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Abstract: Due to the limitation of event sensors, the spatial resolution of event data is relatively low
compared to the spatial resolution of the conventional frame-based camera. However, low-spatial-
resolution events recorded by event cameras are rich in temporal information which is helpful for
image deblurring, while intensity images captured by frame cameras are in high resolution and have
potential to promote the quality of events. Considering the complementarity between events and
intensity images, an alternately performed model is proposed in this paper to deblur high-resolution
images with the help of low-resolution events. This model is composed of two components: a
DeblurNet and an EventSRNet. It first uses the DeblurNet to attain a preliminary sharp image aided
by low-resolution events. Then, it enhances the quality of events with EventSRNet by extracting the
structure information in the generated sharp image. Finally, the enhanced events are sent back into
DeblurNet to attain a higher quality intensity image. Extensive evaluations on the synthetic GoPro
dataset and real RGB-DAVIS dataset have shown the effectiveness of the proposed method.

Keywords: image deblurring; event camera; event super resolution; complementarity

1. Introduction

In contrast to the conventional frame-based camera which represents a dynamic
scenario with a sequence of still images, an event-based vision sensor [1–4] tends to detect
per-pixel brightness changes in microsecond resolution. Once the logarithm of the intensity
changes exceeds a preset threshold c in a given pixel (x, y), an event will be triggered which
can be formulated as

log(Ixy(t) + b)− log(Ixy(t− ∆t) + b) = p · c (1)

where Ixy(t) and Ixy(t− ∆t) denote the intensities at time t and t− ∆t, respectively. ∆t
is the time since the last event happened in location (x, y). b is a small constant used for
avoiding Ixy(t) to be zero. p ∈ {+1,−1} is the polarity representing the direction (increase
or decrease) of the intensity change. Finally, an event is represented as e = (x, y, t, p).
Since event data are discrete and own high temporal resolution, a high dynamic range,
and a low motion blur, the event camera has shown its potential in several robotic and
computer vision tasks, such as image reconstruction [5–12], image deblurring [13–15],
object detection [16,17], and SLAM [18].

However, the spatial resolution of existing event cameras is still not larger than 1
megapixel [1–4,17], which is far from the 12 or 24 megapixel spatial resolution of existing
frame-based cameras. Considering the high temporal events recorded by event cameras and
the high-resolution images captured by conventional frame-based cameras, constructing
a mixed imaging system with an event camera and a frame-based camera with different
spatial resolutions may be a means of achieving high-quality images. A similar imaging
system was suggested in [19], where an algorithm is provided for calibrating these two
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kinds of cameras.However, this work assumes that the intensity images captured by the
frame-based camera are sharp, or the intensity image will not produce effectiveness in
their method. Since motion in the world is very common and that high-speed frame-
based cameras are expensive, it is difficult to acquire sharp intensity images in all scenarios.
Therefore, our research is based on low-spatial-resolution events and high-spatial-resolution
images with blurry intensity, in the aim of deblurring the image with the help of low-
resolution events.

There are some representative works related to event-based image deblurring [14,15].
Pan et al. [15] restored a high frame-rate sharp video by modeling the relationship between
the events and the blurry intensity images as a double integral, while Lin et al. [14] imple-
mented this physical model with a neural network and attained high performance in video
deblurring and interpolation. However, these methods aim to process the blurry intensity
images and events which are in the same spatial resolution. We find experimentally that
once the spatial resolution of events degrades, these methods’ performance rapidly declines
(as shown in Figure 1).

(a) Whole View

(b) Blur Image (c) LR Events (d) SR Events (e) HR Events

(f) Pan et al., 2019 (g) Lin et al., 2020 (h) Ours_DED (i) GT

Figure 1. Results of image deblurring when facing low-resolution events. Methods proposed
in [14,15] are presented in terms of their image deblurring potential and both of them aim to process
events and intensity images of the same resolution. (a) Whole View; (b) Blur Image; (c) LR Events;
(d) SR Events; (e) HR Events; (f) Pan et al., 2019; (g) Lin et al., 2020; (h) Ours_DED; (i) GT. When
they confront the events (c) whose spatial resolution is 4 times lower than that of the blurry image,
their performance becomes worse, as shown in (f,g). Facing these two kinds of degraded data, this
paper tends to update the intensity image and events alternately, and finally attains a higher quality
intensity image (h) and events (d).

Although both events and intensity images are degraded in our research, they still hold
significant information. Specifically, on the one hand, the events are considered as changes
between a sequence of latent images that lead to the blurring of the final image. Although
they are in low spatial resolution, they still own high-resolution temporal information (as
shown in Figure 2b), and the high-resolution temporal information is rather helpful for
image deblurring. On the other hand, events are triggered by the local edges of the scene
and it is possible to reconstruct high-resolution events with the assistance of high-resolution
intensity images. Therefore, we propose an alternately performed model for a deblurring
image aided by low-resolution events. This model mainly consists of two components: a
physical model-based Deblur network (DeblurNet) which takes events and blurry image as
inputs and aims to output a sharp high-resolution image; an EventSR network (EventSRNet)
which takes low-resolution events and the high-resolution intensity images attained by
DeblurNet as inputs and aims to derive the corresponding high-resolution events. Since
the spatial resolution of events affects the performance of image deblurring (as shown in
Figure 2a, the higher the spatial resolution of events, the better of image deblurring), we
sought to attain an even better sharp image by another DeblurNet. At this time, DeblurNet
takes the high-quality events generated by EventSRNet as input rather than the original
low-resolution events.



Electronics 2022, 11, 631 3 of 15

The main contributions of this method are as follows.

• It aims to deblur images with the help of by low-resolution events, which is more
practical;

• It proposes a model to explicitly restore the degraded intensity image and events by
considering the complementarity between them, and an alternated strategy is applied
to progressively promote the quality of the intensity image;

• Extensive evaluations of the synthetic GoPro [20] dataset and real RGB-DAVIS [19]
dataset show the effectiveness of the proposed method.

(a)

×1 ×2 ×4
(b)

Figure 2. (a) The image deblurring performance of EDI [15,21] and our method in a different setting,
in terms of PSRN; (b) The event sequence in a different spatial resolution. The first column is the
event sequence that was simulated with a video in GoPro [20] in the original spatial resolution
while the event sequences in the next two columns are simulated with the same video that has been
downsized to ×2 and ×4, respectively. This shows that events with low-resolution still hold as much
rich temporal information as the high-resolution events, which is very helpful for image deblurring.

2. Related Works
2.1. Event Enhancement

Since events captured by neuromorphic vision sensors are brightness changes of
scenes, they are highly sensitive to noise. In order to enhance the quality of events, some
previous works [22–24] have added an additional pre-processing operation implemented
by a spatiotemporal filter into sensors. Other works such as [25] preferred to fuse it into a
neural network optimized with motion consistency. Although all these works have shown
their advantages in event enhancement, they only focus on denoising and do not consider
the situation that the events are in a low spatial resolution. In contrast to previous works,
Wang et al. [19] proposed to obtain high-resolution and noise-robust events by joint filtering
low-resolution events with high-resolution intensity images. However, the high-resolution
intensity images required here are supposed to be very clear and sharp, or they will be
disabled in the algorithm. In reality, the assumption is too strong to implement because
of the existing low-frame rate cameras and moving scenes. Unlike these methods, our
work is based on low-spatial-resolution events and high-spatial-resolution images with
blurry intensity and aims to iteratively update events and intensity images with the help of
one another.

2.2. Event-Based Image Enhancement

Image enhancement aims to improve the image quality by removing blur, noise, or
increasing its resolution. Since event cameras have the advantages of a high dynamic
range, high temporal resolution, and low motion blur, there is increasing interest in en-
hancing the quality of images by event data. The method proposed by Wang et al. [26]
could directly reconstruct, restore, and super-resolve images from events by three GANs.
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Mostafavi et al. [27] proposed to reconstruct high-resolution intensity images from events
with the help of a flownet. The information used in both of these works are just events that
are brightness changes, without a base brightness, and the reconstructed images tend to be
miss-matched with the real world. Therefore, DAVIS, an event camera that can not only
capture events at a high temporal rate but also attain a sequence of low-frame-rate-intensity
images (denoted as APS), appears, and a lot of works started based on these events and APS.
Pan et al. [15] proposed an event-based double integral model for obtaining a high-frame-
rate video from events and a blurry intensity image and Lin et al. [14] implemented the
physical model proposed by [15] as a neural network, which achieved a high performance
in terms of video deblurring and interpolation. Moreover, Wang et al. [28] unified denoising,
deblurring, and super-resolution in one model by an event-enhanced degeneration model
and Zhang et al. [29] proposed a hybrid deblur net for image deblurring with learned
event representation. These methods have shown their advantage of image enhancement.
However, they are all adapted to the intensity images and the events that are in the same
and low spatial resolution. They have ignored the advantages (high spatial resolution) of
the frame-based camera and once the spatial resolution of events is lower than that of the
intensity images, the performance of these methods rapidly declines. Our method in this
work is based on the promising premise that events captured by event camera which are in
low-resolution and images captured by the conventional frame-based camera which are
blurry but have high spatial resolution can function alternately to provide a solution to
enhance the blurry intensity image and low-resolution events.

3. Method

This paper aimed to attain a blur-less and high-resolution intensity image with a
sequence of low-spatial-resolution events recorded by an event camera and a high-spatial-
resolution blurry intensity image captured by a frame-based camera. In order to make full
use of the complementarity between these two kinds of data, an alternately performed
model consisting of a Deblur network (DeblurNet) and an EventSR network (EventSRNet)
is proposed here. DeblurNet is used for deblurring with the help of events data that own
temporal information and an EventSR network (EventSRNet) used for enhancing event data
assisted by high spatial resolution intensity images with enriched structure information.
DeblurNet first produces a preliminary sharp image with original low-resolution events.
Then, EventSRNet enhances the quality of events with the generated preliminary sharp im-
age which potentially owns the rich structure information needed by low-resolution events.
Since high-quality events yield high-quality intensity images (as shown in Figure 2a), an-
other DeblurNet inputted with the enhanced events generated by EventSRNet is applied
for further attaining a better sharp intensity image.

This section aims to introduce the details of the proposed method, and at the beginning,
we will introduce the stacking method used in this paper in Section 3.1. Then, the details of
the architecture and its learning method will be introduced in Section 3.2 and Section 3.3,
respectively. The final part (Section 3.4) is the training procedure.

3.1. Representation of Event Data

In order to adapt the discrete event data to the conventional convolutional neural
network, we stack event data based on time which is similar to the SBT proposed in [12].
Specifically, the exposure time for collecting a blurry intensity image Ib is denoted as tb.
Then, events triggered during tb are separated into n parts. For the ith (i = 1, 2, . . . , n) part,
negative and positive events in the time interval [ (i−1)tb

n , itb
n ] are accumulated into two chan-

nels Ei
−(x, y) and Ei

+(x, y) for each pixel (x, y), respectively. That is, while e = (x, y, t, p):
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Ei
−(x, y) =

itb
n

∑
t= (i−1)tb

n

p, p = −1,

Ei
+(x, y) =

itb
n

∑
t= (i−1)tb

n

p, p = 1.

(2)

In conclusion, events for Ib can be expressed as E =
[
E1
−, E1

+, . . . , En
−, En

+

]
, and

E ∈ R2n×H×W , where H and W are the height and width of image Ib.

3.2. Architecture

The overview of the architecture is shown in Figure 3. It contains two DeblurNet
and one EventSRNet. The first DeblurNet aims to yield a preliminary sharp image with
the low-resolution events. This preliminary sharp image will be sent into the EventSRNet
to guide the enhancement of events with its rich structure information. Then, another
DeblurNet takes the enhanced events generated by EventSRNet to further enhance the
quality of the sharp image. Both DeblurNet and EventSRNet are implemented with neural
networks. The following was detailed in the introduction.

Deblur

Net

EventSR

Net

Deblur

Net
𝐈𝐛

𝐈𝐛

𝐈𝐬
𝟎

𝐄 𝐄𝐬𝐫

𝐄

𝐈𝐬
𝟏

𝐈𝐛

Figure 3. Framework of the proposed model. It contains two components: DeblurNet and EventSR-
Net. The whole reference process consists of three steps. The first step is to attain the preliminary
sharp intensity images I0

s from low-resolution events E and high-resolution blurry intensity image Ib.
The second step tends to promote the resolution of events E to Esr with the help of Ib and I0

s . Finally,
the super-resolved events Esr and Ib are sent into another DeblurNet for achieving a better sharp
intensity image.

3.2.1. DeblurNet

The method proposed by Lin et al. [14] has shown the efficiency of the event-based
convolutional neural network implemented with a physical model for video deblurring.
We tend to adopt this method for event-based image deblurring. Since the original model
is designed for video deblurring and interpolation, by abandoning the video-related com-
ponents, the IntegralNet implemented with an Unet [30] and a dynamic filter network [31]
remained as our DeblurNet. Only a blurry intensity image Ib and its events E which
occurred during tb are required as inputs. Therefore, the DeblurNet can be formulated as

I0
s = DeblurNet(Ib, E). (3)



Electronics 2022, 11, 631 6 of 15

3.2.2. EventSRNet

EventSRNet is implemented with a Unet with skip connections. For making full
use of the complementarity between intensity images and events, EventSRNet takes the
combination of a blurry intensity image Ib, events E, and the sharp image Is generated by
DeblurNet as input. Its goal is to generate a sequence of high spatial resolution events Esr.
This network can be formulated as

Esr = EventSRNet([Is, Ib, E]). (4)

More details of these two networks are provided in Appendix A.

3.2.3. Deblurring Refinement

For further achieving a high-quality intensity image, the super-resolved events and
blurry intensity image will be sent back into the DeblurNet, and it can be formulated as

I1
s = DeblurNet(Ib, Esr). (5)

3.3. Learning
3.3.1. DeblurNet Loss

DeblurNet is constrained with MSE loss:

Ld =
1

HW
(α‖I0

s − Î‖2 + β‖I1
s − Î‖2) (6)

where H and W are the height and width of high-resolution intensity images, respectively.
Î is the groundtruth of intensity images. α and β are the loss weight of the first deblurring
and the second deblurring.

3.3.2. EventSRNet Loss

Since the events are the records of brightness changes, they tend to be sparse, especially
when they have been stacked. Most values in E are zeros. Standard regression loss is not
appropriate for the learning of EventSRNet. For attaining a better convergence, we adopt
an asymmetric L1 loss rather than the standard L1 loss here. The asymmetric L1 loss will
pay more attention to the place where occurs events and pay less attention to the place that
has no brightness change. It can be formulated as

Le =
1

HW
(Le+ + γLe−) (7)

where:

Le+ = |Esr(x, y)− Ehr(x, y)|, Ehr(x, y) > 0

Le− = |Esr(x, y)|, Ehr(x, y) == 0
(8)

where (x, y) is the coordination of stacked events and Ehr is the high spatial resolution
events. While γ < 1, the place where no event has happened will apply less effect on Le.
In our experiments, γ = 0.1.

In conclusion, the whole loss function is:

L = Ld + θLe (9)

3.4. Training Procedure

There are three steps for training:

• Training the first DeblurNet with low-resolution events upsampled by bilinear inter-
polation and blurry intensity images. Here, α = 1.0, β = 0, and θ = 0;
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• Training EventSRNet with low-resolution events upsampled by bilinear interpolation,
blurry intensity image, and the preliminary sharp intensity image generated by the
first DeblurNet. Here, α = 0, β = 0, and θ = 1.0;

• Training the second DeblurNet with super-resolved events enhanced by EventSRNet
and blurry intensity images. Here, α = 0.1, β = 1.0, and θ = 1.0.

3.5. Experimental Settings

The proposed method is implemented on the basis of PyTorch [32] and optimized
with AdamW [33] whose momentum, momentum2, and weight decay are 0.9, 0.999, and
1 × 10−4. The first DeblurNet and EventSRNet are trained with a learning rate of 1 × 10−4

for 200 epochs, and then the learning rate descends to 1 × 10−5 for continually fine-tuning
for another 100 epochs. As for the second DeblurNet, since its parameters are initially
with the first DeblurNet, its learning rate is set to 10−5 and it only needs to be trained
for 80 epochs. In addition, our model is trained with the batch size and patch size of the
training dataset as 16 and 256× 256.

3.6. Datasets

We evaluate the proposed model with two datasets: GoPro [20] and RGB-DAVIS [19].
GoPro [20] is a widely used dataset for dynamic scene deblurring. It contains a total

of 33 scenes that have been split into a training set (22 scenes) and a test set (11 scenes). As
for every scene, it consists of a sequence of sharp images. To adapt it to our task which
requires a sequence of low-resolution events, a sequence of high-resolution events, a blurry
high-resolution intensity image, a sharp high-resolution intensity image, and a series of
operations have been applied to this dataset. Firstly, for attaining finer events and blurring
images, we increase the frame-rate of videos from 240 fps to 960 fps by an existing high-
performance video frame interpolation method proposed by Niklaus et al. [34]. Secondly,
(m− 1)× 4 + 1 (m is the number of sharp images before interpolation and m = 11 in this
paper) sharp images are fused into the blurry intensity image with the methods mentioned
in [20]. Thirdly, events between every two interpolated frames are simulated by an event
simulator ESIM [35]. The events generated with the original intensity images are considered
high-resolution events, while the low-resolution events are synthetic with the intensity
images degraded via bilinear interpolation. As such, we finally 2040 and 1101 samples in
the training set and test set, respectively.

RGB-DAVIS [19] is a real event dataset. It contains low-spatial-resolution events
captured by event cameras and high-spatial-resolution intensity images attained by con-
ventional frame-based camera. We used the same pipeline (including the video frame
interpolation, sharp image fusion, and ESIM simulation) described above to acquire the
additional high spatial resolution events and blurry intensity images. After simulating, we
split this dataset into a training set and a test set based on scenes. The training set contains
918 samples while the test set owns 230 samples. More details are shown in Appendix C.

4. Results and Analysis
4.1. Comparison with State-of-the-Art Methods

To validate the effectiveness of our proposed method aiming to perform image deblur-
ring aided by low-resolution events, we conducted experiments on the GoPro dataset and
the RGB-DAVIS dataset and compared them with state-of-the-art works about image de-
blurring, including EDI [24] and SRN [21]. As for the metric, we used PSRN and SSIM [36]
for the quantitative comparison of intensity images.

Note that EDI [24] only works for the events that have the same spatial resolution with
the intensity image. Therefore, the low-resolution events will be upsampled into the spatial
resolution of the intensity image by bilinear interpolation before sending them into this
model. Since this work aimed to perform video deblurring and interpolation, for adapting
the events to image deblurring, we choose the center frame as its deblurring output. As for
SRN [21], it was originally designed for image deblurring without events and the synthetic
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blurry images here are a little bit different from those released in [20] (the synthetic blurry
images here are harder than before for deblurring). For a fair comparison, we fine-tuned
SRN with our synthetic data to obtain a comparable result. In addition, for demonstrating
the basic ability of low-resolution events in the image deblurring task, we conducted an
experiment that simultaneously sends the combination of upsampled events and blurry
intensity images into SRN, and named it as SRN+. Since SRN is a relative heavy model that
aims to process three scale inputs, it is time-consuming. In order to save time, we adopted
the physical model-based methods proposed by [14] for DeblurNet. It is approximately
4-fold smaller than SRN, and it can achieve a comparable or even better performance for
event-based image deblurring. Here, we name the results generated in the first DeblurNet
as Ours_D, while we name the results generated in the second DeblurNet as Ours_DED.

The results of these methods on the GoPro dataset and RGB-DAVIS dataset are shown
in Tables 1 and 2, respectively. Figures 4 and 5 are the qualitative visualizations of some
examples in their test set. Each dataset contains two event settings. ×2 means that the
spatial resolution of the intensity image is two times that of its events and ×4 means that
the spatial resolution of the intensity image is four times that of its events. The proposed
method performs favorably against the existing methods on both settings. Since EDI is
optimized with a traditional algorithm, it cannot borrow useful information from sharp
intensity images or high-resolution events which are considered the supervisor in deep-
learning-based methods, regardless of the fact that its performance in PSRN or SSIM is
relatively low. The visualized results tend to be artifacts, especially when the resolution of
events is four times lower than the intensity images. We then observe SRN and SRN+. The
performance of SRN+ is greater than that of SRN by more than 1 dB in PSNR for both the
GoPro dataset and RGB-DAVIS dataset, which proves the effectiveness of the low-resolution
events for image deblurring. Ours_D, the results of our first DeblurNet, despite being
implemented with a smaller model, achieves a comparable or even better performance
than that of the deblurring image. Furthermore, by adding additional EventSRNet and
DeblurNet, Ours_DED attains even further performance enhancement. The visualized
results also appear more smooth and clear. We made a comparison between the different
event scale settings. It is obvious that a smaller resolution gap between the intensity image
and events means a higher image deblurring performance. This phenomenon reflects the
possibility of the performance promotion of image deblurring while enhancing the quality
of events. This also proves the effectiveness of our EventSRNet.

Table 1. Image deblurring results of GoPro in terms of average PSNR and SSIM. SRN and SRN+

represent the results of image deblurring without and with low-resolution events, respectively,
while Ours_D and Ours_DED represent the results of our method without and with EventSRNet,
respectively. This shows that the proposed method outperforms the methods from previous works
and image deblurring can benefit from low-spatial resolution events and event-enhancing operations.

Method EDI [15] SRN [21] SRN+ Ours_D Ours_DED

2×

PSRN 22.14 30.99 34.13 34.26 35.73
SSIM 0.8029 0.9446 0.9651 0.9630 0.9742

4×

PSRN 21.61 30.99 32.49 32.58 33.92
SSIM 0.7997 0.9446 0.9568 0.9570 0.9651

4.2. Ablation Study
4.2.1. Effectiveness of EventSRNet

EventSRNet takes low-resolution events, blurry image, and sharp image as inputs.
It not only tends to reconstruct high spatial resolution events from temporal information
in low-spatial-resolution events, but also from the structure information in the blurry
image and sharp image based on the assumption that local events are triggered with
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edges. Therefore, we conduct experiments with EventSRNet’s inputs in three settings: only
low-resolution events, low-resolution events and blurry image, and low-resolution events,
blurry image, and sharp images. The metric used for evaluating the quality of events is
MSE (mean squared error), which is better the smaller it is. The corresponding results are
shown in Table 3 and Figure 6. We can see that both the blurry image and sharp image are
useful for the enhancement of events. However, with only blurry images, the generated
events also tend to be blurry, while the sharp image can guide the events to be more clear.

4.2.2. Effectiveness of Asymmetric L1 Loss

Since the data structure of events is sparse, we adopted asymmetric L1 loss for the
optimization of EventSRNet. To evaluate the usefulness of this setting, we replace the
asymmetric L1 loss with normal L1 loss. Table 3 and Figure 6 are the results of event
enhancement learning with L1 loss (L1) and asymmetric L1 loss (AL1), in terms of MSE.
With low-resolution events, blurry image, and sharp image as inputs, the enhanced events
learning by L1 are clear but lose a lot of information that is not near the edges in the
intensity image. Asymmetric L1 loss can learn this sparse information well.

Table 2. Image deblurring results of RGB_DAVIS in terms of average PSNR and SSIM. SRN and
SRN+ represent the results of image deblurring without and with low-resolution events, respectively,
while Ours_D and Ours_DED represent the results of our method without and with EventSRNet,
respectively. This shows that the proposed method outperforms the methods from previous works
and image deblurring can benefit from the -spatial resolution events and event-enhancing operations.

Method EDI [15] SRN [21] SRN+ Ours_D Ours_DED

2×

PSRN 20.16 26.96 27.60 27.73 27.98
SSIM 0.7636 0.8792 0.8901 0.8927 0.9033

4×

PSRN 19.79 26.51 27.27 27.33 27.65
SSIM 0.7582 0.8756 0.8851 0.8874 0.8907

4× LR Events 4× SR Events 2× LR Events 2× SR Events HR Events

Blur SRN 4× Ours_DED 2× Ours_DED GT

Figure 4. Visual comparisons of image deblurring without events with 2× and 4× events. Obviously,
the results of image deblurring with events (2× Ours_DED and 4× Ours_DED) are better than
the result without events (SRN [21]), and the 2× spatial resolution events are better than the 4×
spatial resolution events.
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Blur GT LR Events SR Events HR Events

EDI SRN SRN+ Ours_D Ours_DED
PSNR: 16.22, SSIM: 0.5860 PSNR: 22.96, SSIM: 0.7714 PSNR: 26.27, SSIM: 0.8459 PSNR: 26.48, SSIM: 0.8497 PSNR: 27.87, SSIM: 0.8843

Blur GT LR Events SR Events HR Events

EDI SRN SRN+ Ours_D Ours_DED
PSNR: 16.27, SSIM: 0.5469 PSNR: 24.43, SSIM: 0.8112 PSNR: 27.23, SSIM: 0.8682 PSNR: 27.33, SSIM: 0.8687 PSNR: 28.77, SSIM: 0.8986

Blur GT LR Events SR Events HR Events

EDI SRN SRN+ Ours_D Ours_DED
PSNR: 18.74, SSIM: 0.7467 PSNR: 29.90, SSIM: 0.9045 PSNR: 32.44, SSIM: 0.9215 PSNR: 32.54, SSIM: 0.9236 PSNR: 33.07, SSIM: 0.9259

Blur GT LR Events SR Events HR Events

EDI SRN SRN+ Ours_D Ours_DED
PSNR: 11.62, SSIM: 0.5063 PSNR: 22.73, SSIM: 0.8091 PSNR: 24.88, SSIM: 0.8609 PSNR: 26.57, SSIM: 0.8792 PSNR: 26.80, SSIM: 0.8932

Figure 5. Visual comparisons of image deblurring on ×4 spatial resolution. Obviously, image



Electronics 2022, 11, 631 11 of 15

deburring takes benefits from the events, although they are in low spatial resolution (SRN and SRN+).
Furthermore, the enhancement of the event proposed in this paper can further improve the quality of
image deblurring (Ours_D and Ours_DED).

Table 3. The results of EventSRNet with different input settings and learning losses in terms of
MSE. These are tested on GoPro with the ×4 spatial resolution gap between intensity the image and
events. The guides from the sharp images and blurry images and the asymmetric L1 loss benefit the
enhancement of events.

Events Blurry Image Sharp Image L1 AL1 MSE
√

- - -
√

0.01964√ √
- -

√
0.01065√ √ √

-
√

0.00706√ √ √ √
- 0.01478

HR LR EBS_AL1

BE_AL1 E_AL1 EBS_L1

Figure 6. Visualization of EventSRNet learning with different settings. HR and LR are events captured
under ×1 and ×4 spatial resolution. ‘E’, ‘B’, and ‘S’ here mean that the inputs of EventSRNet contain
events, blurry images, and sharp image, respectively. ‘AL1’ and ‘L1’ mean learning EventSRNet
with asymmetric L1 loss and normal L1 loss. The proposed method with all EBS and AL1 tends to
obtain a clearer and more structured result. Without sharp images, BE_AL1 and E_AL1 appear blurry.
Furthermore, the result attained with L1 loss tends to lose information.

5. Conclusions

In contrast to previous single image deblurring works or low-resolution-event-based
image deblurring works, this work takes both the advantages and disadvantages of the
conventional frame-based camera and event camera into consideration and proposes to
deblur images with the help of low-resolution events. Although both events and intensity
images are degraded, the low spatial resolution events are still rich in temporal information
that is useful for image deblurring, and the intensity images have potential use in the
reconstruction of events. Therefore, this paper proposes an alternately performed model
for enhancing the quality of intensity images and events by exploiting the complementarity
between them. By firstly deblurring the image with state-of-the-art image deblurring
methods, we can obtain a reasonably sharp image for providing rich structure information
for the enhancement of events. The temporal information in the processed events will
further promote the quality of the image. Extensive experiments show the effectiveness of
the proposed method.
This work can be extended in several directions. The enhanced events can be further used
for many downstream tasks, such as object recognition, object detection, and segmentation.
Additionally, it can also be used for the frame interpolation of high-resolution video. We
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will thus consider further improving the quality of the events to make a contribution to
downstream tasks.
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Appendix A. Details of the Structures of DeblurNet and EventSRNet

Appendix A.1. DeblurNet

The framework of DeblurNet is shown in Figure A1. The methods proposed in [14,15] have
proven that a sharp image can be achieved by combining a blurry image and the double
integral of events. Therefore, similarly to [14], DeblurNet tends to extract the features of
events E with a skipped Unet [30] (the network in the bottom of Figure A1) and these
features work as the double integral of events which will be further combined with a blurry
image Ib for achieving the sharp image Is. Since events are triggered by the spatially
variant threshold, another branch (the network at the top of Figure A1) is designed for
generating a dynamic filter (DF). DF contains different filters for each position in feature
maps and by applying these filters to the feature of events, the final feature of events tends
to be more robust to the variant threshold. In this paper, the filter size K of the dynamic
filter is 5.

*

𝐈𝐛+E

𝐄

𝐼b

𝐈𝐬

C*K2

𝐃𝐅

Conv+2 Res. Blocks

𝐷𝑒Conv+2 Res. Blocks

Conv+2 Res. Blocks + Conv

Figure A1. Framework of DeblurNet.

Appendix A.2. EventSRNet

Since Unet [30] showed its advantages on image super-resolution, we also adopted a light-
weight Unet for events’ super-resolution. As shown in Figure A2, it takes the combination of
a sharp image Is, a blurry image Ib, and low-resolution events E as input, and which yields
as output a sequence of high-resolution events. The structure of EventSRNet is similar to
the events’ feature extractor in DeblurNet except for the branch about the dynamic filter.
It contains two downsampling steps and two upsampling steps, which are implemented
with convolution operation and deconvolution operation, respectively. The skips between
layers are implemented with concatenation.
For performance improvement, the Unet [30] used in our EventSRNet can be replaced with
other more powerful adapted networks, such as EDSR [37] and U-Net++ [38], though they
may result in additional power consumption. Once we replace the Unet with U-Net++, the
MSE of event ×4 super-resolution on GoPro drops from 0.00706 to 0.00627.
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Conv+2 Res. Blocks 𝐷𝑒Conv+2 Res. Blocks Conv+2 Res. Blocks + Conv

𝐈𝐬 + 𝐈𝐛+E
𝐄𝐬𝐫

Figure A2. Framework of EventSRNet.

Appendix B. Details of RGB-DAVIS Dataset

RGB-DAVIS [19] is a real-world event dataset. It includes 10 indoor scenes (named
Indoor1∼10) and 10 outdoor scenes (Outdoor1∼10)—a total of 20 scenes. Samples in
each scene contain a sequence of low-spatial-resolution events (180× 190) and a high-
spatial-resolution sharp image (1440 × 1520). It was collected by Wang et al. [19] and
originally used for denoising events and achieving the events’ super-resolution with tradi-
tional algorithm. In order to adapt it to our CNN-based model, we needed to split it into a
training set and test set, and synthetic high-resolution events and high-resolution blurry
images required by our method.
In this paper, we randomly selected 3 indoor scenes and 2 outdoor scenes out of these
20 scenes for the test set, and the remaining 15 scenes are used for training. The selected
scenes were Indoor2, Indoor4, Indoor7, Outdoor3, and Outdoor5.
Similarly to the GoPro [20] dataset, the synthetic procedure of RGB-DAVIS includes video
frame interpolation, sharp image fusion, and ESIM simulation, which were described in the
script. In contrast to GoPro, which needs to simulate low-resolution events, RGB-DAVIS
has real-world low-resolution events and what it needs to do is simulate the corresponding
high-resolution events and blurry images. The high-resolution blurry images are synthetic
by fusing (m− 1)× 4 + 1 (m is the number of sharp images before interpolation) sharp
frames downsampled from the original sharp images (the resolution of the original sharp
image is 8 times that of the resolution of the low-resolution events). Since the time between
two frames in RGB-DAVIS is longer than that in GoPro, m is set to 5 in RGB-DAVIS rather
than 11.

Appendix C. Evaluation of Generalization

For evaluating the generalization of the proposed method, we tested our model trained
with GoPro [20] on new data from Need for Speed [39] following the synthesized process
described in Section 3.6. The result is shown in Figure A3. It can also attain a reasonable
deblurring result.

Blur Ours_DED

Figure A3. Results of deblurring on Need for Speed [39] with the model trained with GoPro [20].
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