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Abstract: The federated learning technique (FL) supports the collaborative training of machine
learning and deep learning models for edge network optimization. Although a complex edge
network with heterogeneous devices having different constraints can affect its performance, this
leads to a problem in this area. Therefore, some research can be seen to design new frameworks
and approaches to improve federated learning processes. The purpose of this study is to provide
an overview of the FL technique and its applicability in different domains. The key focus of the
paper is to produce a systematic literature review of recent research studies that clearly describes
the adoption of FL in edge networks. The search procedure was performed from April 2020 to May
2021 with a total initial number of papers being 7546 published in the duration of 2016 to 2020. The
systematic literature synthesizes and compares the algorithms, models, and frameworks of federated
learning. Additionally, we have presented the scope of FL applications in different industries and
domains. It has been revealed after careful investigation of studies that 25% of the studies used FL in
IoT and edge-based applications and 30% of studies implement the FL concept in the health industry,
10% for NLP, 10% for autonomous vehicles, 10% for mobile services, 10% for recommender systems,
and 5% for FinTech. A taxonomy is also proposed on implementing FL for edge networks in different
domains. Moreover, another novelty of this paper is that datasets used for the implementation of
FL are discussed in detail to provide the researchers an overview of the distributed datasets, which
can be used for employing FL techniques. Lastly, this study discusses the current challenges of
implementing the FL technique. We have found that the areas of medical AI, IoT, edge systems, and
the autonomous industry can adapt the FL in many of its sub-domains; however, the challenges these
domains can encounter are statistical heterogeneity, system heterogeneity, data imbalance, resource
allocation, and privacy.

Keywords: federated learning; edge devices; edge computing; IoT

1. Introduction

The number of IoT devices and edge devices has increased significantly, which results
in the extraordinary growth of generated data [1]. Predictions have been drawn that the
global data will reach 180 trillion GBs, and 80 billion nodes will most probably be linked
to the Internet in 2025 [1]. Nevertheless, the nature of most of the data has been privacy-
sensitive, and there is a risk of privacy breaches to store the data in data centers, as well as
becoming expensive in terms of communication [2].

To sustain the privacy of edge data and to decrease the communication cost, it is
essential to have a different category of machine learning (ML) approaches, which moves
the processing over the edge nodes so that the clients’ data can be maintained. It is possible
by using a prevalent approach called federated learning (FL). This approach is not only a
precise algorithm but also a design framework for edge computing.
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Federated learning is a method of ML that trains an ML algorithm with the local data
samples distributed over multiple edge devices or servers without any exchange of data.
This term was first introduced in 2016 by McMahan in [3].

Federated learning distributes deep learning by eliminating the necessity of pooling
the data into a single place [4], as shown in Figure 1. In FL, the model is trained at different
sites in numerous iterations [5]. This method stands in contrary to other conventional tech-
niques of ML, where the datasets are transferred to a single server and to more traditional
decentralized techniques that undertake that local datasets are scattered identically.
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FL allows multiple nodes to form a joint learning model, with no need of exchanging
their data samples [3], and it addresses critical problems such as access rights, access
to heterogeneous data, privacy, security, etc. Applications of this distributed learning
approach are spread over several business industries including traffic prediction and
monitoring [6], healthcare [7], telecom, IoT [8], transport and autonomous vehicles [9],
pharmaceutics, and medical AI.

The FL stances new tasks to prevailing privacy-preserving ML algorithms [10]. Outside
providing demanding privacy assurances, it is essential to mature the techniques with
computationally economical methods and to become tolerant to dropped devices with
communication efficiency and increased accuracy (as represented in Figure 1).

1.1. Related Work

Federated learning (FL) is an evolving approach to solve privacy problems in dis-
tributed data. Many studies have been conducted to design new frameworks to improve
this new paradigm of ML, but few survey studies and literature reviews have been per-
formed to evaluate the research showing the new frameworks and approaches. These
surveys are reviewed in this section.

Xu et al. performed a study focusing on the advancement of federated learning in
healthcare informatics [7]. They summarized the general statistical challenges and their
solutions, system challenges, as well as privacy issues in this regard. With the results of
this survey, they hope to provide useful resources for computational research on machine
learning techniques to manage extensive scattered data without ignoring its privacy and
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health informatics. However, there should be some discussion on the datasets used for
health and informatics systems.

Yang et al. proposed frameworks for secure federated learning [11]. They introduced
a secure federated learning framework, including both vertical and horizontal federated
learning as well as federated transfer learning. They provided descriptions of architecture
and the applications of federated learning. They also provided a detailed survey of already
existing research works in this area. Besides, based on federated mechanisms, they pro-
posed data networks building among organizations to share data without compromising
the privacy of the user. However, they did not discuss a detailed taxonomy on the domains
in which this technique can be applied.

Yang et al. surveyed and reviewed the current difficulties of executions of federated
learning as well as their solutions [12]. The author also displayed portable edge enhance-
ments and then concluded the most vital challenges and problems for future research in FL.
However, they did not discuss the datasets used for implementation of federated learning
in edge networks.

Recently, [5] has a broad narrative about the attributes and challenges of federated
learning gathered from diverse published articles. Although, they mostly focus on cross-
device FL, where the nodes are a very huge number of IoT and mobile devices.

To the best of our knowledge, there is no systematic literature review with a discussion
of datasets of FL and implementation techniques published as of yet. All the surveys on
this area are summarized in Table 1, and the detailed comparison is summarized in Table 2.

Table 1. Summary of related work.

Ref Year Journal/Conference Problem Area Contribution Related Research

[12] 2020 arXiv:1909.11875v2

Applications and
challenges of FL

implementation of FL in
edge networks

“They highlighted the challenges of
FL and reviewed prevailing solutions.
Discusses the applications of FL for

the optimization of MEC.”

[11,13–15]

[11] 2019

“ACM
Transactions on

Intelligent Systems
and Technology”

Survey on FL

“They presented an initial tutorial on
classification of different FL settings,
e.g., horizontal FL, vertical FL, and

Federated Transfer Learning.”

[7,15–17]

[13] 2019 arXiv preprint
arXiv:1908.06847

Survey on
implementation of FL in

wireless networks

“They provided a survey on FL in
optimizing resource allocation while
preserving data privacy in wireless

networks.”

[5,12,18,19]

[17] 2019 arXiv preprint
arXiv:1908.07873

Survey on FL
approaches and its

challenges

“This paper provides a detailed
tutorial on Federated Learning and
discusses execution issues of FL.”

[5,12,14,17,20]

Table 2. Comparison to other studies.

[12] [11] [13] [17] [20] This Paper

Problem Discussed Literature
Survey

Systematic
Survey

Literature
Survey

Literature
Survey

Systematic
Literature

Review

Systematic
Literature

Review
Discussion of novel algorithms × × ×

√ √ √

Discussion of the applications of FL
in field of data science

√
×

√ √ √ √

Discussion of the datasets of FL × × × × ×
√

FL implementation in edge networks
√ √

× ×
√ √

Taxonomy for FL approach
√

× × ×
√ √

Challenges and gaps on
implementing FL

√
× × ×

√ √

Year 2019 2019 2018 2019 2021 2021
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1.2. Contribution and Significance

The key emphasis of this paper is to perform systematic literature review (SLR)
of present research studies that evidently defines the adoption of federated learning in
multiple application areas.

• The main contribution of this research study is that it analyzes and investigates the
state-of-the-art research on how federated learning is used to preserve client privacy.

• Furthermore, the taxonomy of FL algorithms is proposed to help the data scientists to
have an overview about this technique.

• Moreover, a complete analysis of the industrial applications that can obtain benefits
from FL implementation has been presented.

• In addition, the research gaps and challenges have been identified and explained for
future research.

• Lastly, the overview of available distributed datasets, which can be used for this
approach, are discussed.

1.3. Organization of the Article

This research article has been partitioned into seven main sections: Section 2 represents
the background of the areas related to this research study and presents basic knowledge
to the reader. Section 3 discusses the protocol and methodology for conducting SLR by
defining the research questions (RQs), search scheme, search procedure, inclusion and
exclusion criteria, and results; Section 4 presents the execution of the systematic review
for our problem. Section 5 presents the discussions on the findings and outcomes; where
Section 5.1 addresses the applications of FL, Section 5.2 explains the algorithms of FL and
their advantages, followed by Section 5.3 which explains the datasets used in FL, and the
last sub-section of the discussion section explains the challenges of deploying FL on large
scale. The article is concluded in Section 6.

2. Background

Data plays an important role in machine learning-based systems, for the fact that
it brings effective model performance. The data produced from a huge number of IoT
devices on an hourly basis arises from the major challenge of resource consumption for
the data science industry in pooling the data. Moreover, data privacy of IoT can be at
risk. For mitigating the issues, the FL technique provides an adaptable platform to the
data scientists.

Federated learning sets novel challenges to current privacy-preserving methods and
algorithms [10]. Outside providing demanding privacy assurances, it is essential to mature
computationally economical and communication efficient methods that can be tolerant to
dropped devices without compromising accuracy.

2.1. Iterative Learning

To attain as better performance as centralized machine learning, FL employs an
iterative method containing multiple client-server exchanges, which is known as federated
learning round [21]. Each interaction/round in iterative learning starts with diffusing the
current/updated global model state to the contributing nodes (participants), then training
the local models on those nodes to yield certain potential model updates from the nodes,
and then processing and aggregating the updates from local nodes into an aggregated
global update so that the central model can be updated accordingly (see Figure 1).

For this methodology, a server (named FL server) is used for this processing and
aggregation of local updates to global updates. The local training is performed by local
nodes with respect to the commands of FL server. The iterative learning of the model is
performed in three major steps, i.e., initiation, iterative training, and termination, as shown
in Figure 2. The details of these steps are described as follows:
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Initiation: A model is selected for its training and initialized. The nodes are activated
and go on waiting for the commands from the central FL server.

Iterative training: These steps are executed for numerous iterations of learning
rounds [12]:

Selection: A segment of edge devices are chosen for training on their own data sample
by providing the same recent statistical model from the FL server [22], whereas passive
devices wait for the next iteration.

Configuration: FL server asks clients to train the current model on their local data in a
stated manner [23].

Reporting: Every node reverts the learned model to the FL server. All results are
aggregated and processed by the server, and the new model is stored [21]. It also tackles
failures (such as if a node connection is lost). Then, it goes back to the selection.

Termination: Upon reaching a stated criterion for termination (such as local accuracy
of the nodes higher than some target maximal number of rounds), the central server asks
the termination of the iterative training. Then, the FL server considers the globally trained
model as a robust model because of its training on multiple heterogeneous sources.

2.2. How FL Works

FL is based on the “FedAvg” federated averaging method. FedAvg is Google’s first
vanilla federated learning algorithm for tackling federated learning challenges. Since
then, numerous variants of FedAvg algorithms have been created to handle many of the
federated learning challenges, including “FedProx”, “FedOpt”, “FedMa”, and “Scaffold”
(outlined in Section 5.2).

The following is a high-level explanation of how the FedAvg algorithm works.
The goal of each round of FedAvg is to reduce the global model’s objective ‘w’, which

is just the total of the weighted average of the local device loss.

min f (w) =
N

∑
k=1

pkFk(w) where Fk(w) shows the loss on device k

A random selection of clients/devices is taken. Each client receives the server’s global
model. Clients execute SGD (stochastic gradient descent) on their loss function, in parallel,
and direct the learned model to the FL server for model aggregation. The server then uses
the average of these local models to update its global model. The technique is then repeated
for n more rounds of communication.
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3. Systematic Review Protocol

A literature review is typically carried out to identify any critical gaps or overlooked
extents of the research field that necessitate more investigation or analysis. A systematic
literature review, on the other hand, can be used to make any relevant judgments or compile
findings in a certain field (SLR). The SLR aids in identifying future research avenues and
focusing on research gaps. Because SLR evaluates all of the academics who have started
working on certain subjects so far, it necessitates a lot of labor and time. A consistent study
approach, on the other hand, can demonstrate the completeness of SLR.

The first step in this research project was to perform a literature review on the subject.
Several fragments of research linked to the topics are identified during the initial search.
As a result, the problem was resolved in order to conduct SLR. SLR that has never been
published can be found by analyzing the literature on federated learning. This could be
due to the fact that FL is still a new paradigm. As a result, SLR can be used to create
a framework for federated learning. This SLR is conducted using the reference manual
adapted from Kitchenham (2007).

3.1. Research Objectives (RO)

The research objectives are as follows:

RO1. To explore the areas that can potentially obtain advantages from using FL techniques.
RO2. Evaluating the practicality and feasibility of federated learning in comparison with

centralized learning in terms of privacy, performance, availability, reliability,
and accuracy.

RO3. To explain about the datasets used in different studies of federated learning and to
highlight their experimental potential.

RO4. To explore the research trends in applying federated learning.
RO5. To highlight the challenges that can be encountered due to the employment of feder-

ated learning in edge devices.

Later, a search string including primary , secondary, tertiary, and additional keywords
was selected to choose all the potential work for the SLR.

(FL) or (federated (deep or machine) learning) or (federated (application or framework or implemen-
tation)) or (federated (algorithm or method or approach)) or (federated learning in (edge computing
or IoT or smart cities or NLP or healthcare or autonomous industry))

Figure 3 depicts the crucial words. The core keywords for this research study are the
basic phrases utilized for federated machine learning, as well as the application in edge
and other sectors. The secondary keyword is the application in edge and other fields. The
secondary and additional keywords are used to locate studies on alternative applications
in various industries, as well as concerns or challenges discovered during the process.
Figure 4 depicts the procedure for conducting the review.
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3.2. Research Questions

This SLR aims at summarizing and acquiring the comprehension of federated learning
with respect to its usage, applications, and challenges to fulfill the research objectives. To
this end, the research objectives are transformed into these research questions (RQs), as
shown in Table 3:
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Table 3. Research questions.

Sr. No RQs Motivation

RQ1
Which types of mobile edge applications

and sub-fields can obtain advantage
from FL?

The industries can obtain many benefits by
deploying the FL, and these areas of interest

need to be determined.

RQ2
Which algorithms, tools, and techniques
have been implemented in edge-based
applications using federated learning?

This would help to find the implementation
and advantages of deploying FL

in mobile edges

RQ3 Which datasets have been used for the
implementation of federated learning?

To know about the details of datasets available
to experiment in the field of FL.

RQ4
What are the possible challenges and gaps

of implementing federated learning in
mobile edge networks?

The implementation of FL in different fields
may face some issues and challenges, which

are need to be discussed.

3.3. Search Strategy

In this section, the search strategy for obtaining literature to analyze and answer the
aforementioned RQs is presented.

3.3.1. Database

The most popular and reliable literature sources are used for this SLR. The search
process for this paper is based upon the digital libraries as shown in Table 4.

Table 4. Digital libraries used for conduction of the literature review.

Sr. No Digital Library Link

01 ACM Digital Library http://dl.acm.org (accessed on 27 April 2020)
02 IEEE Xplore http://ieeexplore.ieee.org (accessed on 20 April 2020)
03 ScienceDirect http://www.sciencedirect.com (accessed on 24 April 2020)
04 Springer Link http://link.springer.com (accessed on 30 April 2020)
05 Wiley Online Library http://onlinelibrary.wiley.com (accessed on 28 April 2020

3.3.2. Study Selection

The study concentrates on high-quality scholarly research work in the area of federated
learning. After the retrieval of the initial results, the impertinent papers were filtered by
executing a set of inclusion/exclusion criteria. These criteria reflect the most relevant and
appropriate literature. Table 5 provides an insight of the criteria on which articles were
selected or exempted for this research.

Table 5. Inclusion and exclusion criteria.

Criteria Description

Inclusion Criteria

IC1 Papers that unambiguously examine federated learning and are accessible.
IC2 Papers that mention and investigate the implementation approaches and applications of federated learning.

IC3 Papers that are focused on presenting research trend opportunities and the challenges of adopting
federated learning.

IC4 Papers that are published as technical reports and book chapters.

IC5 Papers that are focused on presenting research trend opportunities and challenges of adopting
federated learning.

Exclusion Criteria

EC1 Papers that have duplicate or identical titles
EC2 Papers that do not entail federated learning as a primary study.
EC3 Papers that are not accessible
EC4 Papers in which the methodology is unclear

3.3.3. Data Extraction

At this phase, an Excel structure was made as taught in the rule by Kitchenham [24].
The main rationale behind the structure is to collect the publications and the data achieved
in critical examinations and to monitor the information expected to answer the RQs.

http://dl.acm.org
http://ieeexplore.ieee.org
http://www.sciencedirect.com
http://link.springer.com
http://onlinelibrary.wiley.com
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The gathered data incorporate the open paper with the papers’ titles, keywords,
abstract and full-text, year of publication, and type of research.

Those papers that have the properties for the three filter columns as Yes were then
moved to a new sheet to extract the necessary information for addressing the RQs:

Applications: One or more applications of FL that are presented by a paper.
Implementation: One or more implementation approaches for FL or algorithms that

are explained, described, compared, or discussed by a paper.
Dataset: The paper provides any distributed dataset or expanded any dataset for FL.
Challenges: An array of issues pertinent to federated learning, which are needed to be

addressed by the researcher in this area.
If the recent research papers (ranging from 2016 to 2021) were related to these three

factors, then these were considered as systematic literature reviews.

4. Systematic Review Execution

The search process was started in April 2020 and proceeded to May 2021. Initially
a total of 7546 papers published between 2016 and 2020 were found through the digital
libraries, out of which 478 were shortlisted after going through the titles and keywords
filter. After reviewing the abstracts, 185 publications remained for the review conduction.
Afterward, 80 papers being exempted following a detailed analysis of their substance, 105
papers were chosen as primary studies. The papers collected are from the Process, which is
depicted in Figure 5, and Table 6 summarizes the detailed numbers for each phase of the
filtration process.
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Table 6. Studies screened during the filtration process.

Library Initial Results without
Filtering

Title and Keyword
Selected Abstract Selected Full Text Selected

ACM 1194 158 43 22
IEEE 119 70 32 17

ScienceDirect 879 115 46 29
Springer 644 55 28 16

Wiley 4710 80 36 21
Results 7546 478 185 105

Studies Related to the Research Question

The selected papers were organized in the form of clusters with respect to the research
questions. Studies related to the question are represented as one cluster as shown in Table 7.

Table 7. Research studies related to the research questions.

Sr. No RQs Category Related Studies

01 RQ1 Applications [3,7,9,11,13,25–44]
02 RQ2 Algorithms and models [3,45–60]
03 RQ3 Data sets [61–66]
04 RQ4 Challenges [3,5,12,13,19,25,26,30,45,46,49,50,67–73]

5. Discussions

This study underwent 105 research studies to find the applications, algorithms,
datasets, and challenges that can be encountered while employing FL. Over careful fil-
tration and examination of the shortlisted studies, a detailed analysis of the approaches
and outcomes of some potential studies are achieved. Those are presented in Table A1 of
Appendix A. The number of published research articles and technical reports are increas-
ing exponentially in the area of FL as depicted in Figure 6, thus making FL an emerging
technique of machine learning. From 105 research articles, eight were from the year 2016,
followed by seven articles published in 2017, 10 from the year 2018, and 65 were pub-
lished in the year 2019. Until the first half of 2020, there were 35 that were shortlisted for
this study.
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Figure 6. The trend of the research studies conducted primarily on federated learning over four years,
from 2016 to 2019.

In addition, the latest research articles were examined to conclude that the research
questions discussion is divided according to the answers to the research questions. The
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RQ1 related studies are highlighted in Section 5.1, Section 5.2 discusses the studies focusing
on RQ2, and for RQ3, Section 5.3 summarizes the datasets used for this research. Finally,
the challenges that are summarized in Section 5.4 explain the RQ4.

5.1. Applications of Federated Learning

FL is a promising distributed ML approach with the advantage of privacy preservation.
It allows multiple nodes to build a joint learning model without exchanging their data.
That is how it addresses critical problems such as data access rights, privacy, security, and
access to heterogeneous data types.

Its applicability is claimed to be in a variety of fields such as autonomous vehicles,
traffic prediction, and monitoring, healthcare, telecom, IoT, pharmaceutics, industrial
management [74], industrial IoT [75], and healthcare and medical AI [76]. The proportion
of the trend to used FL in different fields is depicted in Figure 7. Its first application was
in Google GBoard, where it shows tremendous results, some of which are summarized in
Table 8. Nevertheless, it applicability in some other areas such as finance [77] and quantum
computing [78] is still being explored.
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Federated learning provides an extensive variety of possible applications in many areas
such as NLP, IoT, etc. (as shown in Figure 7). FL is adopted particularly in circumstances
where privacy concerns and the desire to develop algorithms collide. This diverse set of
FL applications is organized into a taxonomy, as shown in Figure 8. The most well-known
federated learning initiatives are now being carried out on smartphones (as shown in
Table 8); however, the same approaches can be used for PCs, IoT, and other edge devices
such as autonomous vehicles.
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Nearly of the current and potential FL applications include.

5.1.1. Google Gboard

In the first place, Google opted for a federated learning strategy in GBoard for preserv-
ing the client privacy while providing better word recommendations and maintaining client
privacy. This happened to be the first real-world application of FL where the algorithmic
model is trained by the words typed by the user, and then the trained model is sent to the
server. Then the aggregated model is used to enhance Google’s predictive text feature [28].
This facilitates users to have better keyboard suggestions persistently with no need to share
the data.

5.1.2. Healthcare

Modern healthcare systems entail a collaboration among hospitals, research labs
and institutes, and federal agencies for the betterment of healthcare nation-wide [79].
Furthermore, collaborative research among nations is significant when worldwide health
emergencies, such as COVID-19, are being encountered [80].

Table 8. Applications of federated learning in different domains and industries (RQ1).

Domain Applications Related Studies

Edge computing FL is implemented in edge systems using the MEC (mobile edge computing) and DRL
(deep reinforcement learning) frameworks for anomaly and intrusion detection. [8,22,81–85]

Recommender systems To learn the matrix, federated collaborative filter methods are built utilizing a stochastic
gradient approach and secured matrix factorization using federated SGD. [86–92]

NLP FL is applied in next-word prediction in mobile keyboards by adopting the FedAvg
algorithm to learn CIFG [93]. [28,94–97]

IoT FL could be one way to handle data privacy concerns while still providing a reliable
learning model [12,98–100]

Mobile service The predicting services are based on the training data coming from edge devices of the
users, such as mobile devices. [28,94]

Biomedical

The volume of biomedical data is continually increasing. However, due to privacy and
regulatory considerations, the capacity to evaluate these data is limited. By collectively

building a global model for the prediction of brain age, the FL paradigm in the
neuroimaging domain works effectively.

[101–108]

Healthcare Owkin [31] and Intel [32] are researching how FL could be leveraged to protect patients‘
data privacy while also using the data for better diagnosis. [7,79,109–113]

Autonomous industry

Another important reason to use FL is that it can potentially minimize latency. Federated
learning may enable autonomous vehicles to behave more quickly and correctly,

minimizing accidents and increasing safety. Furthermore, it can be used to predict traffic
flow.

[9,34,114–117]

Banking and finance The FL is applied in open banking and in finance for anti-financial crime processes, loan
risk prediction, and the detection of financial crimes. [77,118–122]

In the healthcare industry, data privacy and security are extremely difficult to man-
age [123]. Many organizations have large volumes of sensitive and valuable patient data,
which hackers are eager to get their hands on. Nobody wants their unpleasant diagnosis to
be made public [7]. For frauds such as identity theft and insurance fraud, the abundance of
data available in these repositories is quite beneficial. Because of the vast amounts of data
and the significant threats that the health business faces, most nations have enacted strong
laws governing how healthcare data ought to be handled, such as the HIPAA standards in
the United States. These restrictions are fairly tight, and if an organization breaks them,
it will face severe penalties. This is often beneficial for patients who are concerned about
their personal information being misused. These laws, on the other hand, make it harder to
use certain sorts of data in studies that could lead to new medical advances. Because of this
complicated legal issue, companies such as Owkin [31] and Intel [32] are looking at how FL
may be used to preserve patients’ privacy while still putting their data to good use. Owkin
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is developing a platform that employs FL to secure patient data in experiments to identify
drug toxicity, forecast disease progression, and estimate survivability rates for rare cancers.
As a proof of concept, Intel teamed up with the “University of Pennsylvania’s Center for
Biomedical Image Computing and Analytics” in 2018 to show how federated learning may
be used in medical imaging. Their DL model may be developed to be 99 percent as accurate
as a model trained using conventional approaches, using a FL methodology; according to
the cooperation.

5.1.3. Autonomous Vehicles

Federated learning has two primary applications for self-driving automobiles. The
first is that it may safeguard user data privacy—many people are uncomfortable with the
thought of their journey logs and other traveling data being shared and evaluated on a
central server. By merely apprising the algorithms with precise data rather than whole user
information, federated learning could improve user privacy.

Another important reason to use federated learning is that it has the potential to
reduce latency. When there are many self-driving vehicles on roads in the future, they will
need to respond and address quickly during safety incidents.

Because conventional cloud-learning entails huge transfers of data and a slower
learning rate, federated learning has the potential to permit autonomous vehicles to respond
more quickly and correctly, minimizing accidents and increasing safety.

Much research demonstrate that FL has the potential to revolutionize autonomous
vehicles and the Internet of Things [124]. In [114], the authors claimed that due to a large
number of self-driving cars on the road, it is necessary to respond quickly to real-world
circumstances [114]. However, various security concerns occur with the standard cloud-
based method. They argued that federated learning may be utilized to tackle this problem
and eliminate such threats by limiting data transfer volume and speeding up the learning
process of autonomous vehicles.

5.2. Algorithms and Models

The algorithms and models used for the implementation of federated learning and its
better performance are summarized in Table 9. In this table, the most adopted algorithms
are mentioned with respect to model and privacy mechanism, applied areas, and related
studies of these algorithms.

Konečný et al. (2016) set the algorithms through which each client can independently
compute the update based on its local data to the current model [50]. They can send
the updated information to a central server. A new global model is computed in the
central server by combining the updates from clients. Mobile phones are the system’s
key clients, and their communication efficiency is critical. The researchers offered two
approaches to reduce the cost of uplink transmission in this study: structured updates and
sketching updates.

Chen et al. described an end-to-end tree boosting system named XGBoost [51]. This
system is used by data scientists widely to obtain many state-of-the-art results on several
ML (machine learning) tasks. For tree learning, they weighted quantile sketch, and for
the sparse data, they proposed a unique new sparsity aware algorithm. The research
paper also provides insights on data compression and sharding to build scalable XGBoost.
Conclusively, XGBoost uses way fewer resources compared to other systems and scales far
billions of examples [4].

Nilsson et al. benchmarked three FL algorithms. They compared the performance of
these three algorithms by residing the data on the server [125]. The algorithms include fed-
erated averaging (FedAvg), CO-OP, and Federated-Stochastic Variance Reduced Gradient.
These algorithms were evaluated on MINIST dataset with the use of non-i.i.d. and i.i.d.
partitioning of data. The research resulted in FedAvg as the highest accuracy algorithm
among all.
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Chawla et al. proposed an over-sampling technique named SMOTE (synthetic minority
over-sampling technique), which generates minority classes records to rebalance the data
sample [126]. Han et al. enhanced the SMOTE by seeing the data distribution of marginal
classes [127], but it also requires a larger dataset. However, this method is not appropriate
for federated learning because the client’s data is distributed. Some other approaches, such
as Xgboost [51] and AdaBoost, can reduce bias as it learns from misclassification. However,
these algorithms are subtle to outliers and noise.

Table 9. Algorithms of federated learning proposed in different studies (RQ2).

Ref Algorithms Model
Implemented Area Privacy

Mechanism Remarks Applied Areas Related Studies

[23] Secure
aggregation FL

Practicality
enhancement CM Privacy

guarantees

State-of-the-art algorithm for
aggregation of data.

Applicability across the field.
[128–130]

[66] LEAF \ Benchmark \ Benchmark
Language modeling,

sentiment analysis, and
image classification.

[131]

[132] FedML \ Benchmark \ Benchmark
Language modeling,

sentiment analysis, and
image classification.

[128,133–138]

[3] FedAvg Neural network

Effective
Algorithm

\

SGD based

Model averaging and
convergence of algorithms. [27,71,135,139,140]

[141] FedSVRG Linear model Efficient communication and
convergence. [142]

[143] FedBCD NN Reduction of
communication cost. [144,145]

[69] FedProx \
Algorithm accuracy,

convergence rate, and
autonomous vehicles.

[146]

[147] Agonistic FL NN, LM
Optimization problems and
reduction of communication

cost.
[148,149]

[150] FedMA NN
NN specialized

Communication efficiency,
convergence rate, NLP, and

image classification.
[151]

[152] PFNM NN Language modeling and
image classification. [150]

[153] Tree-based FL DT DP

DT-specialized

Privacy preservation. [154]
[155] SimFL hashing

[10] FedXGB Algorithm accuracy and
convergence rate. [155]

[156] FedForest Privacy preservation and
accuracy of algorithms. [157]

[56] SecureBoost DT CM DT-specialized
Privacy preservation,

scalability, and credit risk
analysis.

[158]

[159] Ridge
Regression FL LM

CM LM-specialized

Reduction in model
complexity.

[160,161]

[162] PPRR [163]

[164] Linear regression
FL

Global regression and
goodness-of-fit diagnosis. [165,166]

[167] Logistic
regression FL

Biomedical and image
classification. [168]

[169] Federated MTL

\

Multi-task
learning

Simulation on human
activity recognition and

vehicle sensor.
[170]

[171] Federated
meta-learning NN

Meta-learning

Efficient communication,
convergence, and

recommender system.
[89,171–175]

[64] Personalized
FedAvg

Efficient communication,
convergence, anomaly

detection, and IoT.
[84,143,171,176]

[177] LFRL Reinforcement
learning

Cloud robotic systems and
autonomous vehicle

navigation.
[178]
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Certain protocols and frameworks need to be implemented on edge networks to
successfully implement the federated learning approach. Some of those are discussed in
this section.

Wang et al. proposed the integration of deep reinforcement learning (DRL) as well
as federated learning to improve edge systems [179]. This proposal was integrated to
optimize mobile edge computing, communication, and caching. To make use of edge nodes
and collaboration among devices, they designed the “In-Edge Al” framework. While this
framework was demonstrated to reach near-optimal performance, the overhead of training
was relatively low. Finally, they discussed different challenges as well as opportunities
to reveal a capable future of “In-Edge Al” such as AI acceleration in edge computing
and [6,81].

Xu et al. performed a survey focusing on the progress of federated learning in health-
care informatics [7]. They summarized the general statistical challenges and their solutions,
system challenges, as well as privacy issues in this regard. With the results of this survey,
they provide useful resources for computational research on machine learning techniques
to manage extensive scattered data without ignoring its privacy and health informatics.

Yang et al. proposed frameworks for secure federated learning [11]. They introduced
a comprehensive secure FL framework, including horizontal and vertical FL as well as
federated transfer learning. They provided definitions, architecture, and applications for FL.
They also provided a detailed survey of already existing works in this area. Besides, based
on federated mechanisms, they proposed data networks building among organizations to
share data without compromising the privacy of the user [9].

Basnayake, V. developed a method to improve sensor measurement reliabilities in
a mobile robot network [180]. It considered the cost of repairing faulty sensors as well
as inter-robot communication. They built a system for anticipating sensor failures using
sensor features in this work. The wireless connection and network-wide sensor replacement
cost capturing were then minimized, given the sensor measurement reliability constraint.
For the aforementioned task, they used convex optimization approaches to construct an
algorithm that gave the optimal wireless information communication strategy and sensor
selection. To detect sensor failures and estimate sensor properties in a distributed manner,
they used federated learning. Finally, they ran extensive simulations and compared the
proposed mechanism to existing state-of-the-art procedures to demonstrate its effectiveness.

Sattler et al. (2019) presented clustered federated learning to address the issue of
suboptimal results by FL if the data distribution of the local client diverges [169]. CFL
is a federated multi-task learning framework. The geometric properties of federated
learning loss surface are exploited by FMTL, which helps to group the populations of
clients into clusters with trainable data distribution. There are no modifications required
for the FL communication protocol in CFL. It applies to deep neural networks, and, on
the clustering quality, it gives strong mathematical guarantees. CFL handles diverse client
populations over time and is also flexible enough to preserve privacy. CFL is considered a
post-processing mechanism and is achieving similar or more significant goals than the FL.

Mohri et al. optimized a centralized model in a newly proposed framework of agnostic
federated learning [147]. Client distributions’ mixture optimized it for any of the target
distribution formed. They suggested that the framework yields a notion of fairness. To solve
the corresponding optimization issues, they also proposed a fast stochastic optimization
algorithm. For this, they also proved convergence bounds supposing a convex hypothesis
set, as well as a convex loss function. They also demonstrated the advantages of their
approaches in different datasets. Their framework can also be interesting for other scenarios
of learning as drifting, cloud computing, domain adaptation, and others [12].

Han et al. introduced the value of imbalanced datasets as well as their broad applica-
tion areas in data mining [127]. After that, they summarized the matrices of evaluation and
previously existing possible methods to solve any imbalance problem. To address this issue,
the synthetic minority over-sampling technique (SMOTE) is one of the oversampling tech-
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niques used. Two new minorities were proposed by this method using borderline-SMOTE 1
and borderline-SMOTE 2 over the sampling method.

In [181], the authors introduced a generalization of Dropout, the DropConnect to
regularize the large and fully connected layers in neural networks. In contrast to Dropout,
which sets the randomly selected activation subsets to zero in each segment, DropConnect
sets a subset of weights in the system to zero. They compared the DropConnect to the
Dropout, evaluating on a range of datasets. They aggregated multiple DropConnect
trained models, and, on different image recognition benchmarks, they showed state-of-the-
art results.

5.3. Datasets for Federated Learning

For the federated learning implementation, there were numerous datasets accessible.
Some were accessible to the public, while others were not, and this provides an overview
of the publicly available datasets.

Different client devices deconstruct the federated datasets. For experimentation,
several datasets are turned into federated datasets. A benchmark LEAF [66] provides
some public federated datasets and evaluation framework, and other datasets and models
used in existing publications in top tier conferences of the machine learning community
throughout the past two years are summarized in Table 10 below.

Table 10. Datasets used for the research in FL (RQ3).

Dataset No. of Data Items No. of Clients Details

Street 5 [61] 956 26 https://dataset.fedai.org (accessed on 11 August 2020)

Street 20 [61] 956 20 https://github.com/FederatedAI/FATE/tree/master/research/
federated_object_detection_benchmark (accessed on 11 August 2020)

Shakespears [3] 16,068 715 Dataset constructed from “The Complete Works of William
Shakespeare”.

CIFAR-100 60,000 500 CIFAR-100 produced by google [182] by randomly distributing the data
among 500 nodes, with each node having 100 records [59]

StackOverflow [62] 135,818,730 342,477 Google TFF [65] team maintained this federated dataset comprised of
data from StackOverflow.

Federated EMNIST 671,585 and 77,483 3400 EMNIST [66] is a federated partition version that covers natural
heterogeneity stemming from writing style.

5.4. Challenges and Research Scope

There are some other issues of this field that can arise as challenging problems to be
addressed such as resource allocation [183], data imbalance, statistical heterogeneity, etc., as
depicted in Figure 9. All the stated challenges are described in this section and summarized
in Table 11.

Table 11. Challenges in implementing federated machine learning.

Ref Year Research Type Problem Area Contribution Related Researches

[25] 2018 Experimental Statistical
heterogeneity

“They demonstrated a mechanism to
improve learning on non-IID data by

creating a small subset of data which is
globally shared over the edge nodes.”

[3,26,30,67,184,185]

[3] 2017 Experimental Statistical and
communication cost

“They experimented a method for the FL
of deep networks, relying on iterative

model averaging, and conducted a
detailed empirical evaluation.”

[3,25,26,67,186,187]

[67] 2020 Experimental
Convergence analysis

and resource
allocation

“They presented a novel algorithm for FL
in wireless networks to resolve resource
allocation optimization that captures the
trade-off between the FL convergence.“

[3,25–27]

https://dataset.fedai.org
https://github.com/FederatedAI/FATE/tree/master/research/federated_object_detection_benchmark
https://github.com/FederatedAI/FATE/tree/master/research/federated_object_detection_benchmark
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Table 11. Cont.

Ref Year Research Type Problem Area Contribution Related Researches

[49] 2019 Experimental Communication cost

“They proposed a technique named
CMFL, which provides client nodes with
the feedback regarding the tendency of

global model updations.”

[45,46]

[45] 2018 Framework Communication cost
“ A framework is presented for atomic
sparsification of SGD that can lead to
distributed training in a short time.”

[3,46,49,50]

[26] 2019 Experimental Statistical
heterogeneity

“They demonstrated that the accuracy
degradation in FL is usually because of

imbalanced distributed training data and
proposed a new approach for balancing

data using [188].”

[3,25,30,67–70]

[50] 2017 Experimental Communication
efficiency

“They proposed structured updates,
parametrized by using less number of

variables, which can minimize the
communication cost by two orders of

magnitude.”

[45,46,49]

[46] 2018 Numerical
Experiment Communication cost

“They performed analysis of SGD with
k-sparsification or compression and

showed that this approach converges at
the same rate as vanilla SGD (equipped

with error compensation).”

[3,46,49,50]

[189] 2020 Experimental Biasnesss of data

“They demonstrated that generative
models can be used to resolve several

data-related issues even when ensuring
the data‘s privacy. They also explored
these models by applying it to images

using a novel algorithm for differentially
private federated GANs and to text with
differentially private federated RNNs.”

[47,48]
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5.4.1. Imbalanced Data

Using their local data, each edge node in FL trains a shared model. As a result, the
distribution of data from those edge devices is based on their many uses. In comparison to
cameras located in the wild, cameras in the park, for example, capture more photographs
of humans. We divided these FL imbalances into three categories to make it easier to
distinguish between them:

1. Size imbalance: when the size of each edge node’s data sample is uneven.
2. Local imbalance: this is also known as non-identical distribution (non-identically dis-

tributed) or independent distribution because not all nodes have the same
data distribution.

3. Global imbalance: denotes a collection of data that is class imbalanced across
all nodes.

To explain the effect of imbalanced data on the training process, we will use the feder-
ated learning approach to train CNN (convolutional neural networks) with an imbalanced
distributed dataset.

5.4.2. Expensive Communication

FL networks hypothetically encompassed a gigantic quantity of devices [17] (such
as millions of notebooks and hand-held devices) and network communication may be
computationally expensive and slower due to orders of magnitude. In such networks,
communication requires more computations as compared to traditional data center envi-
ronments. To make a model trained through the data provided by devices in an edge-based
network, communication-efficient methods must be developed, which iteratively com-
municates short messages or model changes as a part of the training process, rather than
transferring the complete dataset over the network.

5.4.3. Systems Heterogeneity

The ferreted networks are natively heterogeneous due to differences in network con-
nectivity (Wi-Fi, 3G, 4G, 5G), hardware (CPU, RAM), power (battery level), communication,
storage, and computing capacities of nodes. Furthermore, due to device and network
size-related limits, only a small fraction of end nodes is active at any given time. The
devices may be unreliable, and an active gadget will frequently stop working after a certain
iteration. Fault tolerance is made possible by these system-level properties.

5.4.4. Statistical Heterogeneity

The edges frequently collect and share data in a non-i.i.d. manner across the net-
work [12,25,139,184]. For the prediction of the next word, cellular phone users may utilize
a wide range of vocabulary. Furthermore, the amount of data on different edges may
differ, and an underlying structure that reflects the interaction between devices and their
associated distributions may exist. This data generation paradigm challenges widely held
i.i.d. principles in distributed optimization, raises the likelihood of stragglers, and may
increase the complexity of analysis, modeling, and assessment.

5.4.5. Privacy Concerns

Privacy is often a major concern in FL applications in comparison to learning in the
centralized data in data centers [12]. By sharing only model updates (such as gradient in-
formation) rather than the whole data, FL takes a step toward securing user data. However,
transmitting local model updates throughout the training process may divulge sensitive
data to the central server or a third party. While current efforts try to increase the privacy
of federated learning through the use of mechanisms such as differential privacy [190] and
secure multiparty computation [11], these approaches often provide privacy at the cost
of lesser system efficiency or reduced model accuracy. Recognizing and assessing these
trade-offs, theoretically and empirically, is a significant task in achieving private federated
learning systems.
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All the challenges addressed in the state-of-the-art literature are summarized in Table 9,
with respect to its methodologies and their contribution.

6. Conclusions

Federated learning enables the collaborative training of a machine learning model
and deep learning for mobile edge network optimization. FL allows multiple nodes to
form a joint learning model to address critical problems such as access rights, access
to heterogeneous data, privacy, security, etc. Applications of this distributed learning
approach are spread over several business industries including traffic prediction and
monitoring, healthcare, telecom, IoT, transport and autonomous vehicles, pharmaceutics,
and medical AI. This paper summarized how federated learning is used to preserve
client privacy through a detailed review of the literature. The search procedure was
performed from April 2020 to May 2021, with the total initial number of papers being
7546 published in the duration of 2016 to 2020. After careful screening and filtering,
105 papers were selected to adequately describe the research questions of this study. It
provides a systematic literature review about FL across domain applications and the
algorithms, models, and frameworks of federated learning and its scope of application in
different domains. Moreover, this study discusses the current challenges of implementing,
and a taxonomy is proposed on implementation of, FL over a variety of domains. The
survey reveals that healthcare and IoT have a vast implementation opportunity of FL
models, as 30% and 25% of the selected studies used FL in healthcare and edge applications.
The growing and real-world trend of FL research is seen in NLP with more than 10% of
the total literature. The domains of recommender systems, FinTech, and the autonomous
industry can adapt the FL, but the challenges these domains can encounter are statistical
heterogeneity, system heterogeneity, data imbalance, resource allocation, and privacy.

7. Future Directions

To mitigate the data privacy concerns, along with providing a transfer learning
paradigm, FL has emerged as an innovative learning platform by enabling edge devices to
train the model with their own data. The growing storage and computation capacity of
edge nodes, such as autonomous vehicles, smartphones, tablets, and fast communication
such as 5G, FL has revolutionized the way of machine learning in the modern era. Thus, the
applications of FL are cross-domain. However, there are certain areas that require further
development of FL. For example, the convergence of its baseline aggregation algorithm,
FedAvg, is application-dependent, and more refined methods for aggregation are worth
exploring. Similarly, with the heavy computation required for FL, resource management
can play an important part. So, optimization of communication, computation, and storage
cost for edge devices during the process of model training needs to be refined and matured.
In addition, most of the studies usually cover the area of IoT, healthcare, etc. However, more
application areas can benefit from this learning paradigm, such as food delivery systems, VR
applications, finance, public safety, hazard detection, traffic control, and monitoring, etc.
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Abbreviations

AST-GNN Attention-based Spatial-Temporal Graph Neural Networks
ATV Aggregated Trust Value
CMFL Communication Mitigated Overhead for Federated Learning
CNN Convolutional Neural Networks
DFNAS Direct Federated NAS
DL Deep Learning
DNN Deep Neural Networks
DP Differential Policy
DRL Deep Reinforcement Learning
DT Decision Trees
FASTGNN Federated Attention-based Spatial-Temporal Graph Neural Networks
FedAvg Federated Averaging
FedBCD Federated Stochastic Block Coordinate Descent
FederatedMTL Federated Multi-Task Learning framework
FedMA Federated Learning with Matched Averaging
FL Federated Learning
GAN Generative Adversarial Networks
HAR Human Activity Recognition
IID Independent and Identically Distributed
IoT Internet-of-Things
IoV Internet of Vehicles
KLD KullbackLeibler Divergence
LFRL Lifelong Federated Reinforcement Learning
LM Linear Model
LSTM Long Short-Term Memory
MAPE Mean Absolute Percentage Error
MEC Mobile Edge Computing
ML Machine Learning
MLP Multilayer Perceptron
MSL Multi-weight Subjective Logic
NAS Neural Architecture Search
NLP Natural Language Processing
oVML On-Vehicle Machine Learning
RNN Recurrent Neural Network
SGD Stochastic Gradient Descent
SMC Secure Multiparty Computation
SMOTE Synthetic Minority Over-sampling Technique
SVM Support Vector Machine
TFF TensorFlow Federated
TSL Traditional Subjective Logic
TTS Text-to-Speech
URLLC Ultra-Reliable Low Latency Communication

Appendix A

Table A1. The detailed analysis of latest research with respect to their approach, tools, strengths,
shortcomings, and future scope.

Ref. Year Domain Sub-Domain Dataset Approach Tools/Techniques Contribution Shortcoming and
Future Scope

[191] 2019
Erlang-

programming
language

FL NA
Functional

implementation of
ANN in Erlang.

Nifty, C language,
Erlang language

Creating ffl-erl,
a framework
for federated
learning in

Erlang
language.

Erlang incurs a
performance penalty,

and it needs to be
explored in different

scenarios of FL.
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Table A1. Cont.

Ref. Year Domain Sub-Domain Dataset Approach Tools/Techniques Contribution Shortcoming and
Future Scope

[192] 2019 Image-based
geolocation FL MNIST,

CIFAR-10

An asynchronous
aggregation

scheme is proposed
to overcome
performance

degradation caused
by imposing hard

data constraints on
edge devices.

PyTorch, Apache
drill-based tool

The
convergence

rate has
become better

than the
synchronous

approach.

The system’s
performance with the
data constraints needs

to be explored.

[193] 2019 Algorithms FL and gossip
learning

Spam base
dataset, HAR

dataset,
Pendigits
dataset

To reduce
communication

cost, subsampling
was applied for FL

and GL
approaches.

Simulations,
Stunner, secure

aggregation
protocol

Gossip
learning

proved better
performance
than FL in all

the given
scenarios
while the

training data
was

distributed
uniformly
over the
nodes.

Gossip learning relies
on message passing and

no cloud resources.

[194] 2020 Poison defense
in FL

Generative
Adversarial

Network

MNIST and
Fashion-
MNIST

To defend against
poison attacks,

GAN deployed at
server side to

regenerate user‘s
edge training data
and verification of
accuracy for each

model trained
through data. The
client node with
lower accuracy

than the threshold
is recognized as an

attacker.

PyTorch

The PDGAN
employs

partial classes
data for the

reconstruction
of samples of
local data of
each node

model. This
method

increased the
efficiency with

the rate of
3.4%, i.e.,

89.4%.

There is a need to
investigate the

performance of PDGAN
over class level
heterogeneity.

[195] 2019
Data

distribution in
FL

IoT FEMNIST,
MNIST

In the proposed
mechanism, the

multi-criteria role
of each end node

device is processed
in a prioritized

fashion by
leveraging a

priority-aware
aggregation

operator.

CNN, LEAF

The
mechanism
proved to

achieve online
adjustment of

the parameters
by employing
a local search
strategy with
backtracking.

Extensive experiments
on diverse datasets

needs to be performed
for examining the
positives of this

mechanism.

[26] 2019
Data

distribution in
FL

Edge systems

Imbalanced
EMNIST,

FEMNIST and
imbalanced

CINIC-1

A self-balancing FL
framework called

Astraea is
proposed to

overcome the issue
of Global data

imbalance by data
augmentation and

client rescheduling.

CNN, Tensor flow
Federated

Astraea
averages the

local data
imbalance and

forms the
mediator to

reschedule the
training of
participant

nodes based
on KLD of
their data

distribution. It
resulted in

+5.59% and
+5.89%

improvement
of accuracy for
both datasets.

The Global data
augmentation, perhaps,
was a shortcoming for

FL, as the data is shared
globally by using this

model.
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Table A1. Cont.

Ref. Year Domain Sub-Domain Dataset Approach Tools/Techniques Contribution Shortcoming and
Future Scope

[81] 2019 Mobile edge
computing FL NA

DRL techniques are
integrated with FL

framework to
optimize the MEC

communication
and caching.

Simulator AI
chipset hardware,

Tensor Flow

“In-Edge AI”
is claimed to
reach optimal
performance
but with low

training
overhead.

The applicability of this
framework needs to be

explored over
real-world scenarios to
find the efficacy in real

manner.

[196] 2019 IoT Edge systems
and FL

MNIST/CIFAR-
10

datasets

Communication-
efficient FedAvg
(CE-FedAvg) is

introduced.
FedAvg is

integrated with
Adam optimization

for reducing the
number of rounds

to achieve
convergence of the

algorithm.

Raspberry Pi,
Tensor Flow, ReLU,

CNN

CE-FedAvg
can reach a

pre-satisfied
accuracy in

fewer commu-
nication

rounds than in
non-IID

settings (up to
6× fewer) as
compared to

FedAvg.
CE-FedAvg is
cost-effective,

robust to
aggressive

compression
of transferred

data,
converged

with up to 3×
less iteration

rounds.

The model is effective
and cost efficient;

however, there can be
scope to add AI task

management to reduce
more computing cost.

[197] 2018
Human
activity

recognition
FL

The
Heterogeneity

Human
Activity

Recognition
Dataset (2015)

A SoftMax
regression and a
DNN model are

developed
separately for

HAR, to prove that
accuracy similar to

to centralized
models can be

achieved using FL.

Tensor Flow
Apache Spark and

Dataproc

In the
experiments,
FL achieved

89% accuracy,
while in

centralized
training 93%

accuracy is for
DNN.

The models can be
enhanced by integrating

optimization
techniques.

[41] 2021 Internet traffic
classification FL ISCXVPN2016

dataset

An FL Internet
traffic classification
protocol (FLIC) is

introduced to
achieve an
accuracy

comparable to
centralized DNN

for Internet
application

identification.

Tensorflow

FLIC can
classify new
applications

on the fly with
an accuracy of

88% under
non-IID traffic
across clients.

There is a need to
explore the protocol for

real-world scenarios
where the systems are

heterogeneous systems.

[125] 2018 Algorithms
evaluation FL MNIST

The algorithms
FedAvg, CO-OP,
and Federated

Stochastic Variance
Reduced Gradient

are executed on
MNIST, using both
i.i.d. and non-i.i.d.
partitionings of the

data.

Ubuntu 16.04 LTS
via VirtualBox 5.2,

Python JSON

An MLP
model FedAvg

achieves the
highest

accuracy of
98% among

these
algorithms,

regardless of
the manner of

data
partitioning.

The evaluation study
can be expanded by

having the algorithm
compared with some

newly introduced
benchmarks.
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Table A1. Cont.

Ref. Year Domain Sub-Domain Dataset Approach Tools/Techniques Contribution Shortcoming and
Future Scope

[6] 2020 Mobile
Networks FL MNIST

A worker selection
mechanism is

formed for FL tasks
evaluated based on

the reputation
threshold. A

worker with a
lesser reputation

than the threshold
is treated as an

unreliable worker.

Tensor Flow

ATV scheme
under lower
reputation
thresholds
provides

higher
accuracy than

MSL. MSL
scheme

performs the
same as ATV
scheme when
the reputation
is higher than

0.35.

Some validation
schemes for non-IID

datasets can be
developed to detect the

performance under
poisoning attacks.

[96] 2021 NLP FL LJSpeech
dataset

Dynamic
transformer

(FedDT-TTS) is
proposed, where

encoder and
decoder increase

layers dynamically
to provide faster

convergence with
lesser

communication
cost in FL for the

TTS task, and then
compare FedT-TTS
and FedDT-TTS on

an unbalanced
dataset.

Simulations,
Python

Their model
greatly

improved
transformer

models’
performance

in the
federated
learning,

reducing total
training time

by 40%.

The generalization
ability of this model can

be examined over
diverse kinds of

datasets.

[37] 2021 Traffic speed
forecasting FL PeMS dataset

and METR-LA

FASTGNN
framework for
traffic speed

forecasting with FL
is proposed, which

integrates
AST-GNN for local
training to protect

the topological
information.

Simulations

FASTGNN can
provide
similar

performance
compared

with the three
baseline

algorithms,
where the
MAPE of

FASTGNN is
only 0.31%
more than
MAPE of
STGCN.

The generalization
ability of this model can

be examined over
diverse kinds of

datasets.

[146] 2021 Autonomous
vehicles FL MNIST

FEMNIST

FedProx for
computer vision is
used and analyzed

based on the
capability to learn

an
underrepresented

class while
balancing system

accuracy.

Python,
TensorFlow, CNN,
rectifier linear unit

(ReLU)

FedProx local
optimizer

allows better
accuracy using

DNN imple-
mentations.

There is a tradeoff
between intensity and

resource allocation
efforts of FedPRox.

[7] 2020 Healthcare FL NA
Surveyed recent FL

approaches for
Healthcare.

NA

Summarized
the FL

challenges of
statistical,

system
heterogeneity,
and privacy
issues with

recent
solutions.

The solutions can be
described more

technically for health
informatics.
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Table A1. Cont.

Ref. Year Domain Sub-Domain Dataset Approach Tools/Techniques Contribution Shortcoming and
Future Scope

[9] 2018 Vehicular
networks FL

To minimalize the
network-wide

power
consumption of
vehicular users

with reliability in
relation of

probabilistic
waiting delays, a

joint transmit
resource allocation
and power method

for enabling
URLLC in

vehicular networks
is proposed.

Manhattan
mobility model

The method
provides

approximately
60% reduced
VUEs large

queue lengths,
without

additional
power

consumption,
compared to
an average

queue-based
baseline.

The solutions can be
described more

technically.

[61] 2019 Image
detection FL Steet-5. Street

20

A non-IID image
dataset containing
900+ images taken

by 26 street
cameras with seven
types of objects is

presented.

Object detection
algorithms (YOLO
and Faster R-CNN)

These datasets
also capture
the realistic

non-IID
distribution
problem in
federated
learning.

The data heterogeneity
and imbalancing in

these public datasets
should be addressed for

object identification
using novel FL

techniques.

[198] 2021 Smart cities
and IoT FL NA

The latest research
on the applicability
of FL over fields of

smart cities.

Survey, literature
review

Provides the
current

improvement
of FL from the

IoT,
transportation,

communica-
tions, finance,
medical, and
other fields.

The detailed use case
scenarios can be
described more

technically for smart
cities.

[114] 2020 Autonomous
vehicles FL Data collected

by the oVML.

A
Blockchain-based

FL (BFL) is
designed for

privacy-aware IoV,
where local oVML
model updates are

transferred and
verified in

distributed fashion.

Simulations

BFL is efficient
in communica-

tion of
autonomous

vehicles.

The model BFL is
needed to be explored

over real world
scenarios where the
performance can be

described more
technically for IoV.

[135] 2020 Neural
networks FL CIFAR10,

CINIC-10

An approach for
computationally

lightweight direct
federated NAS,

and a single step
method to search

for ready-to-deploy
neural network

models.

FedML

The
inefficiency of

the current
practice of
applying

predefined
neural

network
architecture to
FL is claimed

and addressed
by using

DFNAS. It
resulted in

lesser
consume

computation
and communi-

cation
bandwidth

with 92% test
accuracy.

The DFNAS
applicability is needed

to be explored over
some real-world

scenarios, such as text
recommendation.

[101] 2021 Medical
imaging FL NA

Reviews the latest
research of FL to

find its
applicability in

medical imaging.

Survey

Explains how
patient privacy
is maintained

across sites
using FL.

The technical
presentation of the

medical imaging can be
illustrated by using a

certain case study.
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193. Hegedűs, I.; Danner, G.; Jelasity, M. Gossip Learning as a Decentralized Alternative to Federated Learning. In IFIP International
Conference on Distributed Applications and Interoperable Systems; Springer: Cham, Switzerland, 2019; pp. 74–90. [CrossRef]

194. Zhao, Y.; Chen, J.; Zhang, J.; Wu, D.; Teng, J.; Yu, S. PDGAN: A Novel Poisoning Defense Method in Federated Learning Using
Generative Adversarial Network. In Algorithms and Architectures for Parallel Processing; Springer: Cham, Switzerland, 2020;
pp. 595–609. [CrossRef]

195. Anelli, V.W.; Deldjoo, Y.; Di Noia, T.; Ferrara, A. Towards Effective Device-Aware Federated Learning. In International Conference
of the Italian Association for Artificial Intelligence; Springer: Cham, Switzerland, 2019; pp. 477–491. [CrossRef]

http://doi.org/10.1109/TNNLS.2020.3015958
http://www.ncbi.nlm.nih.gov/pubmed/32833654
http://doi.org/10.1109/icdcs47774.2020.00032
https://www.arxiv-vanity.com/papers/1802.07876/
https://www.arxiv-vanity.com/papers/1802.07876/
http://doi.org/10.1109/JSAC.2022.3143259
http://doi.org/10.1109/LRA.2019.2931179
http://doi.org/10.1142/9789813279827_0006
http://doi.org/10.1016/j.future.2021.02.012
http://doi.org/10.1109/cscwd49262.2021.9437738
https://www.sciencedirect.com/topics/engineering/kullback-leibler-divergence
https://www.sciencedirect.com/topics/engineering/kullback-leibler-divergence
http://doi.org/10.1145/2976749.2978318
http://doi.org/10.1007/978-3-030-16202-3_10
http://doi.org/10.1007/978-3-030-14880-5_2
http://doi.org/10.1007/978-3-030-22496-7_5
http://doi.org/10.1007/978-3-030-38991-8_39
http://doi.org/10.1007/978-3-030-35166-3_34


Electronics 2022, 11, 670 33 of 33

196. Mills, J.; Hu, J.; Min, G. Communication-Efficient Federated Learning for Wireless Edge Intelligence in IoT. IEEE Internet Things J.
2019, 7, 5986–5994. [CrossRef]

197. Sozinov, K.; Vlassov, V.; Girdzijauskas, S. Human Activity Recognition Using Federated Learning. In Proceedings of the
2018 IEEE International Conference on Parallel & Distributed Processing with Applications, Ubiquitous Computing & Com-
munications, Big Data & Cloud Computing, Social Computing & Networking, Sustainable Computing & Communications
(ISPA/IUCC/BDCloud/SocialCom/SustainCom), Melbourne, VIC, Australia, 11–13 December 2018; pp. 1103–1111. [CrossRef]

198. Zheng, Z.; Zhou, Y.; Sun, Y.; Wang, Z.; Liu, B.; Li, K. Federated Learning in Smart Cities: A Comprehensive Survey. arXiv 2021,
arXiv:2102.01375.

http://doi.org/10.1109/JIOT.2019.2956615
http://doi.org/10.1109/bdcloud.2018.00164

	Introduction 
	Related Work 
	Contribution and Significance 
	Organization of the Article 

	Background 
	Iterative Learning 
	How FL Works 

	Systematic Review Protocol 
	Research Objectives (RO) 
	Research Questions 
	Search Strategy 
	Database 
	Study Selection 
	Data Extraction 


	Systematic Review Execution 
	Discussions 
	Applications of Federated Learning 
	Google Gboard 
	Healthcare 
	Autonomous Vehicles 

	Algorithms and Models 
	Datasets for Federated Learning 
	Challenges and Research Scope 
	Imbalanced Data 
	Expensive Communication 
	Systems Heterogeneity 
	Statistical Heterogeneity 
	Privacy Concerns 


	Conclusions 
	Future Directions 
	Appendix A
	References

