
����������
�������

Citation: Le, T.-S.; Tran, Q.-V.;

Nguyen, X.-L.; Lin, C.-Y. Solpen: An

Accurate 6-DOF Positioning Tool for

Vision-Guided Robotics. Electronics

2022, 11, 618. https://doi.org/

10.3390/electronics11040618

Academic Editor: Donghyeon Cho

Received: 27 December 2021

Accepted: 10 February 2022

Published: 17 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Solpen: An Accurate 6-DOF Positioning Tool for
Vision-Guided Robotics
Trung-Son Le 1 , Quoc-Viet Tran 2 , Xuan-Loc Nguyen 2 and Chyi-Yeu Lin 1,3,4,*

1 Department of Mechanical Engineering, National Taiwan University of Science and Technology,
Taipei City 106335, Taiwan; d10203810@mail.ntust.edu.tw

2 Solomon Technology Corp., Nei Hu District, Taipei 114061, Taiwan; quocviet09clc@gmail.com (Q.-V.T.);
loc_nguyen@solomon.com.tw (X.-L.N.)

3 Center for Cyber-Physical System, National Taiwan University of Science and Technology,
Taipei 10607, Taiwan

4 Taiwan Building Technology Center, National Taiwan University of Science and Technology,
Taipei 10607, Taiwan

* Correspondence: jerrylin@mail.ntust.edu.tw

Abstract: A robot trajectory teaching system with a vision-based positioning pen, which we called
Solpen, is developed to generate pose paths of six degrees of freedom (6-DoF) for vision-guided
robotics applications such as welding, cutting, painting, or polishing, which can achieve a millimeter
dynamic accuracy within a meter working distance from the camera. The system is simple and
requires only a 2D camera and the printed ArUco markers which are hand-glued on 31 surfaces of
the designed 3D-printed Solpen. Image processing techniques are implemented to remove noise and
sharpen the edge of the ArUco images and also enhance the contrast of the ArUco edge intensity
generated by the pyramid reconstruction. In addition, the least squares method is implemented to
optimize parameters for the center pose of the truncated Icosahedron center, and the vector of the
Solpen-tip. From dynamic experiments conducted with ChArUco board to verify exclusively the pen
performance, the developed system is robust within its working range, and achieves a minimum
axis-accuracy at approximately 0.8 mm.

Keywords: target tracking; bundle adjustment; optimization; image processing; human-computer
interaction; robot teaching

1. Introduction

In the demanding workflow of the robotics and manufacturing industry, the need
for a more natural human-robot interaction is rather high when increasingly-popular
complex tasking scenarios, including human-robot, and multi-robot collaboration, are
considered. A natural and efficient robot teaching method would alleviate the need for
current time-consuming robot programming effort. In addition, robot teleoperation in
disasters, rescue missions or toxic working environments are in demand. These applications
are not merely bound to conceptualization. In 2016, a Yaskawa Motoman SIA5D could be
accurately teleoperated by Kruusamae and his colleagues to thread needles of different
sizes [1]. Tsarouchi et al. [2] proposed a visual-based robot programming system using the
motion capture sensor Leap Motion Controller. Gesture vocabularies were designed to be
translated to robot primitive motion commands to program single and bi-manual robots.

Manou et al. demonstrated robot teaching by demonstration for robot seam welding,
deburring or cutting applications where the project deployed industry-grade photogram-
metry software and hardware to build the system [3]. A 6 degree-of-freedom flock-of-bird
magnetic sensor is used to allocate a hand-held teaching device and coded targets are
placed on the workpiece for its calibration. The research attempted to validate the accuracy
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by comparing the operator teaching path and robot executed path. However, this valida-
tion is solely conducted once with 5 trajectory points. Their implementation was mainly
restricted by the accuracy of the magnetic sensor, which is up to 1.8 mm in position.

2. Related Work

The research in [4] proposed a robot teaching method very closely related to our work
with regards to the type of interaction, which also relies on a pen whose pose is to be
replicated by the taught robot. However, our method differentiates from the customization
and the design of the overall vision-based pen pose detection whereas their method utilizes
a commercial motion capture system. More specifically, the proposed teaching system
includes a teach pen, motion capture markers on the pen, a motion capture camera, and a
pose estimation algorithm given in the hardware. They employ a Human-Computer
Interaction (HCI) evaluation scheme based on Fitts’ law to compare to more traditional
teaching systems. In the experiment, their system concluded to achieve an average error
of 1.3 mm.

With natural interaction frameworks and low-cost 3D sensors becoming popular, one
research paper [2] followed the trend to seek more natural human robot interaction by
building upon human gesture vocabulary using off-the-shelf and low cost 3D sensors
e.g., Microsoft Kinect, Leap Motion while the solution was built on the availability of
low-level gesture detection framework, e.g., OpenNI. The system was also integrated into
theROS middleware framework to facilitate future extensibility. However, the method
is more suitable for less accuracy demanding applications due to the noise susceptible
vision-based detection. The vocabulary, either from the body or hand gestures, is built from
6 primitive motions in the human frame including ±X,±Y,±Z. The system was evaluated
in a case study of the automobile industry to assemble a dashboard to a vehicle. The test
case includes four different operations and the recognition success rate reached more than
93%.

In [5,6], a robot teaching by demonstration framework is proposed to accomplish
an assembly sequence of several pick-and-place tasks. The scheme is made possible by
deploying multiple recent advances in the field including scene reconstruction, 3D object
recognition, and augmented reality (AR). More concretely, scene reconstruction allows
scene understanding, and 3D object recognition allocates workpieces in the working space.
An AR algorithm on the user mobile device enables virtual object interaction which in
turn defines the task sequence. The authors discussed in detail the proposed markerless
pipeline to define a trajectory using hand gestures in the follow-up work [6].

Arpen [7] represents a series of studies with a similar approach to a HCI. The pen is
designed with a cube shape, and the study is limited to six markers, with each adjacent pair
having a 90-degree angle. This results in a decrease in performance when only one marker
is within the view. Even when two markers are available, the large angle between adjacent
markers leads to a strong differentiation in light shading of the sides and, therefore, affects
the detection result. Nevertheless, their design verification aims at a user’s ease of use and
maneuvering efficiency.

The work of [8] is an astounding project that exhibits a convincing performance of
a 3D tracking pen with ArUco markers attached on a dodecahedron at its end. The pen
aims to accomplish normal writing with an achievable 250 fps captured by a 1.3 MP camera.
The system accuracy was extensively tested with an optical Coordinate Measurement
Machine (CMM) system and reached sub-millimeter precision. The validation also includes
trajectory tracking under different settings overlaid on the ground-truth trajectories. This
result convinced us to deploy to our robot trajectory training system. However, their design
limits the number of markers seen by the camera at each captured frame, which hinders the
system accuracy in critical applications. We explore an extension to this design, allowing
more markers to be seen. In addition, we utilize a distinct approach to evaluate the overall
accuracy without the need of an optical CMM system. Even though such a system can
offer a high accuracy guaranteed ground-truth, it unavoidably adds a significant cost to the
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development. We chose a statistics-based method for accuracy verification with validated
sub-millimeter results. The results are also empirically validated. In addition, we provide a
demo video as a Supplementary Material.

3. System Description
3.1. Bundle Adjustment

From [9], the authors aimed to bridge the gap between the concurrent research in
computer vision’s 3D reconstruction and related topics versus previous ones in photogram-
metry. The author spotted a repetitive reinvention of the know-how that had formed
the foundation of photogrammetry and theory of estimation long ago. Along with other
extensive works in photogrammetry such as [10], the authors revealed a lack of emphasis
on the evaluation and validation of the estimation process existing in common practice in
computer vision engineering.

In light of [9,10], it is beneficial to adopt know-hows from photogrammetry to form the
measures that assist practitioners to inspect and evaluate the results. Such a foundation has
been well-established in the quality control stage of a photogrammetry workflow. These
procedures, to some extent, still mostly involve expert ad-voc heuristics and experiences
to design specific workflow for a project. We also would like to point out such challenges,
specifically regarding the working project [9,10], which, however, undertook excellent work
in outlining the main topics and fundamental conceptions.

In [9], the term internal reliability is used to address the system’s ability to detect
and eliminate outliers which, in turn, is realized by robust estimation or classic outlier
detection. External reliability, on the other hand, is the ability of the system to withstand the
undetected outliers and still retain the estimation performance. Ref. [10] discussed similar
nomenclatures, but perhaps in a more concrete way. Diagnostics is the process to find and
identify deviations from the model assumptions. Robustness, in contrast, is the safeguarding
against deviations from the assumptions.

The author continues to classify diagnostics to internal and external diagnostics. Inter-
nal diagnostics, besides the aim to look for outliers, aims to find general model deviations,
and therefore includes both the mathematics model and noise model of the system, and the
tests to identify the causes. However, as pointed out, the math model deficiencies and
observation errors cannot be differentiated by internal diagnostics. External diagnostics as-
sumes the availability of ground truth data; therefore, it allows a distinction between model
deviations and observation errors which makes it possible to achieve stronger conclusions
on the estimated uncertainty, efficiency, and robustness of the estimation. A foremost test
that can be readily performed at an early development stage is the correctness check. This
can be conducted using a toy problem on simulated data to verify the implementation with
respect to theoretical assumptions.

3.2. Workflow Overview

The algorithm consists of two major phases for the 6-DoF reconstruction of the Icos-
apen tip: (1) approximate pose estimation (APE) phase and (2) dense pose refinement (DPR)
phase. Firstly, the Basler camera is fixed on a rigid frame and calibrated by the checkerboard
7× 9 (the squares side is 20 mm) to obtain the camera matrix and distortion coefficients.
We then conduct a video recording and apply both APE and DPR to obtain optimized
initial transformations from 31 detected ArUco faces to the center of the designed truncated
Icosahedron. From these optimized transformations, we implement the pen tip calibration
by rotating the pen tip around a fixed point as in Figure 1 to gather training points that
should be located on a spherical surface. The center of the sphere is trained and optimized
to identify its position in the camera coordinate from the spherical dataset. Finally, the pen
tip vector from the center of the Icosahedron is used to identify the pose of the pen tip in
the camera coordinate. The overall process is shown in Figure 1.
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Figure 1. System overview depicting the system components and workflow. The workflow starts
with an offline stage for pen calibration, including geometry (Geo cal) and pentip (Ptp cal), and an
online execution stage (Exec) for deployment. The main pen pose estimation module takes part in
each functioning stage.

3.3. Icosahedron Design

The Truncated IcosaHedron (Wikipedia contributors, “Truncated icosahedron”, Wikipedia,
The Free Encyclopedia, https://en.wikipedia.org/w/index.php?title=Truncated_icosahedr
on&oldid=1017030761 (accessed on 4 May 2021)) geometry is constructed from Icosahedron
(Wikipedia contributors, “Icosahedron”, Wikipedia, The Free Encyclopedia, https://en.wikip
edia.org/w/index.php?title=Icosahedron&oldid=1021031901 (accessed on 4 May 2021)) with
the 12 vertices truncated such that one-third of each edge is trimmed at each of both ends.
It generates a polyhedron consisting of 32 surfaces (12 pentagonal and 20 hexagonal faces),
60 vertices, and 90 edges. The coordinate of the truncated icosahedron is defined at the
center and vertices are a combination of 3D points belonging to the orthogonal rectangles
(0,±1,±3ϕ), (±1,±3ϕ, 0), (±3ϕ, 0,±1) and the orthogonal cuboids (±2,±(1 + 2ϕ),±ϕ),
(±(1 + 2ϕ),±ϕ,±2), (±ϕ,±2,±(1 + 2ϕ)) along with the orthogonal cuboids (±1,±(2 +
ϕ),±2ϕ), (±(2 + ϕ),±2ϕ, 1), (±2ϕ,±1,±(2 + ϕ)), where ϕ = (1 +

√
5)/2 is the golden

mean. Using ϕ2 = ϕ + 1 one verifies that all vertices are on a sphere, centered at the origin,
with the radius squared equal to 9ϕ + 10. The edges have a length of 2 mm. We scale edge
length into 25 mm for the proposed truncated Icosapen design as shown in Figure 2.

Figure 2. The truncated Icosahedron design with the relative transformations between the polygon
center’s coordinate system (c.s.) and each marker’s c.s.

https://en.wikipedia.org/w/index.php?title=Truncated_icosahedron&oldid=1017030761
https://en.wikipedia.org/w/index.php?title=Truncated_icosahedron&oldid=1017030761
https://en.wikipedia.org/w/index.php?title=Icosahedron&oldid=1021031901
https://en.wikipedia.org/w/index.php?title=Icosahedron&oldid=1021031901
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3.4. Define Aruco Marker Poses in Penta and Hexa-Polygon

ArUco markers were originally developed by S.Garrido-Jurado [11]. These markers are
highly reliable under occlusion when they are used in a set, e.g., ArUco, ChArUco board [12].
A single ArUco marker is a binary square composed of a wide black border and an internal
binary matrix to identify its identifier (ID). Currently, there are more than 25 dictionaries of
markers that are widely applied in various applications with different binary block sizes
(4× 4, 5× 5, 6× 6, 7× 7). The binary grid size of the marker type is proportional to the
possibility of the maximum number of generated markers. From truncated Icosahedron
design, a pentagonal surface is utilized to mount the pen, as shown in Figure 3, only
31 surfaces (11 pentagonal and 20 hexagonal faces) are available to glue markers. In this
study, the ArUco dictionary DICT_4X4_50 (grid 4× 4, the maximum generated marker
is 50) is used to generate markers with the IDs from 1 to 31. Since the edge length of
the truncated Icosahedron geometry is 25 mm, the real marker length is approximately
22 mm which is quite small to detect at a far distance. Therefore, the 4× 4 binary block
will increase the detail of the ArUco image at far distances compared to the others. The
center of each marker is aligned with the center of the pentagonal or hexagonal surfaces, as
shown in Figure 3. The full design of the Solpen Net is illustrated as Figure 4

Figure 3. Detail of ArUco marker inside the hexagonal (left) and pentagonal boundary (right).

Figure 4. Truncated Icosapen Net with ArUco Markers.

3.5. Image Enhancement/Processing Pipeline
Preprocessing Images

Since VR Icosapen is usually used to draw with a diverse range of moving speed
within a meter square working space of the Universal Robot (UR5), the image can be
blurred with fast motions or at a close distance that is out of the Depth-of-Field. This results
in a poor performance for localizing the poses of the ArUco markers. Moreover, image
noise is significantly increased around the edge of the ArUco markers at a far distance,
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resulting in incorrect corner detection. Therefore, removing noise and retaining sharp
image edges play a pivotal role in improving the accuracy of the pen tip pose estimation.

We first eliminate image blur by using an industry standard camera (Basler) that
can control the capturing exposure time and possess significantly less noise due to the
high quality image sensor to ensure the best image quality. A non-linear bilateral filter
is then implemented to further reduce noise and preserve the sharpness of the ArUco
markers’ edges. A typical spatial filtering applied on image I to obtain image IF is given by
Equation (1)

IF(x) =
∑xi∈Ω w(xi)I(x + xi)

∑xi∈Ω w(xi)
(1)

This is basically a weighted sum operation performed at each pixel location x with the
weight value w indexed from the neighboring pixel Ω. There are several choices for the
weight mask/kernel. The Gaussian kernel (shown in Figure 5) is a popular kernel.

Figure 5. Gaussian mask for kernel size 3.

A bilateral filter not only attenuates in spatial domain with weight ws but also in the
range/intensity domain by an additional term wr, and it is defined in Equation (2) below:

IBF(p) =
∑q∈Ω Iqwr

(
‖Iq − Ip‖

)
ws(‖q− p‖)

∑q∈Ω wr
(
‖Iq − Ip‖

)
ws(‖q− p‖)

(2)

where IBF is a filtered image by the bilateral filter; I is the source image; p are coordinates of
the current processing pixel to be filtered; Ω is the window kernel centering at p pixel, q are
the neighbouring pixels; wr and ws are the weight kernels for range and spatial domains
which are commonly chosen to be Gaussian kernels.

Since the kernels are Gaussian, the combined weight can be readily derived by expo-
nent multiplication (Equation (3))

wBF(p, q) = wrws = exp

(
−
‖Iq − Ip‖2

2σ2
r

− ‖q− p‖2

2σ2
s

)
(3)

where σr and σs are the variance which we chose to be a similar value 75 with a kernel size 5
in the implementation; Iq and Ip are the intensity of pixels p and q, respectively. Substitute
Equation (3) into Equation (1), and the formulation for a bilateral filter applied on an image
is as follows:

IBF(p) =
∑q∈Ω IqwBF(p, q)

∑q∈Ω wBF(p, q)
(4)

With the non-linear bilateral filter, the gradient at image edges is reserved better,
which could help to avoid false ArUco edges in an image. The false edges also cause the
presented APE approach to perform poorly due to the false corner detection of ArUco
markers. To tackle this issue, we generate a gradient at the edges of the ArUco markers by
extending zero paddings to the original ArUco marker. The original marker size is designed
with resolution 704× 704 and extended with padding to have the full resolution 800× 800
as shown in Figure 3. We then first build Gaussian Pyramid images of four levels (800× 800,
400× 400, 200× 200, 100× 100, 50× 50) from all 31 generated markers with a padding
extension and then reconstruct from the Gaussian Pyramid images to generate a blending
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effect at the edges of the ArUco markers. The detailed pyramid image reconstruction is
visualized in Figure 6.

Figure 6. Gaussian Pyramid Reconstruction with 3 levels for the ArUco marker (ID = 1).

The APE algorithm first estimates the approximate positions of four corners from each
detected ArUco marker. These corners are then used to interpolate the position of four
padding corners in order to enhance the contrast by normalizing the inside pixels into the
range (0–255). The Dense Pose Refinement (DPR) is then implemented so that the intensity
of gradient pixels at the detected ArUco edges are then aligned with the intensity pixels at
the edges of the generated pyramid reconstruction ArUco image to refine the accurate four
corners of each detected ArUco marker.

4. Pen Calibration
4.1. Pen Geometry Calibration with Bundle Adjustment

As the AR printing markers are attached to the pen surfaces, such an attachment process
might be carried out by manual work and is vulnerable to operational errors. In addition,
the pen shape formed by low cost manufacturing is also subject to errors. This overall
geometry error accounts for the 3D relative transformation error between the attached
markers. The error is estimated by using a reformulated Bundle Adjustment (BA) algorithm.

As we have already known, BA packed the estimation of structures, camera view
poses and its intrinsics together in the unknown. In our case, we finished camera calibration
in advance of BA procedure be cause the intrinsics calibration is a well-formed process of
its own and, therefore, it can be decoupled to avoid unnecessary complication.

In our scenario, the pen calibration has multiple modalities of prior knowledge to
take advantage of. The structures of the fiducial markers, namely its sizes and expected
arrangement are known at the early design stage. The camera view poses in the sequence
of image captures can also be estimated by pose estimation methods such as perspective-n-
points and can be used as initialization. These factors make it possible for the estimation to
achieve detailed structures with 3D poses of the calibrated markers.

Briefly, the BA algorithm estimates the unknown by relying on measurable equations
which are generally quantified by reprojection errors. More precisely, these reprojection
error equations are presented in Equation (5):

eij = pij −Π(cTp.pTm0 .M0) (5)

where eij are the reprojection errors, i = 1, ..., F is frame i-th index and F is total number
of frames; j = 1, ..., P is image point j-th index and P is total number of image points;
cTp is the coordinate transformation from pen c.s. to camera c.s.; pTm0 is the coordinate
transformation from marker-0 c.s. to pen c.s.; M0 is a model/marker point in marker-0 c.s.
Π is the pin-hole camera projection. Pen c.s. {p} is illustrated in Figure 1.

Equation (5) is assembled to form an optimization problem in which the unknown x
is the concatenated of the vectorized version of cTmk where k = 1, ..., K and K is the number
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of markers; or in set notation, the unknown is a set of homogeneous transformation
G = {cTmk}. This formulates Equation (6) as followed:

x∗ = arg min
x

∑
ij

eT
ijeij (6)

Equation (6) is therefore formed as a nonlinear least square problem and is solved by
an available optimization solver. The implementation of geometry calibration is facilitated
by the pipeline of Figure 7a.

(a) (b) (c)

Figure 7. System operation flowchart. (a) Geometry calibration. (b) Pen pose estimation module.
(c) Pentip calibration.

4.1.1. Approximate Pose Estimation (APE)

We rotate all possible views of the Solpen and simultaneously record 5000 frames
for geometry calibration. Similar to Bundle Adjustment, we first compute center poses of
the Icosahedron by multiplying the designed surface-to-center transformation matrices
with the detected poses of the corresponding ArUco marker poses. All center poses are
then clustered by the Euclidean distance to remove outlier centers. The inlier center poses
are then used to compute the averaging center pose (cam

centT
k) of the Icosahedron at frame

k. From the new averaging center pose, we optimize the all center-to-face transformation

matrices
f acej
cent Tk to minimize 3D reprojection errors of corners on the frame image k by using

the Least Square optimization as shown in Equation (7) below

min(F(e)) = min ∑
k

∑
j

∑
i

[
xk

i,j − π
(

cam
centT

k ∗cent
f acei

Tk ∗ Xk
i,j

)]
(7)

where xk
i,j and Xk

i,j are 2D and 3D corner i (i = 1, ..., 4) positions of frame k of the detected

marker j (j = 1, ..., 31). cent
f acei

Tk is the transformation matrix from the detected marker j to the
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center of the Icosahedron at frame k, and cam
centT

k is the transformation matrix of the center
pose of the Icosahedron in the 3D camera coordinate. π is the pinhole camera projection,
including intrinsic and distortion coefficients of the Basler after calibration.

4.1.2. Dense Pose Refinement (DPR)

All inlier corner points obtained from the APE approach are used to localize zero
paddings of the detected inlier ArUco markers by scaling with a factor as in the original
design shown in Figure 3. Normalization is first applied to scale min-max pixel values inside
zero-padding regions into range (0–255). The bilateral filter is then applied to remove noise
and to preserve a sharp edge with a gradient effect. These intensity pixels at the gradient
transition region are then aligned with the edge gradient pixels built up from the Gaussian
pyramid reconstruction so that the total error of intensity pixels is minimized.

From the center poses of the detected ArUco markers, the APE approach is first used
to remove outliers and find out the optimized transformation matrices from inlier center
poses to optimized center pose of the truncated Icosahedron. The pyramidal Lucas-Kanade
algorithm is then implemented to track the local frames containing ArUco markers for
boosting computational time. For generating gradient transition band at detected inlier
ArUco marker edges from white to black (255, 0 intensity value in gray image, respectively),
these local frames with zero padding extension are first normalized into 8-bit image format
(pixel value from 0–255) to enhance contrast before filtering with Bilateral filter.

Gaussian image reconstruction technique is also implemented on the designed markers
with zero paddings as shown in Figure 3 to generate a gradient transition band from
0 to 255 (black to white) at the edges of the ArUco images. We set upper and lower
thresholds of 60 and 160 to extract 2D and 3D pixel positions from the reconstructed images.
The corresponding intensities from these pixels are then used to align with the intensity
values extracted from the inference frames to refine poses of detected ArUco markers.

4.2. Pen Tip Calibration

To perform pentip calibration, we rotate the Solpen around a fixed hole while maintain-
ing the contact between the pentip and the hole and record a video for the whole motion.
Noting that this makes the hole function similar to a spherical joint. The position of the
icosahedron center over each recorded frame is expected to lie on a spherical surface, which
has its center located at the fixed hole. However, some of these center locations deviate largely
from the nominal sphere radius and are considered as outliers. This setting is suitable for a
RANSAC spherical fitting algorithm in order to remove outliers with a threshold distance
constraint and resolve for the sphere center and its radius. In more precise terms, each frame
provides the estimation of the icosahedron pose camTcent while the sphere fitting gives a
location vector camtpentip, which is converted to a homogeneous form camTpentip with identity
rotation, a sphere radius, and inlier flags.

centTi
pentip =cam T−1

cent.
camTpentip (8)

Noting the relation shown in Equation (8) is repeated for each estimation frame, we
leverage it to compute its inlier mean exclusively for the translation (Equation (9)) from the
inlier flags

cent t̄pentip = E(tr(centTi
pentip)) (9)

where E(.) is the mean operator, tr(.) is the translation of a homogeneous transformation,
and i is the frame index. Pen tip calibration is implemented with the pipeline of Figure 7c.

5. Evaluation of a Teaching Operation

With the aim of an efficient robot teaching device, our evaluation goals should involve
an actual use case of a robot teaching by an operator and, under such a circumstance,
the required accuracy can be attained regardless of the gross error of the overall system.
In this particular multistage setup, at stage (1), an operator would use the pen in a free and
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comfortable way to teach the robot performing a teaching trajectory τ∗0 . At stage (2), The
trajectory is captured and estimated by the camera to result in the teaching trajectory in
the camera c.s. τP

0 which consists of a sequence of poses {p0, p1, . . . , pN} where pi ∈ R4×4.
This estimation accumulates an error εP. At stage (3), the previous trajectory is transformed
to robot c.s. to have εrb

0 by the calibrated vision-to-robot (V2R) which is hindered by the
error εv2r. At stage (4), the robot is commanded to perform the given trajectory with its
attached tool (a TCP-calibrated Solpen) which likely has an error εTCP. At the final stage (5),
the executed robot trajectory is estimated by the algorithm to have trajectory in pen c.s. τP

1 .
The accuracy evaluation relies on the discrepancy between τP

0 and τP
1 at stage (5) under a

chosen metric. We picture this evaluation in the diagram in Figure 8.

Figure 8. Diagram of the dynamic evaluation.

6. Experiment Results

We divide the evaluation of our system into following stages: geometry calibration,
pentip calibration, inference accuracy including static noise and dynamic analysis. To facil-
itate the experiments, an industrial grade Basler acA1920-155um camera with 8 mm lens
is used. This camera configuration provides images with resolution of 1920× 1200. It has
a CMOS sensor with size 11.3 mm × 7.1 mm with a 1/1.2 in format. With fast motions of
the pen under an operator’s normal use, a light setup is necessary which we use a Skier
Sunray 200 CUBE dual color temperature LED light with 200 W power, 19,200 lm, the full
color temperature range can maintain the real 200 W brightness, high color rendering Color
Rendering Index (CRI) 95, color temperature 3000–5700 ◦K. A robot needs to replicate the
taught path which we deploy a Universal Robot UR5 robot weighing 18.4 kg, with a 5-kg
payload. Its reach is 850 mm and each joint range is from −360◦ to +360◦. The overall setup
is shown in Figure 9:
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Figure 9. Overall setup.

6.1. Vision to Robot Calibration

As can be seen in our setup, an industrial-grade CCD camera is placed looking towards
the working range. This is called eye-to-hand configuration. In common robot-vision appli-
cations, the camera(s) is used as a perception device to assist a robotic actuator to localize
the workpiece. Also, the perception is likely achieved in the camera coordinate frame which
requires a conversion to the actuator or the execution module frame. This is referred to as
vision-to-robot (V2R) calibration. Camera configurations generally include: (1) eye-to-hand:
the camera is attached to a fixed pole, looking towards the robot’s end-effector and the
workpiece; or (2) eye-in-hand: the camera is attached to the robot’s end-effector, looking
towards the workpiece [13]. The literature regarding vision-robot calibration can be quite
profound and has been extensively worked over the years since the 80s–90s. Well-known
work includes [14–17] and some recent reviews worth mentioning [18,19]. However, we do
not aim to resolve this problem in this work but instead refer readers to the comprehensive
research in this field.

To simplify the calibration of this conversion/transformation of coordinates, we lever-
aged the setup with the Solpen already attached to the robot’s end-effector and is calibrated
as the tool-center-point (TCP). This allows the knowledge of both the TCP/pentip locations
in robot c.s. and camera c.s. In such a scenario, the solution is the rigid transformation of
two sets of 3D points which we deploy a solid algorithm such as in [20]. We took seven
point pairs to calibrate the setup. Some of the snapshots on the calibration are shown in
Figure 10:
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(a) (b) (c) (d) (e) (f) (g)

Figure 10. Vision-robot calibration leveraging Solpen. (a–g) The UR robot with Solpen attached as its
TCP is moved to seven points to collect calibration information.

6.2. Accuracy Evaluation

To perform pen calibration, we chose an optimal close-up distance within the focus
range to record two videos each one for geometry, and pen tip calibration. With the same
purpose to achieve the highest accuracy, the other environment/experiment setups are
configured to favour the achievable smallest gross error. Therefore, it also includes the
best light setup to minimize random errors in marker detection. The overall parameters
affecting this calibration can be listed as: working distance, image brightness (lens aperture,
exposure time, lighting), camera resolution. The exposure time is compromised between
motion blur and the necessary brightness.

6.2.1. Calibration Accuracy

For geometry calibration, the video is recorded in such a way that each of the markers
appears at least in one frame of the video for it to be calibrated. Also, since the operation
orients to optimum accuracy, the pen is not necessarily required to move the whole working
range of the field-of-view. However, in general, the pen can still move freely and this is
contrasted to the case of pentip calibration. In the latter calibration, the pen is moved freely
in terms of orientation with a requirement that its pentip is fixed in position. Regardless,
the working distance from the pen’s icosahedron to the camera is at an optimally close
range. To depict this process, please refer to Figure 11.

(a) ball center trajectory (b) pentip trajectory

Figure 11. Pen position trajectories w.r.t. robot base coordinate in geometry and pentip calibration.

To visualize the accuracy of pen calibration, we utilize the standard deviation of
the residuals at the optimized solution. This residual plot can assist to validate theoret-
ical assumptions when least square regression is deployed. The assumptions include:
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homoscedastic, zero-mean, bias, uniformity, or outliers, which Figure 12 has validated.
The figure shows these residual plots.

(a) geometry calibration (b) pentip calibration

Figure 12. residual plots for each stage of calibration.

In order to inspect more specifically the distribution of the residuals, we use box
plots in Figure 13, which also attempts to visualize the accuracy under different modes of
the estimation pipeline, namely, without DPR and without both APE and DPR. The plot
visualizes and affirms the effectiveness of the optimization stages of the estimation pipeline.
Namely, after pen calibration is done, when estimation is executed upon input streams
(i.e., “online” processing) and the full pipeline, i.e., having both APE and DPE merely
approximates the one with APE alone. The performance, however, decreases rather clearly
when both APE and DPR are not enabled (shown at the right most box of Figure 13).

Figure 13. Distribution of residuals in different mode of operations. The first two boxes show the
residuals of an offline calibration. The remaining three boxes show the norm errors of an online
execution at different operation modes. To facilitate an experiment with ground-truth for error
calculation, this online execution is collected from an experiment with ChArUco board.
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A timing test on the same recorded camera stream with 500 frames gives a processing
time of 185.6 s, 109.1 s, and 75.16 s accordingly for a full algorithm pipeline, one without
DPR, and one without both APE, DPR. Without DPR, as shown in Figure 13, the overall
algorithm does not significantly affect the estimation performance but the gain in processing
time is noticeable i.e., roughly 2 times as long. Such characteristics can be leveraged to
improve processing time in necessary scenarios.

6.2.2. Inference Accuracy

Inference accuracy verification can be more comprehensive since this test aims to verify
the method performance under varying working conditions within the operational range.
Here, we would parameterize the conditions of lighting, working distance, and scenarios
including static and dynamic.

Static noise: To perform static noise verification, the pen is placed in approximately
similar pose at varied working distances to the camera, i.e., 40 cm, 60 cm, 80 cm, and 100 cm
under varied intensity of light, i.e., 25, 50, 75, 100 (the lamp has an power intensity dial
knob with a hundred levels). The number of frames per sample is 2500. Here the focus is
placed upon the pen tip position since it is used as a tooltip.

As can be seen from Figure 14, within the working range less than 100 cm, lighting
plays a more significant role in estimation accuracy. The right-most column with 99% light
power generally exhibits the highest accuracy over all three axes and a reversed trend can
be seen in the weakest light power column. However, column-wise, accuracy improvement
is not obvious but rather shows a random behavior. Among the components, the error
in the Z-component appears to be more prevalent. Generally, at the most challenging
condition (100 cm, 25% light), the accuracy still achieves sub-millimeter [0.475, 0.189, 0.446].

Figure 14. Static noise analysis with varied light intensity levels (25%, 50%, 75%, 100%) and different
working distances (0.4, 0.6, 0.8, 1 m). The value is the standard deviation of each component of the
position vector. The table cells are color coded to visualize the trends and numeric values are in mm.

Dynamic performance: besides the static analysis where the pen tip is maintained
steadily at a fixed point, the accuracy of the pen when it is moved along a free trajectory
within its working range is also an interest. We provide two experiments: pen versus
ground-truth and pen versus robot teaching.

With a ground-truth: It is commonly agreed that a chessboard is a highly accurate
subject to perform 3D pose estimation and it is widely used for calibration in various
computer vision applications. Here, we take advantage of a variant of the chessboard, i.e., a
ChArUco board for the convenience of occlusion tolerance and still preserve the required
accuracy. To perform this experiment, the pen is attached to the board facilitated by an
external mechanism such that the pen tip is in contact with a corner of the board. Later,
the board-pen set is ready to move along an arbitrary path within the field of view of the
camera. The mechanical links to attach the pen and some discrete frames from the dynamic
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experiment videos can be seen in Figure 15. There are three tested trajectories and they
have translation mean norm errors 1.6 mm, 1.8 mm, and 0.8 mm respectively in Figure 16.

(a) (b) (c)

Figure 15. Dynamic experiments of ChArUco board versus Solpen. The setup and some discrete
frames (a–c).

(a)

(b)

Figure 16. Dynamic error analysis—trajectory of ChArUco board origin versus pentip. (a) Trajectory
illustration. (b) Dynamic error box plots for the trajectories. The first three box plots are the per-axis
errors and the last plot represents the norm error of the tests.

With robot teaching: For the purpose of robot guiding/teaching using the pen, it is
useful to validate the accuracy when the pen is in free motion within the working range to
form a trajectory which is later used to teach the robot. We collected three trajectories for
this test. The discussion for this validation was already covered in Section 6.2. Here we
briefly recap the main points. The pipeline, briefly speaking, starts with an operator to use
the pen and emulate a robot teaching trajectory. While the pen is being moved, its whole
motion is densely captured by the camera at a fast speed up to roughly 70 fps. A down-
sampling is applied to remove the noisy and redundant poses which also helps to smoothen
the trajectory. A sufficient down-sampling coarseness also alleviates the requirement to
solve the correspondence problem when calculating pose errors. The associating down
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sampled frames are used to estimate poses in camera c.s. To convert these poses to robot
c.s., a V2R transformation is applied on each pose (A). By then, the transformed poses are
ready to be executed by the robot. The robot with the attached pen whose tip emulates
the tool center point (TCP) performs the trajectory and this motion is again captured and
estimated by the algorithm to give robot execution poses in camera c.s. These poses are
then transformed to robot c.s. (B). Each pose pair in (A) and (B) forms a pose discrepancy
that contributes to the result of accuracy verification.

As shown in Figure 17a, the trajectory of command which was taught by an operator
and the trajectory of robot execution are plotted to visualize the discrepancy in a more
intuitive manner. The trajectories are drawn in such a way that they span widely and
randomly within the working range of the pen. As can be seen, the execution trajectories
closely track the previously taught trajectories. To inspect this error more carefully, box
plots are drawn for both translation and rotation errors in Figure 17b. The translation
errors are computed along each axis as εX = Xc − Xe; εY = Yc − Ye; εZ = Zc − Ze with e
represents execution and c does for command. Overall, the per-axis translation errors are
roughly 2.79 mm, 1.09 mm, and 1.44 mm respectively. The rotation errors are computed
from angle-axis formulation Rε = Rc.R−1

e with which a pure translation would have an
identity matrix Rε = I4×4. Otherwise, this error rotation matrix can be converted to a
rotation vector using the Rodrigues formula.

(a) Trajectory illustration.

(b) Dynamic error box plots for the trajectories.

Figure 17. Dynamic accuracy with Robot teaching—Illustrative trajectories and error box plots.
The box plots for three trajectories, each includes translation and rotation parts. Among the three
trajectories, the errors in X translation appears to be the largest with 3.7 mm for X2. The largest error
in Y belongs to Y2 at 1.1 mm, and Z2 also tops at 1.5 mm. The average of all trajectories per axis are
2.79 mm, 1.09 mm, and 1.44 mm for X, Y, and Z axis, respectively. For rotation, the error is slightly
higher than 0.1 deg.
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Image processing experiment: ArUco detection performance correlates with image pro-
cessing tuning and, therefore, has a direct effect on the overall system output. With the
ground-truth trajectory of the ChArUco board, which is available in Figure 16, we are
ready to conduct an ablation experiment that involves 7 filtering configurations bilateral
(bilat5 (number represents the kernel size)) [21], normalized box (blur5), Gaussian [22]
with 3 different kernel sizes (gaus3, gaus5, gaus7), median (medi5), and non-filtering (none).
The results are summarized in Figure 18. From the position error per axis at the first row,
it can be seen that the gaus methods and the bilat5 filtering generally perform better than
others, that is their average errors in X and Y axis are less than 0.3 mm. On the Z axis,
gaus7 has maximum error of 2.2 mm and bilateral filtering has minimum error of 1.4 mm.
Without the use of smoothing, the detection becomes unstable with large outliers and
standard deviation 14.56 mm (second row, middle bar plot). The average error in norm
has shown that bilat5 achieves a minimum error of 1.6 mm. However, its processing time
triples the gaus3 i.e., 90 ms vs. 30 ms.

Figure 18. Image processing ablation. The position error between the pen tip and the ChArUco board
origin is verified with multiple image filtering algorithms including bilateral (bilat5), normalized box
(blur5), Gaussian (gaus3, gaus5, gaus7), median (medi5), and without such blurring (none). The first
row depicts the average error per-axis using the box plots without outliers, whereas the second row
is reserved for the average norm error, i.e., all axes, standard deviation, and processing time.

7. Conclusions

We have demonstrated a robot trajectory teaching system which can achieve small
discrepancies between taught and executed paths. The project aims to alleviate the time-
consuming and unintuitive robot programming process when teaching an industrial robot
a desired path. A pen tracking algorithm and pen design are adapted and explored
to provide the required performance for highly precise applications. This research is
limited by a lack of comparative results with similar work. However, the authors found a
sparse population of such work where the researches slightly differ by either objectives,
approaches, or instruments, making direct comparison challenging. Instead, we provided
our results in comprehensive tests under a variety of settings in the experiment section.
For future development, a more thorough analysis and implementation of uncertainty
propagation under the lens of classic inverse problems could be a valuable topic. There is
also a potential direction to study in-depth the dynamics between two processing stage
APE and DPR which likely form distinct, and likely conflict, objectives of one optimization
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problem. In addition, theoretical validation methodology is applied to reduce development
cost but still provides comparable results.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/electronics11040618/s1, Video S1: demon video.
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