Fx− X)2 + Y2 + (Fz− Z)2

)
+ W + X1 sa M

− Z1 sqrt
(

1− (sa M)2
)
− F,

Let us in this case define also:

aberrations0 = aberrations(evaluated for ϕ = 0◦)

aberrations05 = aberrations(evaluated for ϕ = 90◦)

aberrations1 = aberrations(evaluated for ϕ = 180◦)

Thus, the aberrations in ϕ = 0◦ are forced to be identical in absolute value, but with
an opposite sign, as compared to the aberrations in ϕ = 90◦. As a second equation, the
aberrations in ϕ = 90◦ are assumed to be identical in absolute value, but with opposite
sign, as compared to the aberrations for ϕ = 180◦. These two equations permit forcing the
aberrations on the lens rim to have identical positive and negative maximum excursions.
This represents a locally optimum condition. In fact, when deviating from this condition,
neither the positive aberrations nor the negative become dominant with an overall increase
in the absolute value of the maximum aberrations.

The 3D lens has in general 5 degrees of freedom. These are reduced to 4 when enforcing
the rotational symmetry. One additional degree of freedom can be spent in enforcing the
front profile of the lens to be flat. After these two assumptions, three quantities remain
unknowns: Z, W, and R, i.e., the rotationally symmetric profile of the back lens, the phase
shifts W, and the relation between the radial coordinate R1 in the front lens (assumed to be
known) and the corresponding radial coordinate R in the back lens aperture. By enforcing
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the two additional conditions corresponding to the two properties described, two new
equations are available:

aberrations0 = − aberrations05

aberrations05 = − aberrations1 (1)

so that two of the three unknowns can be derived. The third unknown can be fixed a priori.
At least three choices are available:

(a) The Z is fixed in advance, for instance a spherical, or ellipsoidal, back profile can
be selected;

(b) The W is fixed in advance, for instance the choice W = 0 can be performed in order to
guarantee that all the transmission lines are equi-length;

(c) The R is fixed, for instance R = R1 M in order to guarantee a regular distribution and
density of the elements. Another possibility is to enforce that the elements in the front
and back lens (in the case of unitary zooming, i.e., M = 1) are aligned along straight
lines originated not at an infinite distance, but in a point at a finite distance along the
lens axis (as performed, for the R-2R two-dimensional lens).

The fundamental result is the following: by enforcing the two previous equations, the
results obtained in the previous paper [2], when comparing different types of lenses, can be
further improved when considering focal surfaces with a diameter exceeding the diameter
of the back lens. This condition is achieved typically for lenses characterized by a large
field of view (i.e., larger than 40◦). It will be shown that is possible to reduce further the
optical aberrations and, at the same time, to reduce the length of the focal distances. It is
important to note that we do not enforce any perfect focal point when enforcing the two
last equations. The two conditions are only enforced in the circular peripheral rim of the
lens representing the most critical part of the lens in terms of optical aberrations. However,
the two innovative conditions introduced in this paper for the first time guarantee the
presence as well of four points in the rim of the lens where the aberrations assume a zero
value. These four points are located close to the angles ϕ = 45◦, 135◦, 225◦, and 315◦, but
not exactly in these 4 angles.

The analytical results are presented below:

(a) By solving the two Equations (1a,b) using R and W as unknowns, four solutions are
found, the acceptable ones being the following:

R = R1 M

(
−Z2 + 2ZFca + F2 + R12M2ca2 − R12M2

R12M2 − F2

) 1
2

W = F + Z1(M2ca2 −M2 + 1)
1
2 –/2

−(F
(
−Z2+2ZFca+F2+ R12M2ca2−R12M2

R12M2−F2

) 1
2
)/2,

X = Rcos(ϕ), Y = Rsin(ϕ),

As a limit case, by forcing both Z1 and Z to be null:

R = R1M

(
−F2 − R12M2sa2

R12M2 − F2

) 1
2

W = − F(
(

R12M2 sa2

R12M2−F2 − F2

R12M2−F2

) 1
2 /2− 1)− ((2F2R12M2)/(R12M2

−F2) − (R14M4 sa2)/(R12M2 − F2)− F4/(R12M2

−F2))̂(1/2)/2 − (R12M2((R12M2 sa2)/(R12M2 − F2)
−F2/(R12M2 − F2))̂(1/2))/(2F)
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(b) By solving the two Equation (1a,b) using R and Z as unknowns, after enforcing
Z1 = 0 and W = 0 (i.e., equi-length transmission lines), four solutions are found. The
acceptable ones are the following:

Z = ((−((F + R1M)(F− R1M)(4F2sa− 4F2 + R12M2sa2)(4F2sa + 4F2

−R12M2sa2))/4)̂(1/2)− 2F3ca)/(2F2),

R = (R1M(4F2 − R12M2sa2))/(4F2),

X = Rcos(ϕ),

Y = Rsin(ϕϕ),

(c) By solving the two Equation (1a,b) using W and Z as unknowns, after enforcing Z1 = 0
and fixing R (for instance R = R1 M), four solutions are found, the acceptable ones
being the following:

Z = (−(F + R1M)(F− R1M)(sa− 1)(sa + 1))
1
2 − Fca,

W = F/2− (F2 + R12M2sa2)
1
2 /2,

X = Rcos(ϕ), Y = Rsin(ϕ),

3. An Improved Formulation

A further improvement is proposed in this section. Let us first represent the aberrations
on the entire surface of the lens, still maintaining the source fixed in the same position
corresponding to the maximum scanning angle. Their typical behavior is shown in Figure 2.
As evident, the aberrations exhibit a saddle shape. Two quadratic curves with opposite
curvatures appear in the two principal perpendicular planes. In particular, the saddle is
slightly tilted towards the direction of the source (see picture on the right). Because of this
small tilt, the aberrations with maximum value and positive sign are obtained in the rim
not exactly in correspondence to the angle ϕ = 90◦, but for a slightly smaller angle. This
point on the rim can be derived with the following hypothesis. Again, we consider the feed
fixed in the plane phi = 0◦ and the transversal coordinates expressed as:

X = Rcos(ψ), Y = Rsin(ψ), X1 = R1 cos(ψ), Y1 = R1 sin(ψ),

The Cartesian coordinates of the feeding point are:

Fx = Fsa, Fy = 0, Fz = −Fca,

It was verified that the point on the rim where the aberrations assume a maximum
positive value can be derived enforcing that, in this point, the radial vector with components
X and Y is perpendicular to the incident field. The scalar product between these two vectors
is given by:

scalar product = R2 − cos(ψ)FRsa

By enforcing a null scalar product, the following condition is derived:

cos(ψ) = R/(Fsa) (2)

The other two points where the aberrations assume the minimum real values do not
change as compared to the previous derivation. They are located in the principal plane
containing the source and they are characterized by ϕ = 0◦ and 180◦.

By enforcing now the two conditions:

aberrations0 = − aberrationsψ (3a)
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aberrationsψ = − aberrations1 (3b)

and using the value for ψ derived in (2), four solutions are obtained.
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In particular, by solving the two conditions in (3a) and (3b), the acceptable solution is
the following:

W = −(F2p− 2F3 +R12pM2 − 2F2q(1−M2sa2)
1
2 + R13M3sa

+F2R1Msa)/(2F2)

−(2F2R12M2sa2 + 2F2R1 p Msa + F2p2 − 2R14M4sa2

−4R13p M3sa− 2R12p2M2 )̂(1/2)/(2F),

R =
(

saR12M2 + p R1 M
)

/F,

Z = (((F + R1M)(F− R1M)(p + Fsa + R1Msa)(p− Fsa + R1Msa))
1
2 − F2ca)/F,

Z1 = q,

Because two conditions were enforced and there are four unknowns, the solutions
remain expressed as a function of two parameters, p and q. In particular, the expression
Z1 = q tell us that the Z1, i.e., the front profile, is undetermined. A common choice is to fix
it to be null. We have already seen in [1,2] that the aberrations are mainly determined by
the back profile shape Z and having a Z1 different from zero implies larger volume and
higher cost in terms of manufacturability. So, choosing q = 0, implying Z1 = 0 results to be
a suitable assumption. The p value can be easily derived enforcing another condition.

A. By solving for W and R (so assuming Z1 and Z assigned)
In this case, one derives four solutions. The acceptable one is:

W = Z1(−M2 sa2 +1)
1
2 −F

 (
− Z2+2 ZFca+F2+R12M2 ca2 −R12M2

R12M2−F2

) 1
2

2 − 1


−
(
− Z2F2−2Z2R12M2+2 ZF3 ca−4 ZFR 12M2 ca+F4−2F2R12M2+R14M4 sa2

R12M2−F2

) 1
2

2

−
R12M2

(
− Z2+2 ZFca+F2+R12M2 ca2 −R12M2

R12M2−F2

) 1
2

2F
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R = R1M

(
Z2 + 2caZF + F2 − R12M2sa2

(F + R1M)(F− R1M)

) 1
2

; (4)

Possible choices for the profile Z may be spherical, paraboloidal, ellipsoidal, etc. Fixing
Z1 = 0 and selecting a priori different types of back profiles Z give a significant flexibility.
Several investigations have been conducted using profiles with both types of convexity. In
the end, to optimize the coupling between the feeds and the back lens as well, a rotationally
symmetric concave back profile with the concavity in the direction of the focal arc represents
a good choice.

B. By solving for Z and R (so assuming Z1 and W assigned)
In this case, one derives four solutions. In the general case of Z1 and W being different

from zero, the analytical expressions are extremely cumbersome. The most convenient
configurations are characterized by a flat front profile, so assuming Z1 = 0 does not represent
a limitation. By assuming Z1 = 0 and W = 0 (equi-length lines), the expressions are
significantly simplified:

Z = ((R110M10 +8F10

−4F7(4F6 − 8F4R12M2 − 4F2R14M4ca2 + 4F2R14M4

−R16M6ca2 + R16M6)
1
2 − R110M10ca2 − 8F8R12M2

−8F6R14M4 + F4R16M6 + 6F2R18M8

+4F3R14M4(4F6 − 8F4R12M2 − 4F2R14M4ca2 + 4F2R14M4.
−R16M6ca2 + R16M6)

1
2 + 12F6R14M4ca2 − 5F4R16M6ca2

−6F2R18M8ca2/(16F4R12M2 + 8F2R14M4

+R16M6))
∧
(1/2)/(R1M)− Fca,

R = (2 F4 − F (4F6 − 8 F4R12M2 + 4 F2R14M4sa2 + R16M6sa2)
1
2

+2 F2R12M2)/(4 F2 R1 M + R13M3),

C. By solving for Z and W (so assuming Z1 and R assigned)
In this case, one derives four solutions. The acceptable one is:

Z = (((F + R1 M)(F− R1 M)(R + R1 M sa)(R− R1 M sa))
1
2 − FR1 M ca)/(R1 M),

W = −(F2R2 − 2 R2R12M2 + R14M4sa2)
1
2 /(2 R1 M)− (F2 R− 2 F2R1 M

+R R12 M2 − 2 Z1 F R1 M (1−M2sa2)
1
2 )/(2F R1 M),

D. By enforcing W = sqrt((X− X1)2 + (Y− Y1)2 + (Z− Z1)2)n
This represents another interesting case:

W = sqrt((X− X1)2 + (Y− Y1)2 + (Z− Z1)2) n

with n real, i.e., the phase path proportional to the physical distance between ho-
mologous points. The proportionality factor, n, is used in analogy with the dielectric
lenses where n represents the refractive index of the dielectric material (n for dielectric
lenses = sqrt(dielectric constant)). This case is important because the lines connecting
homologous points can be straight lines and the type of connecting lines (i.e., coaxial cables,
fiber optics, waveguides, etc.) characterizes the proportionality factor n. It is important to
mention that, while for dielectric lenses the factor n is typically larger than 1, and dielectric
lenses tend to be thicker at the center and thinner at the periphery, the contrary is valid for
microwave lenses where the connecting lines are constituted by coaxial cables, waveguides
or other similar passive microwave components. In constrained lenses, the factor n is
typically smaller than 1 and these lenses exhibit a minimum thickness at the center and a
maximum one on the periphery.

Four possibilities were identified. The corresponding solutions are reported in Table 1.
Two possibilities were obtained by enforcing Equations (2) and (3), the other two possibili-
ties simply enforcing the presence of a single focal point in the lens axis located in the point
with Cartesian coordinates (−H,0,0).
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Table 1. Lenses with phase shifters W proportional to the distance of homologous points.

W = sqrt((X− X1)2 +
(Y− Y1)2 + (Z− Z1)2) n

M = 1 Z1 = 0 by enforcing (2)
and (3) R and Z can be derived numerically

W= (Z−Z1) n (it guarantees
having Z1 > Z) M = 1 R = R1 by enforcing (2)

and (3)

Z =
(

F2 − R12
)

/(2 nF)−
(

F2 + R12 sa2 − 2R12
) 1

2 /(2n) + ((n + ca)(nR 12 − nF2−F2 ca+R12 ca+

nF
(

F2 + R12 sa2−2R12
) 1

2
+ Fca

(
F2 + R12 sa2−2R12

) 1
2
+ n2F

(
(4n2F2 ca2 +4n2R12 sa2 −4n2R12)(ca2 +2 nca+n2)

ca4 +6n2 ca2 + 4n3 ca + n4 + 4 nca2 ca

) 1
2

−

2n2F2 ca + Fca2
(
(4n2F2 ca2 + 4n2R12 sa2 − 4n2R12)(ca2 + 2 nca + n2)

ca4 + 6n2 ca2 + 4n3 ca + n4 + 4 nca3

) 1
2

+

2 nFca
(
(4n2F2 ca2 + 4n2R12 sa2 − 4n2R12)(ca2 + 2 nca + n2)

ca4 + 6n2 ca2 + 4n3 ca + n4+ 4 nca3

) 1
2

− 2 nF2 ca2))/
(

2n
(

n2 F + Fca2 + 2 nFca
))

Z1 = (nR 12 − nF2 − F2 ca + R12 ca + nF
(

F2 + R12 sa2 − 2R12
) 1

2
+ Fca

(
F2 + R12 sa2 − 2R12

) 1
2
+

n2F
(
(4n2F2ca2+4n2R12sa2−4n2R12)(ca2+2nca+n2)

ca4+6n2ca2+4n3ca+n4+4nca3

) 1
2

− 2n2F2ca + Fca2

(
(4n2F2ca2+4n2R12sa2−4n2R12)(ca2+2nca+n2)

ca4+6n2ca2+4n3ca+n4+4nca3

) 1
2

+

2 nFca
(
(4n2F2 ca2 + 4n2R12 sa2 − 4n2R12)(ca2 + 2 nca + n2)

ca4 + 6n2 ca2 + 4n3 ca + n4 + 4 nca3

) 1
2

− 2 nF2 ca2)/
(

2n2 F + 2 Fca2 + 4 nFca
)

W = sqrt((X− X1)2 +
(Y− Y1)2 + (Z− Z1)2)

Z1 = 0 R = R1M

by enforcing a
single focus on
the axis in the
point (−H,0,0)

Z = (4H2M2–8H2M + 4H2 − 4R12M2 +
4R12M− R12)/(4H(2M− 1))

Note: M can be <, = , > 1

W = sqrt((R− R1)2 +
(Z− Z1)2) n

Z1 = 0 R = R1M,
M = 1

by enforcing a
single focus on
the axis in the
point (−H,0,0)

Z = (H −
(

nH2+nR12+H2−R12

n+1

) 1
2
)/(n− 1)

Note 1: n can be >1 or <1 but not = 1. In practice, n < 1 gives
acceptable resultsNote 2: if M 6= 1→ 4th degree equation to be

solved having acceptable solutions for n < 1

Note that for n approaching the value 1, the 4th solution tends to the 3rd one. The 3rd one permits to consider the zooming in and out (i.e., >1 or <1), but not playing with n (refractive
index). The 4th one does not allow to consider zooming M different from 1, but it permits including an equivalent refractive index n, which has to be >1 or <1 but not = 1.
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It is important to observe that the procedure presented in Sections 2 and 3 permits
only to derive analytically the lens parameters on the edge of the lens where the aberrations
assume the most critical values.

4. Numerical Results

As anticipated in the previous sections and in [1,2], the profile of the back lens plays a
fundamental role in defining the shape of the optimized focal arc and the behavior of the
maximum aberrations. In this section, the performance of the spherical–planar bootlace
lens, defined and discussed in [1,2], characterized by a single axial focus located in the
point (0,0,−R0), is compared to the performance of three constrained lenses with Z and Z1
assigned (with a flat front profile, i.e., Z1 = 0) and W and R obtained by solving (2) and (3)
and defined in (4). The three profiles for the back lens are paraboloidal profiles defined by:

Z = A R12

With the parameter A:

A = −M
D

,− M
1.2D

,− M
1.4D

for α = 30◦;

A = − M
1.4D

,− M
1.8D

,− M
2.2D

for α = 45◦;

A = − M
2D

,− M
2.4D

,− M
2.8D

for α = 60◦; (5)

where D represents the diameter of the front lens and M is the magnification factor. In
addition, the parameter F for the three paraboloidal lenses is related to the radius R0 of the
spherical–planar lens by these heuristic expressions:

F = 0.905 R0 for α = 30◦; F = 0.818 R0 for α = 45◦; F = 0.7435 R0 for α = 60◦; (6)

The heuristic values in (5) and (6) were derived in order to have the three paraboloidal
lenses with axial focal distances comparable with the one of the spherical–planar one.
The results of this comparison are presented in Table 2. The curves relevant to the three
paraboloidal lenses are represented with diamond, circle and star points. In particular, the
paraboloidal lenses characterized by the smallest values of the A parameter are represented
with the star points, the ones characterized by the largest values of the A parameter are
represented with the diamond points, while for the intermediate A parameters circles
are used.

For α = 30◦, the three new lenses exhibit moderate improvements in the maximum
aberrations for angles close to the maximum one. Close to the axis, these three lenses are
not able to minimize the aberrations, but these values are much less critical. The results of
the three lenses in terms of aberrations when approaching the lens axis are not surprising
because their performance was optimized only for the maximum scanning angle where the
most critical values are obtained.

For α = 45◦ and 60◦, the three new lenses exhibit significant improvements in terms
of aberrations (in the order of 20%) as compared to the spherical–planar lens, while they
are comparable in terms of focal distances so in terms of accommodation constraints.

It is important to note that this type of lenses may be used to scan approximately up
to α = 50◦ when the axial focal is comparable with the lens diameter. For larger scanning
angles, the illumination efficiency associated with the peripheral feeds is becoming poor.

In Tables 3 and 4 the same results proposed in Table 2 are evaluated for con-strained
lenses characterized by a zooming factor equal to 0.5 and 2.
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Table 2. Comparison between 3D discrete lenses. M = zooming = 1.
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large field of view and minimized optical aberrations was proposed. A reduction in the
order of 20% in the maximum aberrations was found as compared to the case of multifocal
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three-dimensional lenses properly symmetrized. The new architectures offer improved
performance also in terms of accommodation because they allow reducing the focal lengths.
The improvements are valid for lens antennas characterized by focal feeding arrays with a
diameter exceeding the back lens diameter. It is interesting to note that, when this condition
applies, the aberrations remain lower as compared to the ones of comparable multifocal
lenses for all the scanning angles higher than about half the maximum scanning angle,
while their values are higher in the first half of the scanning region starting from the lens
axis. The design procedure may be useful to define bootlace lens antennas operating in
several emerging applications (i.e., Space, 5G, MIMO, etc).
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