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Abstract: Novel resistant hierarchical fuzzy neural networks are proposed in this study and their
deep learning problems are investigated. These fuzzy neural networks can be used to model complex
controlled plants and can also be used as fuzzy controllers. In general, real-world data are usually
contaminated by outliers. These outliers may have undesirable or unpredictable influences on the
final learning machines. The correlations between the target and each of the predictors are utilized
to partition input variables into groups so that each group becomes the input variables of a fuzzy
system in each level of the hierarchical fuzzy neural network. In order to enhance the resistance of the
learning machines, we use the least trimmed squared error as the cost function. To test the resistance
of learning machines to adverse effects of outliers, we add at the output node some noise from three
different types of distributions, namely, normal, Laplace, and uniform distributions. Real-world
datasets are used to compare the performances of the proposed resistant hierarchical fuzzy neural
networks, resistant densely connected artificial neural networks, and densely connected artificial
neural networks without noise.

Keywords: fuzzy neural network; hierarchical fuzzy neural network; outlier; resistant learning
machine; deep learning

1. Introduction

No matter how the data are collected, the data at hand usually contain outliers. These
data points are well separated from the bulk of data points or deviate from the general
pattern of the data in some fashion. The outliers may have adverse or unpredictable
influence on the final discriminant or predictive functions. In the past, many methods
were proposed in statistical regression to address the problems with the outliers [1–6].
Regression is one of the major tasks in machine learning [7–10], and it is extensively
studied using various models. Regression is applied in science education, agriculture, and
signal processing [11–14]. The purpose of regression is to find the relationship between
input variables and output variables in a dataset. However, the presence of noise and
outliers changes the relationship. The main spirit of resistant regression is not to completely
discard the outliers in the dataset, but to reduce the influence of these outliers on the final
estimator. These robust regression problems were also investigated in the machine learning
field [15–19]. The resistant regressors using the least trimmed squares (LTS) approach is
particularly notable because of its simplicity and ease of use.

Fuzzy neural networks (FNNs) possess the advantages of both fuzzy systems [20,21]
and neural networks [22,23], do not require accurate mathematical models, and have good
learning ability which can approximate a wide range of nonlinear functions. FNNs have
been widely used as machine learning models to deal with regression problems [24,25].
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Next, we give a brief introduction to hierarchical fuzzy systems (HFSs) [26–30]. They
made their debut in the control field and were devised to solve the problem of the curse
of dimensionality (i.e., rule-explosion problem) in a fuzzy system. If a hierarchical fuzzy
system is represented as network architecture, it is called a hierarchical fuzzy neural
network (HFNN).

The main idea of HFSs is to appropriately partition input variables into groups so that
each group becomes inputs of a low-dimensional fuzzy system. Each lower-dimensional
fuzzy system is called a level in a hierarchical fuzzy system. Consider a simple hierarchical
fuzzy neural network as shown in Figure 1. It has five inputs, a single output, and three
levels. In this study, each low-dimensional fuzzy system will be replaced by an augmented
fuzzy neural network (AFNN). Unlike the standard fuzzy network which has only a single
hidden layer, an AFNN can have many hidden layers so that deep learning techniques can
readily be applied to machine learning problems. Moreover, to enhance the representing
power of the HFNN, each low-dimensional fuzzy system may have more than one output.

Figure 1. A simple hierarchical fuzzy neural network.

To the best of our knowledge, hierarchical fuzzy neural networks have never been
used as resistant learning machines in past research. Furthermore, there have only been
a few studies on traditional hierarchical fuzzy systems [28–30]. The authors proved the
universal approximation property of the hierarchical fuzzy systems. Roughly speaking,
this means that given a function g with some kind of smoothness property and a positive
constant ε, no matter how small, there is a hierarchical fuzzy system f (treated as a crisp
nonlinear map), with the number of fuzzy rules unrestricted, such that the maximum
absolute difference between g and f on a given compact set is less than ε. Of course, this
is an important property for any class of learning machines in successful application to
real problems. It should be noted that the low-dimensional fuzzy system in each level is
a Takagi–Sugeno–Kang (TSK) fuzzy system and the THEN parts of the fuzzy rules are
all crisp polynomial functions but not the usual linear functions in TSK models. In [30],
the authors developed a class of special hierarchical fuzzy systems where the outputs of
the previous layer are not used in the IF parts, but used only in the THEN parts of the
fuzzy rules of the current layer. This class of special hierarchical fuzzy systems also has the
universal approximation property. The goal of this study is to investigate the performance
of the proposed resistant hierarchical fuzzy neural networks against the adverse effect
induced by the outliers.
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2. Fuzzy Neural Networks

Consider a standard fuzzy system with n inputs and p outputs as shown in Figure 1
in [19]. Suppose the m fuzzy rules in the rule base are given in canonical form as

Rj: IF x1 is A1j and x2 is A2j and . . . and xn is Anj,
THEN y1 is Bj1 and y2 is Bj2 and . . . and yp is Bjp,

where j ∈ m = {1, 2, ..., m}. The input–output mapping of the fuzzy system with a
singleton fuzzifier, product inference engine, center-average defuzzifier, and Gaussian
membership functions for the fuzzy sets Aij can be written as [19]:

yk =

m
∑

j=1
wjk exp

[
−

n
∑

i=1

(
xi − cij

)2
/

σ2
ij

]
m
∑

j=1
exp

[
−

n
∑

i=1

(
xi − cij

)2
/

σ2
ij

] , k ∈ p,

x =
[

x1 ... xn
]T ∈ <n,

(1)

where, for i ∈ n, j ∈ m, and k ∈ p,
wjk: center of the normal fuzzy set Bjk
cij: center of the Gaussian fuzzy set Aij

σ2
ij: “variance” of the Gaussian fuzzy set Aij

In order to escape from the division by zero in (1), to satisfy the constraints σ2
ij > 0, and

to allow the learning machine to handle broader types of data, a better parameterization is
given by

yk = fok(x) = fok


m
∑

j=1
wjk exp

[
−

n
∑

i=1

(
xi − cij

)2 exp
(
vij
)]

m
∑

j=1
exp

[
−

n
∑

i=1

(
xi − cij

)2 exp
(
vij
)]

,

k ∈ p,

(2)

where vij = log
(

1
/

σ2
ij

)
and fok is the activation function of the kth output node.

For i ∈ n, j ∈ m, and k ∈ p, we define

uj =
n

∑
i=1

(
xi − cij

)2 exp
(
vij
)
,rj = exp

(
−uj

)
, (3a)

sk =
m

∑
j=1

wjkrj, g =
m

∑
j=1

rj, (3b)

then

yk = fok
(
sk
/

g
)
. (3c)

According to (3), the fuzzy system given in (2) can now be represented as a feedforward
neural network [19], called a fuzzy neural network (FNN), as shown schematically in
Figure 2. Note that there is only a single hidden layer in this neural network.



Electronics 2022, 11, 598 4 of 12

Figure 2. Fuzzy neural network with a single hidden layer.

As mentioned earlier, to enhance the learning capability or predictive power of the
proposed hierarchical fuzzy neural network model, it would be a good idea to allow many
hidden layers in a fuzzy neural network. In that case, we call it an augmented fuzzy neural
network (AFNN), which is shown schematically in Figure 3. In the hierarchical fuzzy
neural networks studied here, each low-dimensional fuzzy system will be replaced by an
AFNN.

Figure 3. Augmented fuzzy neural network.

3. Loss Function

There are many choices for the loss functions in the resistant machine learning problem.
In the following development, we will use the least trimmed squares (LTS) loss function.
The methodology by using other loss functions is similar and will not be repeated here.
Now, we briefly review the LTS loss function.

Let X ⊆ <n and Y ⊆ <. Suppose the training data are given by
S :=

{(
xq, dq

)}l
q=1 ⊆ X×Y.

Let yq, q ∈ l, denote the predicted response value corresponding to the predictor xq.
Then, its residual is defined by eq = dq − yq. The LTS approach to resistant regression is to
search for the connection weights cij, vij, wjk of the neural network so as to minimize the
following loss function:
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Jlts =
l

∑
q=1

a
[

R
(

e2
q

)]
e2

q,

where the score function a[·] (i.e., penalizing weight) is defined by

aq :=
{

1, 1 ≤ q ≤ l∗,
0, l∗ < q ≤ l,

and R
(

e2
q

)
is the rank (from the smallest to the largest) of e2

q in e2
1, . . . , e2

l . We call h =

(l − l∗)
/

l the trimming percentage. It is the most important design parameter in LTS
regression.

4. Partition of Input Variables

The biggest problem in using a hierarchical fuzzy neural network as a learning machine
is how to appropriately partition the input variables so that each group becomes inputs of a
low-dimensional fuzzy system. After several trials, we found that the correlation between
the target and each of the predictors, i.e., correlation coefficient, may reliably be used to
determine the input variables for the fuzzy neural network in each level of the hierarchical
fuzzy neural network under consideration. Once this is done, the following rules of thumb
may then be applied:

Rule 1: Correlation is measured in absolute value (i.e., magnitude).
Rule 2: Put the more correlated predictors in our hierarchical fuzzy neural network as early

as possible.
Rule 3: Variables with low correlation will not be used as predictors.
Rule 4: Predictors with about the same level of correlation may be collected in the same group.

5. Illustrative Examples

To better evaluate the performances of the resistant hierarchical fuzzy neural network,
the k-fold cross validation, one of the commonly used cross validation techniques, will be
employed. First, the given data are randomly partitioned into k parts which are roughly
equal in size. In each run of the method, one part is left as a validating set with the remaining
used as the training set. After training with the training set, the pre-specified performance
indicators of the validating set are computed. Those k values of the performance indicators
from the k runs are then averaged to give estimates of the performance indicators. In this
study, we use 10-fold cross validation (i.e., k = 10) and we take the median to average
the values of the performance indicators. The numerical variables in the dataset are
standardized before cross validation.

To test the robustness or resistance of the learning machine, we will add three kinds
of noise to the output of the training data. These are random samples drawn from the
following probability distributions:

(1) normal distribution: µ = 0, σ = 1.

f (x) = 1
σ
√

2π
exp

[
− 1

2

(
x−µ

σ

)2
]

, −∞ < x < ∞.

(2) Laplace distribution: µ = 0, b = 1.

f (x) = 1
2b exp

(
− |x−µ|

b

)
, −∞ < x < ∞ (b > 0).

(3) Uniform distribution: a = −1, b = 1.

f (x) =
{

1
/
(b− a), a ≤ x ≤ b,

0, otherwise.

The noise will not be added to the validating set.
In the following simulations using LTS loss function, we set the trimming percentage

to be 0.2.
One natural question is that can HFNNs compete with the state-of-the-art artificial

neural networks, e.g., densely connected artificial neural networks (DNNs)? Ten real-world
datasets described in Table 1 are used in this study to compare the performances of the
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LTS-HFNNs, LTS-DNNs, and DNNs without noise. These datasets can be loaded from the
UCI machine learning repository of the University of California at Irvine [31], LIBSVM of
National Taiwan University [32], and Kaggle [33].

For example, the first dataset shown in Table 1 is “Airfoil Self-Noise” from NASA
in the benchmark UCI. It is obtained from a series of aerodynamic and acoustic tests of
two- and three-dimensional airfoil blade sections conducted in an anechoic wind tunnel.
The number of instances (records) is 1503 and the number of attributes is 6. The five input
predictors are frequency, angle of attack, chord length, free-stream velocity, and suction
side displacement thickness. The only output is the scaled sound pressure level. In other
words, we are performing a 5-input/1-output regression task for this dataset. All other
datasets can be described similarly.

Table 1. Description of the datasets.

Dataset No. of Cases No. of Predictors Source

Airfoil self-noise 1503 5 UCI
Boston housing 506 13 Kaggle

Combined cycle power plant 9568 4 UCI
Concrete compressive strength 1030 8 UCI

Cpusmall 8192 12 LIBSVM
Mg 1385 6 LIBSVM

Parkinsons telemonitoring (motor UPDRS) 5875 16 UCI
Parkinsons telemonitoring (total UPDRS) 5875 16 UCI

QSAR fish toxicity 908 6 UCI
Space-GA 3107 6 LIBSVM

Next, we list the architecture of the HFNNs and DNNs, as shown in Table 2. For fair
comparison, the DNN in each of the following simulations is configured such that the
number of adjustable parameters of the DNN is about the same as that of the corresponding
HFNN. The integers in the parentheses of the second and third columns are the number of
adjustable parameters of the neural networks.

Example 1. First, we consider adding the output noise from the normal distribution. Table 3 shows
the 10-fold cross validated simulation results, where the values in parentheses are the standard
errors (i.e., standard deviations) of the performance indicators. In the simulations, three performance
indicators are used. In Table 3, “LOSS” denotes the value of the LTS loss function, “MSE” is the
mean squared error, and “MAE” is the mean absolute error. In the last column of the table, we
list the simulation results for DNNs without noise, where the loss function is the same as MSE.
Those values serve as goal values for LTS-HFNNs and LTS-DNNs. As observed in Table 3, for the
first dataset “Airfoil self-noise”, the MSE of LTS-HFNN is 0.2970 which is roughly the same as
that of LTS-DNN, 0.2916. Both are higher than that of DNN, 0.1039, since in this method there
are no Gaussian noises added on the output variable. One important statistic is the standard error
of the 10-fold cross validation. Those values are 0.0600, 0.3971, and 0.4019. Smaller standard
errors reveal more stable estimations. In fact, except for the “Boston housing” data, the proposed
LTS-HFNNs have smaller standard errors for the remaining 9 datasets. Roughly speaking, the
proposed LTS-HFNNs usually have slightly higher mean values of MSE and MAE, but smaller
standard errors.
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Table 2. Architecture of HFNNs and DNNs.

Dataset HFNN DNN

Airfoil self-noise
(1,4,3,2)
(4,4,3,2)
(4,4,3,1)

(159)

5-10-6-4-1
(159)

Boston housing
(3,4,3,2)
(5,4,3,2)
(6,4,3,1)
(5,4,3,1)

(269)

13-10-7-5-1
(263)

Combined cycle power plant
(1,4,3,2)
(3,4,3,2)
(4,4,3,1)

(151)

4-8-8-4-1
(153)

Concrete compressive
strength

(2,4,3,2)
(5,4,3,2)
(5,4,3,1)

(183)

8-8-7-5-1
(181)

Cpusmall
(2,4,3,2)
(6,4,3,2)
(6,4,3,2)
(4,4,3,1)

(261)

12-10-8-4-1
(259)

Mg
(2,4,3,2)
(4,4,3,2)
(4,4,3,1)

(167)

6-8-7-5-1
(165)

Parkinsons telemonitoring
(motor UPDRS)

(2,4,3,2)
(4,4,3,2)
(5,4,3,1)

(175)

16-6-5-5-1
(173)

Parkinsons telemonitoring
(total UPDRS)

(1,4,3,2)
(4,4,3,2)
(4,4,3,1)

(159)

16-6-5-3-1
(159)

QSAR fish toxicity
(1,4,3,2)
(4,4,3,2)
(3,4,3,2)
(4,4,3,1)

(213)

6-9-8-7-1
(214)

Space-GA
(1,4,3,2)
(3,4,3,2)
(5,4,3,2)
(3,4,3,1)

(213)

6-9-8-7-1
(214)
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Table 3. Simulation results in Example 1.

LTS-HFNN LTS-DNN DNN without Noise

Airfoil self-noise
LOSS 0.0919 (±0.0201) 0.0901 (±0.1667)
MSE 0.2970 (±0.0600) 0.2916 (±0.3971) 0.1039 (±0.4019)
MAE 0.4118 (±0.0410) 0.4022 (±0.2255) 0.2374 (±0.2563)

Boston housing
LOSS 0.3005 (±0.0691) 0.2220 (±0.0500)
MSE 0.9877 (±0.3232) 0.5845 (±0.2183) 0.1017 (±0.0981)
MAE 0.7745 (±0.0841) 0.5928 (±0.0817) 0.2359 (±0.0581)

Combined cycle power plant
LOSS 0.0260 (±0.0036) 0.0275 (±0.1481)
MSE 0.0734 (±0.0107) 0.0744 (±0.2897) 0.0570 (±0.4011)
MAE 0.2133 (±0.0124) 0.2144 (±0.2031) 0.1850 (±0.2910)

Concrete compressive
strength

LOSS 0.1481 (±0.0352) 0.1947 (±0.1487)
MSE 0.3964 (±0.0743) 0.4904 (±0.3362) 0.1393 (±0.2216)
MAE 0.4986 (±0.0478) 0.5574 (±0.1814) 0.2746 (±0.1489)

Cpusmall
LOSS 0.0330 (±0.0048) 0.0327 (±0.0248)
MSE 0.8737 (±0.1438) 0.1296 (±0.4685) 0.0253 (±0.0035)
MAE 0.3928 (±0.0343) 0.2518 (±0.1383) 0.1141 (±0.0062)
Mg

LOSS 0.1538 (±0.0211) 0.1507 (±0.1192)
MSE 0.4595 (±0.0747) 0.4139 (±0.2331) 0.2920 (±0.2131)
MAE 0.5262 (±0.0435) 0.5047 (±0.1335) 0.4157 (±0.1297)

Parkinsons telemonitoring
(motor UPDRS)

LOSS 0.3616 (±0.0319) 0.4102 (±0.0979)
MSE 0.9389 (±0.0684) 0.9262 (±0.1149) 0.7059 (±0.0996)
MAE 0.7757 (±0.0329) 0.7952 (±0.0801) 0.6746 (±0.0637)

Parkinsons telemonitoring
(total UPDRS)

LOSS 0.3333 (±0.0404) 0.3729 (±0.0578)
MSE 0.9158 (±0.0686) 0.9454 (±0.0937) 0.7011 (±0.1500)
MAE 0.7536 (±0.0393) 0.7744 (±0.0501) 0.6689 (±0.0728)

QSAR fish toxicity
LOSS 0.2175 (±0.0419) 0.2016 (±0.0671)
MSE 0.6589 (±0.1362) 0.6178 (±0.2001) 0.4719 (±0.1418)
MAE 0.6108 (±0.0463) 0.5904 (±0.0793) 0.4779 (±0.0923)

Space-GA
LOSS 0.1474 (±0.0276) 0.1145 (±0.0623)
MSE 0.5002 (±0.1766) 0.3512 (±0.1806) 0.2716 (±0.2544)
MAE 0.5074 (±0.0478) 0.4469 (±0.0890) 0.3911 (±0.1295)

Example 2. Next, we consider adding the output noise from the Laplace distribution. Table 4
shows the 10-fold cross validated simulation results. As observed in Table 4, the LOSS and MSE of
LTS-HFNN for 4 out of 10 datasets are slightly smaller than for LTS-DNN, and for the remaining 6
datasets they are slightly higher than for LTS-DNN. The MAE of LTS-HFNN for 3 out of 10 datasets
is smaller than for LTS-DNN, and for the remaining 7 datasets it is higher than for LTS-DNN. For
all LOSS, MSE, and MAE values, the standard errors of LTS-HFNN are obviously much smaller
than for LTS-DNN for all 10 datasets, except for MAE in “Boston housing”. In general, LTS-DNNs
have slightly smaller mean values of MSE and MAE, but larger standard errors.
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Table 4. Simulation results in Example 2.

LTS-HFNN LTS-DNN DNN without Noise

Airfoil self-noise
LOSS 0.1096 (±0.0273) 0.2661 (±0.1869)
MSE 0.3451 (±0.0621) 0.6195 (±0.4015) 0.1039 (±0.4019)
MAE 0.4478 (±0.0478) 0.6258 (±0.2294) 0.2374 (±0.2563)

Boston housing
LOSS 0.3600 (±0.1021) 0.2086 (±0.0765)
MSE 1.0135 (±0.2562) 0.8298 (±0.3050) 0.1017 (±0.0981)
MAE 0.7595 (±0.0897) 0.6845 (±0.0892) 0.2359 (±0.0581)

Combined cycle power plant
LOSS 0.0247 (±0.0016) 0.0265 (±0.1501)
MSE 0.0703 (±0.0057) 0.0711 (±0.2893) 0.0570 (±0.4011)
MAE 0.2041 (±0.0061) 0.2103 (±0.2067) 0.1850 (±0.2910)

Concrete compressive
strength

LOSS 0.1658 (±0.0425) 0.1507 (±0.1461)
MSE 0.4358 (±0.0972) 0.4265 (±0.3083) 0.1393 (±0.2216)
MAE 0.5256 (±0.0569) 0.5078 (±0.1754) 0.2746 (±0.1489)

Cpusmall
LOSS 0.0205 (±0.0063) 0.0217 (±0.0279)
MSE 0.4521 (±0.2958) 0.0929 (±0.4073) 0.0253 (±0.0035)
MAE 0.2949 (±0.0819) 0.2052 (±0.1373) 0.1141 (±0.0062)
Mg

LOSS 0.1449 (±0.0367) 0.1374 (±0.1370)
MSE 0.4620 (±0.0654) 0.3965 (±0.2542) 0.2920 (±0.2131)
MAE 0.5013 (±0.0443) 0.4823 (±0.1512) 0.4157 (±0.1297)

Parkinsons telemonitoring
(motor UPDRS)

LOSS 0.3612 (±0.0380) 0.3407 (±0.0875)
MSE 0.9004 (±0.0912) 0.8740 (±0.1118) 0.7059 (±0.0996)
MAE 0.7605 (±0.0387) 0.7441 (±0.0763) 0.6746 (±0.0637)

Parkinsons telemonitoring
(total UPDRS)

LOSS 0.3287 (±0.0300) 0.3946 (±0.0578)
MSE 0.8618 (±0.0619) 0.9758 (±0.0921) 0.7011 (±0.1500)
MAE 0.7409 (±0.0305) 0.7943 (±0.0489) 0.6689 (±0.0728)

QSAR fish toxicity
LOSS 0.2311 (±0.0651) 0.1886 (±0.1202)
MSE 0.7317 (±0.1558) 0.5801 (±0.2875) 0.4719 (±0.1418)
MAE 0.6655 (±0.0762) 0.5735 (±0.1287) 0.4779 (±0.0923)

Space-GA
LOSS 0.1379 (±0.0077) 0.1069 (±0.0862)
MSE 0.4689 (±0.1199) 0.3195 (±0.2381) 0.2716 (±0.2544)
MAE 0.5055 (±0.0152) 0.4410 (±0.1197) 0.3911 (±0.1295)

Example 3. Finally, we consider adding the output noise from the uniform distribution. Table 5
shows the 10-fold cross validated simulation results. As observed in Table 5, the LOSS of LTS-HFNN
for 6 out of 10 datasets are smaller than for LTS-DNN, and for the remaining 4 datasets it is higher
than for LTS-DNN. The MSE and MAE of LTS-HFNN for 8 out of 10 datasets are smaller than for
LTS-DNN, and for the remaining 2 datasets they are higher than for LTS-DNN. As in the previous
two examples, LTS-FNNs usually have slightly higher mean values of MSE and MAE, but smaller
standard errors.
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Table 5. Simulation results in Example 3.

LTS-HFNN LTS-DNN DNN without Noise

Airfoil self-noise
LOSS 0.0878 (±0.0127) 0.0801 (±0.1175)
MSE 0.2787 (±0.0543) 0.2720 (±0.2748) 0.1039 (±0.4019)
MAE 0.3961 (±0.0273) 0.3829 (±0.1545) 0.2374 (±0.2563)

Boston housing
LOSS 0.1799 (±0.0378) 0.1248 (±0.0521)
MSE 0.6684 (±0.2669) 0.4135 (±0.1432) 0.1017 (±0.0981)
MAE 0.5968 (±0.0777) 0.4861 (±0.0773) 0.2359 (±0.0581)

Combined cycle power plant
LOSS 0.0271 (±0.0019) 0.0295 (±0.1466)
MSE 0.0761 (±0.0063) 0.0780 (±0.3029) 0.0570 (±0.4011)
MAE 0.2155 (±0.0072) 0.2185 (±0.2044) 0.1850 (±0.2910)

Concrete compressive
strength

LOSS 0.1160 (±0.0262) 0.0897 (±0.1117)
MSE 0.3350 (±0.0706) 0.2479 (±0.2392) 0.1393 (±0.2216)
MAE 0.4414 (±0.0468) 0.3816 (±0.1371) 0.2746 (±0.1489)

Cpusmall
LOSS 0.0267 (±0.0062) 0.0311 (±0.0157)
MSE 0.8325 (±0.0999) 0.1182 (±0.3180) 0.0253 (±0.0035)
MAE 0.3724 (±0.0357) 0.2518 (±0.0899) 0.1141 (±0.0062)
Mg

LOSS 0.1213 (±0.0249) 0.1249 (±0.1376)
MSE 0.3826 (±0.0528) 0.3638 (±0.2730) 0.2920 (±0.2131)
MAE 0.4662 (±0.0338) 0.4643 (±0.1566) 0.4157 (±0.1297)

Parkinsons telemonitoring
(motor UPDRS)

LOSS 0.3412 (±0.0275) 0.2980 (±0.0684)
MSE 0.9623 (±0.0748) 0.8299 (±0.0921) 0.7059 (±0.0996)
MAE 0.7576 (±0.0291) 0.7097 (±0.0522) 0.6746 (±0.0637)

Parkinsons telemonitoring
(total UPDRS)

LOSS 0.3184 (±0.0318) 0.3892 (±0.0752)
MSE 0.9121 (±0.0766) 0.9835 (±0.1188) 0.7011 (±0.1500)
MAE 0.7326 (±0.0324) 0.7991 (±0.0644) 0.6689 (±0.0728)

QSAR fish toxicity
LOSS 0.1507 (±0.0441) 0.1246 (±0.0489)
MSE 0.4986 (±0.1436) 0.4540 (±0.1513) 0.4719 (±0.1418)
MAE 0.5347 (±0.0696) 0.5097 (±0.0838) 0.4779 (±0.0923)

Space-GA
LOSS 0.1224 (±0.0073) 0.0980 (±0.0114)
MSE 0.4284 (±0.0993) 0.2986 (±0.0790) 0.2716 (±0.2544)
MAE 0.4792 (±0.0176) 0.4196 (±0.0284) 0.3911 (±0.1295)

In the above three examples, we have shown the robustness of the proposed FNNs
through adding various types of noise to the datasets. In the simulations, we conducted
cross validations to calculate the means and standard deviations of the testing errors as
the performance indicators. As observed, the proposed LTS-HFNN and LTS-DNN both
exhibited very good robustness.

6. Conclusions

In this study, we proposed resistant hierarchical fuzzy neural networks and investi-
gated the associated deep learning problems. Correlations between the target and each of
the predictors, together with some rules of thumb, were utilized to partition input variables
into groups so that each group becomes the input variables of a fuzzy system in each
level of the hierarchical fuzzy neural network. The least trimmed squared error was used
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as the cost function in order to enhance the resistance of the hierarchical fuzzy neural
networks. Three different types of noise were added to the output node of the neural
network to test the resistance of the neural networks. From the simulation results, it seems
that the performance has very little connection with the types of the noise. The proposed
LTS-HFNN was compared with LTS-DNN, and DNN without noises was also taken for
comparison. Ten datasets were utilized for regression. Experimental results shows that
the added noises for LTS-HFNN and LTS-DNN increase the loss. Furthermore, LTS-FNNs
usually have slightly higher mean values of MSE and MAE, but smaller standard errors.
Smaller standard errors correspond to stronger robustness of the models. Sacrificing a
small accuracy for much stronger robustness is worth the cost when real-world datasets
have a certain number of outliers. Because of the proposed hierarchical structure together
with the augmented fuzzy neural units and the least trimmed squared error, robust fuzzy
neural networks are obtained in our works.

The most important future work of hierarchical fuzzy neural networks is to develop
more powerful techniques to partition the input variables. One immediate technique we
can think of is the decision tree. It may help us to appropriately partition the input variables
in a particular way. Moreover, the input variables used in earlier levels can also be used in
later levels. Another interesting topic is to investigate the resistance of hierarchical fuzzy
neural networks against the x-space outliers. These x-space outliers can be generated by
adding various types of noises in the input variables.
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Nomenclature

p p := {1, 2, · · · , p}
<n n-dimensional real space
X×Y Cartesian product of sets X and Y
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