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Abstract: Compressed sensing (CS) and its medical applications are active areas of research. In
this paper, we review recent works using deep learning method to solve CS problem for images or
medical imaging reconstruction including computed tomography (CT), magnetic resonance imaging
(MRI) and positron-emission tomography (PET). We propose a novel framework to unify traditional
iterative algorithms and deep learning approaches. In short, we define two projection operators
toward image prior and data consistency, respectively, and any reconstruction algorithm can be
decomposed to the two parts. Though deep learning methods can be divided into several categories,
they all satisfies the framework. We built the relationship between different reconstruction methods
of deep learning, and connect them to traditional methods through the proposed framework. It also
indicates that the key to solve CS problem and its medical applications is how to depict the image
prior. Based on the framework, we analyze the current deep learning methods and point out some
important directions of research in the future.

Keywords: compressed sensing; magnetic resonance imaging; computed tomography; positron
emission tomography; deep learning

1. Introduction

Compressed sensing (CS) is an important problem in signal process. It can be described
as reconstructing signal x from its measurement y where x ∈ Rn, y ∈ Rm, m < n and y is
obtained in the following form:

y = Ax + ε. (1)
A ∈ Rm×n defines the measuring system and ε is the noise. Reconstructing high

quality images or signals has been an active area of research and holds high value in many
applications, especially in medical imaging reconstruction such as computed tomography
(CT), magnetic resonance imaging (MRI) and positron-emission tomography (PET). In the
past two decades, traditional CS theory has been established to reconstruct x from y. Due to
m < n, solving the inverse problem is not easy. Based on sparsity of x, many optimization
algorithms were proposed to solve it. Though the traditional CS theory is pretty and
elegant, there are still some drawbacks. For example, classic algorithms usually take a
long time to solve the CS problem. Recently, deep learning—a data driven method—has
demonstrated tremendous success in many fields and there is a trend to use it to solve
the CS problem. Deep learning is a class of machine learning approaches that utilize
cascaded layers of linear and nonlinear functions to learn the complex mapping from data.
When networks go deeper with more parameters, its capability of learning features is
improved, which allows the deep network to learn complex functions directly from data
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without human-crafted features. The core of deep learning, deep neural network, dates
back to 1950s. Modern techniques, including improvements on optimization algorithm
(stachastic gradient descent (SGD), rectified linear units (ReLU), batch normalization,
dropout, shortcut connection et al.), more effective network architectures (convolutional
neural networks (CNN), recurrent neural networks (RNN), generative adversarial networks
(GAN)), the availability of large datasets and stronger computational power of hardware
(GPU and parallel computing), contribute to the tramendous success of deep learning. In
this review, we focus on the application of deep learning in the general CS problem and
three types of medical imaging—CT, MRI and PET.

Different from some other reviews [1] which divide deep learning methods into
several categories, we attempt to construct a unified framework to cover all these categories.
The analysis begins with the variational model and a simple algorithm. Usually, the object
of a variational model is to minimize the following function:

min
x

f (y, Ax) +
K

∑
i=1

λiRi(x). (2)

f (y, Ax) represents the data consistency and Ri (i = 1, . . . , K) are regularization terms.
For simplicity, suppose that there is only one regularization term and f (y, Ax) = ‖y−Ax‖2

2,
then Equation (2) can be written as follows:

min
x
‖y−Ax‖2

2 + λR(x). (3)

The common choice for R(x) is Total Variation [2] or ‖Wx‖1 where W is some linear
transform such as the wavelet transform. We use a simple iterative algorithm to solve
Equation (3). The iterative process can be written as follows:

x(k+ 1
2 ) = arg min

x
‖y−Ax‖2

2 +
∥∥∥x− x(k)

∥∥∥2

2
,

x(k+1) = arg min
x

λR(x) +
∥∥∥x− x(k+ 1

2 )
∥∥∥2

2
.

(4)

This algorithm contains two steps. By geometric analysis, the first step moves x to a
position closer to the hyperplane y = Ax and the second step moves x to a position with
lower value of R(x). If we regard the regularization term as a depiction of the manifold
of signals, the iterative algorithm derives a solution by alternatively moving x to the
hyperplane and the manifold. The movement of x is shown in Figure 1.

Figure 1. A simple algorithm to solve the variational model. Blue arrows stand for the first step of
iteration and the green arrows for the second one.
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From the Bayesian view, we can understand the role of regularization terms more
clearly and figure out what the solving algorithm do. Suppose ε ∼ N

(
0, σ2I

)
and the

prior distribution of x is p(x). Then we derive the logarithmic posterior probability of x
as follows:

log p(x | y) = −‖y−Ax‖2
2 + λ log p(x). (5)

Here, for simplicity, the coefficient of ‖y−Ax‖2
2 is neglected. If we apply a simple

first-order gradient method to maximize the posterior probability, the iteration will be in
the following form:

x(k+1) = x(k) + ηAH
(

y−Ax(k)
)
+ ηλ∇ log p

(
x(k)

)
(6)

where AH is the conjugate transposition matrix of A and η is the step length. It is easy to
verify that ηAH

(
y−Ax(k)

)
represents a direction toward the data consistency hyperplane

y = Ax and ηλ∇ log p
(

x(k)
)

toward higher prior probability. The geometric interpretation
is illustrated in Figure 2. We can see the similarity between the variational model and the
Bayesian model. In other words, regularization terms correspond to the representation of
logarithmic prior distribution of x. Thus, we have the following conjecture: the solving
algorithm of the CS problem is to search a solution that is in the intersection of the data
consistency and the prior information. It contains two parts. One is a “projection” operator
to the image prior and the other one is to the data consistency.

Figure 2. A simple algorithm to solve the Bayesian model. Two directions are denoted by blue and
green arrows. The dash lines of different colors are used to represent the area of different prior
probability. The probability value is from low to high when the color is changed from yellow to red.

Based on the geometric analysis of optimization algorithms, we can define a unified
framework for solving the CS problem. Since the typical signals in CS are images and
three applications reviewed here are medical imaging, we only discuss image signals
through the review. Let Mimage be the manifold representing the image prior and Mdc be
the solution space of the data consistency. We define Pimage as a transform that projects x
toward Mimage and Pdc as one projecting x toward Mdc. We claim that a solving algorithm
satisfies the framework F if it is composed of Pimages and Pdcs. Sometimes, Pimage can be
further decomposed into three transforms:

Pimage = Vx ◦ Px ◦ Ux, (7)
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where Ux : Rn → S,Px : S→ S,Vx : S→ Rn. Ux transforms an image to a defined space S;
Px defines the "projection" operator in S and Vx transforms the result back to the image
space. This decomposition means that the image prior can be depicted in space S rather
than Rn. For example, suppose the regularization term in the variational model is ‖Wx‖1
where W is a wavelet decomposition operator. Then Ux is the wavelet transform, Vx is the
inverse transform and Px can be the soft-thresholding function. We find that the solving
algorithms for the variational model or the Bayesian model satisfy F . Though F is very
simple, it is surprising that almost all deep learning methods solving the CS problem or its
applications also satisfy this framework. Thus, the framework F provides a perspective
to analysing solving algorithms. In addition, since CS belongs to inverse problems, this
framework can be expanded to other inverse problems such deblurring, inpainting, etc. as
long as we choose a feasible Pdc.

Our main contributions are as follows:

• We proposed a framework which unifies traditional iterative algorithms and deep
learning approaches for CS reconstruction and its medical applications.

• We reviewed many works on reconstruction of CS, CT, MRI and PET, and analyzed
them based on the proposed framework.

• Through the proposed framework, we built relationship between different reconstruc-
tion methods of deep learning and indicated that the key to solve CS problem and its
medical applications is how to depict the image prior.

In later sections, we also divide deep learning methods into different categories.
Nevertheless, the emphasis is to illustrate how these categories match the framework
F . This review is organized as follows. Section 2 describes deep learning methods used
in general CS. Some works for CT reconstruction are reviewed in Section 3. Section 4
surveys recent deep learning methods for MRI reconstruction. Then, we provide some
deep learning approaches for PET reconstruction in Section 5. Finally, we compare these
methods and discuss future directions in Section 6 and concludes the review in Section 7.

2. Deep Learning Methods for Compressed Sensing
2.1. Overview

In the general CS reconstruction problem, usually x is a natural image and A is a
Gaussian random matrix. In this section, we divide deep learning approaches into five
categories and analyze how each one matches framework F .

2.2. Model-Based Methods with Learnable Parts

The first category is model-based methods with learnable parameters. These methods
may be traced back to learned iterative shrinkage and thresholding algorithm (LISTA) [3].
Convolutional Neural Networks (CNN) or other neural networks are not used. Instead,
some pre-fixed parameters or functions in traditional algorithms are learned from training
data. Generally speaking, through loss function and back-propagation method, these
algorithms can be regarded as a trainable network [4–7]. Suppose the traditional algorithm
is Alg(·; θ) where θ is the pre-fix parameters. Then the reconstruction of it can be written
as Alg(y; θ) where y is the measurement. Let (xi, yi)

N
i=1 is the training set and L is the loss

function, then the training process is to optimize over θ by minθ ∑N
i=1

1
N L(Alg(yi; θ), xi)

where xi is the training label. Therefore, Alg(yi; θ) can be regarded as a trainable network
with learnable parameters θ. The purpose of applying data-driven scheme is diverse. Some
are to reduce computation cost, some to ascertain best parameters and some to make
regularization terms closer to the image prior. Since the overall form is not changed and
the original algorithm itself satisfies the framework F , these methods still consist of Pimages
and Pdcs and therefore match the framework F .

The authors of [4] proposed to replace the soft thresholding function in iterative
shrinkage and thresholding algorithm (ISTA) by other learnable non-linear functions. They
used cubic spline functions as basis functions and learned the weights ck. The alternative
function has the following form:
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ϕ(z) ,
K

∑
k=−K

ckψ
( z

∆
− k
)

, (8)

where ψ is the cubic spline function, ∆ is the granularity parameter and K is the number of
basis functions. Given fixed T iterations, L2 norm loss between final reconstruction results
and real images was used to train the weights ck. In addition, the authors of [5] not only
used Equation (8) but also trained the step length. Similarly, Gaussian kernel functions
were used as basis functions to replace the proximal operator in ISTA [8]. The shrinkage
function ψt(u) is written as follows:

ψt(u) =
K

∑
k=1

ct
kφk(u), where φk(u) = ue−

(k−1)u2

2τ2 . (9)

φk is the Gaussian kernel function and K is the number of basis functions and t is used
to represent different steps. To reduce number of learnable parameters, the authors of [6]
proposed to employ linear expansion of thresholds (LET) to substitute the soft thresholding
function. Besides, they considered fast ISTA (FISTA) instead of ISTA.

The authors of [7] proposed a novel network, ISTA-Net, which replace the linear
transform in the regularization term by a two-layer neural network. In original algorithm,
the second step of iteration is a proximal operator which has the following form:

proxλφ(r) = W> soft(Wr, λ). (10)

They used F(·) and F̃(·) (two-layer neural networks) to substitute W and W>. Since
W>W = I, the constraint of F̃ ◦ F = I is added to the loss function. It has the following
form:

Ltotal(Θ) = Ldiscrepancy + γLconstraint

=
1

Nb

Nb

∑
i=1

∥∥∥∥x(
Np)

i − xi

∥∥∥∥2

2
+

1
Nb

Nb

∑
i=1

Np

∑
k=1

∥∥∥F(k)
(

F(k)(xi)
)
− xi

∥∥∥2

2
, (11)

where Nb is the amount of data and Np is the number of iterations. The input of the network
is an initial reconstructed image. Based on ISTA-Net, they considered residual learning and
proposed a modified version ISTA-Net+.

A recent work [9] proposed to substitute the convolutional operator in transform
learning algorithm by a learnable convolutional layer with 3 × 3 kernels. The object
function is as follows:

min
x,αk
‖y−Φx‖2

2 + η
K

∑
k

{
‖Wk ∗ x− αk‖2

F + J(αk)
}

. (12)

The iterative process is shown as follows:
x =argmin

x
‖y−Φx‖2

2 + η
K

∑
k

{
‖Wk ∗ x− αk‖2

F

}
,

αk = argmin
α
‖Wk ∗ x− αk‖2

F + J(αk).
(13)

The first sub-problem can be solved by gradient methods:

x(t+1) = x(t) − δ

(
Φ>
(

Φx(t) − y
)
+ η

K

∑
k

(
W>k

(
Wkx(t) − α

(t+1)
k

)))
. (14)
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Under some assumptions, Equation (14) is simplified as a residual form:

x(t+1) ≈ ρx(t) + δx(0) + γx(t+1/2), (15)

where x(t+1/2) = ∑K
k W>k α

(t+1)
k . It is the output of the convolutional layer. Then, the un-

rolled iterative algorithm is changed to a network. Moreover, the measuring matrix is
replaced by a convolutional layer with m channels, L× L kernel size and s stride. The initial
reconstruction is computed by another convolutional layer. All the convolution parameters
are learnable.

There are some other works that belong to this category. The authors of [10] proposed
Iterative Firm Thresholding Algorithm (IFTA) to solve general inverse problem and set
most parameters to be learnable. In [11], the weights of proximal operator is obtained by
training. For low-rank tensor factor analysis approach, the authors of [12] used neural
networks to substitute the matrix computation.

2.3. Neural Networks as Image Projections

The second category is to directly use neural networks (or some deep learning modules)
as the Pimage. In this category, an initial reconstructed image is needed. In some works,
the initial reconstruction is contained in the beginning part of neural networks. At first,
the reconstruction model only contained one Pimage and no Pdc, just like a denoising model.
Later, more sophisticated networks were proposed and Pdc was included as one layer of
the model. When more than one Pimage and Pdc occur in the network, it has an unrolling
form similar to traditional iterative algorithms such as alternating direction method of
multipliers (ADMM), ISTA and denoising approximate message passing (D-AMP). It is
worth noting that when Pimage is represented by a neural network, the image prior is hidden.
In this category, networks can be regarded as substitutes for the original proximal operator
in iterative algorithms. Different algorithms lead to different form of networks. Generally
speaking, most improvements are about network architecture and loss function design.

The authors of [13] proposed to use a three-layer fully-connected network to recon-
struct image from measurements. The input of network is measurements and the output
is reconstructed images. Since fully-connected layers are used, the network is trained
with 32× 32 patches to reduce parameters. Correspondingly, the measurements are ob-
tained from image patches. Later, a convolutional neural network was applied in the same
manner [14]. The first layer of the CNN is still a fully-connected layer to transform the mea-
surement to image space. In this work, patches with size of 33× 33 were used for training.
In addition, block-matching and 3D filtering (BM3D) [15] is exploited as post-process to
overcome the blocky artifacts when reconstructed image patches are pieced together to
form the whole image. In [16], the first fully-connected layer of the CNN is replaced by
the transposition of measuring matrix. The CNN proposed by [17] contains not only the
reconstruction part but also the measuring part. One convolutional layer with nB channels,
B× B kernel size and B stride plays the role of measuring. It is followed by a convolutional
layer with B2 channels and 1 × 1 kernel size which is used to reconstruct image initially.
The output is then reshaped to the original image size. In fact, such measuring and initial
reconstructing manner is equivalent to block CS. However, it makes it possible that the
whole image can be fed into the network.

Residual structure [18] was applied to reconstruct image [19]. The first layer of the net-
work is a fully-connected layer to transform measurements into image space. The following
part contains several residual learning blocks. Similar to [14], patches are used for training
and BM3D is also exploited to remove blocky artefacts. The training scheme is composed of
two steps. Firstly, the fully-connected layer is trained using mean squared error (MSE) loss.
Then the whole network is trained in an end-to-end manner. The authors of [20] proposed
a similar method, but the measuring matrix is replaced by one fully-connected layer and
also trained together with other part of network. In [21], the BM3D module is substituted
by another residual convolutional block which is the combination of 11× 11, 1× 1, 7× 7
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convolutions and ReLU functions. Different from [19], in [22] the measuring and initial
reconstructing parts are convolutional and deconvolutional layers, respectively, so as to
reconstruct the whole image instead of patches.

The choice for loss functions is also explored in some works. Besides popular MSE
(L2 norm) loss, adversarial loss [23] is used when training networks [24]. It was proposed
firstly to train generative adversarial networks (GAN). The basic network architecture is an
analogy to the reconstruction part in [21]. Perceptual loss is exploited in [25] and structural
similarity (SSIM) loss is applied in [26]. All these loss functions are used to enhance the
quality of reconstructed images.

More works focus on how to design the network architecture to achieve better recon-
struction performance. A two-branch network was proposed by [27]. One branch utilizes
dense connection structures and the other one consists of residual blocks. Random sam-
pling scheme and fully-connected sampling scheme are all considered. Since it is based on
block CS, BM3D is also used to remove blocky artefacts after patch reconstruction. The au-
thors of [28] proposed a pyramid-structured adversarial network. In general CS problem,
reconstructed images have a fixed resolution. As long as the number of measurements
is insufficient, the reconstruction quality is unsatisfied. The idea of the pyramid network
is that the resolution of reconstructed images depends on the number of measurements.
A low-resolution image is reconstructed from fewer measurements while high resolution
ones are reconstructed from more measurements. Different levels of resolution correspond
to different sub-networks. The input of sub-networks is the reconstructed image from last
level and measurements.

Scalable sampling rates are considered in [29] and SCSNet was proposed. Measure-
ments are divided into groups and used as reconstructed information for different scales.
One group is used to reconstruct the low frequency part of images which corresponds to
the basic layer in network. Others are used to reconstruct the high frequency part corre-
sponding to enhanced layers (EL). Measurements are obtained from image patches by a
non-overlapping block convolutional layer. After initial reconstruction, a deep reconstruc-
tion network is applied to reconstruct the whole image. In this work, the MSE loss function
is applied to both initial reconstruction and final reconstruction.

A recent work exploited the idea that reconstructed signals can be decomposed into
two orthogonal parts [30]. One is in the null space of the measuring matrix H and the
other is in the pseudo-inverse space. Suppose the measurements satisfy yε = Hx + ε. x is
decomposed by x = Pr(x) +Pn(x) where Pr , H†H and Pn ,

(
ID −H†H

)
. Then we can

derive that x = H†yε + H†ε + Pn(x). The network consists of two parts which is used to
reconstruct the two signal components, respectively. The authors of [30] considered two
forms of architectures.

Multi-scale structures were utilized in [31]. There are three branches of sub-networks
with different convolutional kernel sizes to extract information of different scales. All
the sub-networks have residual blocks and non-local layers which are helpful for global
information extraction. At the beginning of training, three sub-networks are trained,
respectively, and non-local layers are neglected. Finally, the whole network is trained in an
end-to-end manner.

The works reviewed above are all about how to design a neural network as the Pimage,
and no Pdc is used. Some works generalize this approach to use neural network many
times and combine it with traditional iterative algorithms to form an unrolling architecture.
Since the Pdc is contained in iterative algorithms, the whole network is composed of many
Pimages and Pdcs. Usually, the Pdc retains the original form. In other word, in this approach
neural networks substitute the original Pimages of the iterative process. The role of Pimages in
unrolling methods is, in essence, the same to those that only use one Pimage. Therefore, any
network design mentioned above is also applicable. Some works train the Pimage network
beforehand, while others train the unrolled network in an end-to-end manner. As for the
concrete form of Pdc, gradient computation is used in some works while the proximal
operator is used in others.
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The authors of [32] proposed to train a projection network to replace proximal opera-
tors in the iterative algorithm. The purpose is to solve all the inverse problem, including CS
reconstruction. The projection network plays the role of Pimage and is trained beforehand. It
contains an auto-encoder P and two discriminators, D and D`. The input of auto-encoder
is a clean image or a perturbed one which is obtained by adding Gaussian noise. D is used
to discriminate the outputs of P while D` is for the encodes of P . The loss function has the
following form:

min
θP

∑
x∈M,v∼ f (x)

λ1‖x−P(x)‖2 + λ2‖x−P(v)‖2 + λ3‖v−P(v)‖2

−λ4 log(σ(D` ◦ E(v)))− λ5 log(σ(D ◦ P(v))), (16)

where x is a clean image, v is the perturbed one and E is the encoder of P . In this work,
ADMM algorithm is used and the trained projection network substitutes the first step
of iteration. The authors of [33] also proposed to use a neural network to represent the
proximal operator in ADMM algorithm. However, they utilized a denoising CNN with
residual structures and different noisy level are tested to attain the best performance.
Similarly, the proximal operator in proximal gradient method is replaced by a neural
network in [34]. The authors of [35] proposed to use a neural network as denoising model
in D-AMP algorithm. The modified D-AMP algorithm has the following form:

bt =
zt−1 div Dσ̂t−1

(
xt−1 + AHzt−1)
m

, (17)

zt = y−Axt + bt, (18)

σ̂t =

∥∥zt
∥∥

2√
m

, (19)

xt+1 = Dσ̂t

(
xt + AHzt

)
. (20)

where Dσ̂t−1 is the neural network. The D-AMP algorithm was also applied to block CS
reconstruction in [36]. The denoising model, i.e., Pimage is a DnCNN [37]. For efficiently
sampling, the sampling rate of patches depends on the salient value. Patches with the same
value are measured by the same measuring matrix which, specifically, is a convolutional
layer. Pdc is computed for patches while Pimage is computed for the whole image.

The authors of [38] proposed to treat a neural network as a regularization term.
The model is written as:

xrec = arg min
x
‖A(x)− b‖2

2︸ ︷︷ ︸
data consistency

+λ ‖Nw(x)‖2︸ ︷︷ ︸
regularization

. (21)

where Nw(x) = (I −Dw)(x) = x−Dw(x) and Dw(x) represents a neural network. Then
the unrolling architecture can be derived as follows:

xn+1 = arg min
x
‖A(x)− b‖2

2 + λ‖x− zn‖2, (22)

zn = Dw(xn). (23)

The first step corresponds to the Pdc to keep data consistency. While the neural network
Dw is the Pimage. To reduce parameters, weights of the denoiser in all iterations are shared.
The training scheme contains two stages. In the first stage, only one iteration is trained.
In the second stage, all the iterations with shared weights are trained together. A similar
approach was proposed in [39] and the authors hold a viewpoint that residual structure is
feasible to represent prior. The authors of [40] proposed an unrolling network based on
a primal-dual algorithm where proximal operators are replaced by a three-layer network
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with PReLU activation functions. An extra gradient method was unrolled in [41] and
Nesterov’s accelerated gradient method was utilized.

The authors of [42] proposed a Network-based PGD (NPGD) method to reconstruct
images from CS measurements. The Pimage in this work is not a denoising model, but a
composition of a GAN and its inverse network. Firstly, a trained GAN is used for depicting
image prior. The generator is denoted by G and its inverse network G† is trained to project
a image signal to the latent space of G. Thus, G ◦ G† plays the role of Pimage. The following
loss function was proposed to train G†,

L(θ) = Ez,ν

[∥∥∥G
(

G†
θ (G(z) + ν)

)
− G(z)

∥∥∥2
]
+Ez,ν

[
λ
∥∥∥G†

θ (G(z) + ν)− z
∥∥∥2
]

. (24)

Based on unrolling networks, some works focus on improvements of denoising mod-
els. The authors of [43] divided the model into three sub-models which are based on
MWCNN [44]. Each one deals with different levels of noise and their average output is
used finally. In addition, the input of sub-models is expanded in channels and each channel
keeps identical. Usually, the input of the Pimage is a corrupted image. However, in [45]
image is decomposed into several combinations of high frequency parts and corresponding
low frequency ones. Only high frequency ones are input. After denoising, the clean high
frequency parts are added to corresponding low frequency one. Finally, the average of
different combination is the output of the Pimage. Frequency decomposition is realized
through minimizing an object function consist of a total variation with different coefficients.
The coefficients control the frequency decomposition.

2.4. Latent Variable Search of Generative Models

The third category is the latent variable search of the generative model. The basic
idea is simple. Firstly, a generative model, such as GAN, is trained. Its output represents
the image prior manifold. Then, minimize a loss function, which usually corresponds
to the data consistency, by searching the latent variable. Generally speaking, the object
of CS reconstruction is to find a best image x. However, in this category of methods the
search of x is replaced by the search of latent space variable. Suppose the trained generative
model is G, latent variable is z, and data consistency is represented by ‖y−Ax‖2

2. Then
the optimization problem is as follows:

min
x
‖y−Ax‖2

2, s.t x = G(z). (25)

It can also be rewritten as follows:

min
z
‖y−AG(z)‖2

2. (26)

When the solution z∗ is obtained, reconstruction result is derived by G(z∗). At first
look, it is hard to verify that this method also satisfies framework F . Suppose that we
use a simple first order gradient method to solve Equation (26), we have the following
decomposition for each iteration by the chain rule:

z(k+1) = z(k) − η
∂
∥∥∥AG

(
z(k)

)
− y

∥∥∥2

2

∂z(k)
(27)

= z(k) − ηD(k+1)r(k+1), (28)

where r(k+1) =
∂‖AG(z(k))−y‖2

2
∂G(z(k))

, D(k+1) =
∂G(z(k))

∂z(k)
. In fact, the generative model represents

Mimage, and the composition of Pimage and Pdc can be represented by Pimage ◦ Pdc =

Vx ◦ Px ◦ Ux where Ux = G−1(x), Px = z− ηDr and Vx = G(z). Pdc is implied by the loss
function and is hidden in the derivative computation of r. Actually, r corresponds to Pdc.
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Figure 3 shows the movement of x. After computing r, the direction is limited to the latent
space by Dr. Then through the generative model, the limited direction corresponds to the
movement of x and Pimage is realized. Thus, this category also satisfies framework F .

Figure 3. An illustration for latent variable search of generative models. The dash line and scatter
points represent Mimage. The blue arrows stand for r and generative model limits the movement
direction of x in Mimage

This approach was firstly proposed in [46] and two theorems about the error upper
bound are given. An improvement was proposed by the authors of [47]. A sparse item is
added to correct the reconstruction. The object function has the following form:

min
z,v
‖v‖0, (29)

s.t. A(G(z) + v) = y. (30)

Then CS problem is solved by minimizing a non-constraint object function as follows
using a first-order gradient method:

min
z,v
‖v‖1 + λ‖A(G(z) + v)− y‖2

2. (31)

Here, zero norm is replaced by L1 norm. Another improvement in [48] is that the
latent variable is also optimized when training the GAN model. In other word, a set of
latent variable {ẑ(1), ẑ(2), . . . , ẑ(s)} is trained to satisfy that y(i) = AG(ẑ(i)). When training
data is insufficient, another discriminator is applied to discriminate measurements besides
the usual image discriminator. Auto-encoders and generative models are combined in [49].
Auto-encoders tend to effectively extract low-frequency structure of image while losing
details. GANs are good at generating images with fine details but may cause global
corruption. Thus, the fitting in measurement in Equation (26) is substituted by encode
fitting. In addition, ‖z‖2

2 is added as a regularization term.
Instead of first-order gradient method, ADMM algorithm is also used to solve

Equation (26). In [50], suppose there is a regularization of z denoted by H(z). Then the
object function is minx,z‖y−Φx‖2

2 + λH(z), s.t. x = G(z). The iteration has the following
form:

x(k+1) =
(

ΦTΦ + ρI
)−1(

ΦTy + ρ
(

G
(

z(k)
)
− µ(k)

))
, (32)

z(k+1) = arg min
z

λH(z) +
ρ

2

∥∥∥x(k+1) − G(z) + µ(k)
∥∥∥2

2
, (33)

µ(k+1) = µ(k) + x(k+1) − G
(

z(k+1)
)

. (34)

To solve the second step, a fully-connected network Gproj was proposed in [50]. It has
to be trained using pairs of (x̃, z) where x̃ is a noisy signal represented by x̃ = G(z) + ε.
Another trick in training the GAN is that each latent variable z is split into code-words
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c and “random-noise-like” variable γ, which is inspired from InfoGAN [51]. c is used to
control the semantic information and γ controls variation. A loss function that maximize
the mutual information between c and G(z) is included. The authors of [52] proposed a
new training strategy combining meta learning and generative model to accelerate the
search of latent variable.

2.5. Neural Networks Based Probability Models

The fourth category is to use neural network to represent prior distribution of images
and maximize the posterior probability. It is one of Bayesian models and the projection
direction of the Pimage and the Pdc are related to ∇x log p(x) and ∇x log p(y|x). Thus, this
category satisfies Framework F .

RIDE model was proposed in [53]. It combines a LSTM [54] model and Mixture of
Conditional Gaussian Scale Mixtures as image prior distribution. Then the gradient method
is used to solve the posterior distribution. Later, in [55] a PixelCNN [56] was applied to
represent image prior. Its model has the following form:

p(x) = p(x1, x2, . . . , xn2) =
n2

∏
i=1

p(xi|x<i)). (35)

2.6. Unsupervised Methods

Last category is unsupervised method. When there is no real image dataset, it is hard
to depict image prior. In [57], deep image prior (DIP) method was proposed. It was used to
solve some inverse problem not including CS. Later, DIP was applied to reconstruct image
from compressed measurements. Most of current unsupervised methods are based on it.
The basic idea is to use an untrained generative model and minimize the loss function of
data consistency over network parameters with fixed input z. DIP method is similar to the
category discussed in Section 2.4. However, Mimage is represented by an untrained network
itself instead of a trained generative model. In other words, image prior is depicted by the
output of generative model with fixed latent variable and learnable network parameters.
Searching in parameter space is analogue to searching in latent space. Thus, similar analysis
of Section 2.4 can be used to verify that this category also satisfies framework F .

The authors of [58] proposed to applied DIP method to solve CS reconstruction.
A regularization term is added to loss function which has the following form:

arg min
w
‖y−AG(z; w)‖2 + R(G(z; w), w; λT , λL), (36)

where R(G(z; w), w; λT , λL) = λTTV(G(z; w)) + λL(w− µ)TΣ−1(w− µ). µ and Σ are the
mean and covariance matrix of network parameters estimated by a few data. Total variation
regularization was used in [59] to help reconstruction. In [60], semi-supervised learning
was discussed. In Section 2.4, training a generative usually need a great deal of data.
The authors of [60] proposed a strategy to make a trade-off. In pre-train stage, network
parameters and latent variables are trained simultaneously with a combination of image L2
loss and kernel loss. The latter has the following form:

min
θ,z1,...,zS

1(
S
2

) ∑
i 6=i′

k(G(zi; θ), G(zi; θ)) +
1(
S
2

) ∑
j 6=j′

k
(

xj, xj′
)
− 2(

S
2

) k
(
G(zi; θ), xj

)
, (37)

where zi is the latent variable, θ is network parameters and S is the number of training
sample. In the reconstruction stage, latent variable is first optimized and then together with
network parameters.
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2.7. Discussion

In this section, we further explained different categories of deep learning methods by
our framework, especially latent variable search of generative models. We can observe a
trend from simple networks to complex and bigger ones. Among these methods, cascaded
networks, which serve as image projections perform best. While generative model or
probability model based methods are less comparable due to the unsatisfied performance of
generative models and probability model. However, they still have potential to be improved
in the future as more powerful generative models and probability models are proposed.

3. Deep Learning Methods for Computed Tomography
3.1. Overview

We mainly discuss sparse-view or limited angles CT reconstruction in this section. All
the works reviews here belong to the five categories of Section 2. Therefore, they must
satisfy framework F . The emphasis is to illustrate how they design Pimage and Pdc. It is
worthy of mention that the initial reconstruction is obtained by the FBP algorithm.

3.2. Model-Based Methods with Learnable Parts

There are few works belonging to this category. The authors of [61] proposed to
applied variational network to low-dose CT reconstruction. Fields of experts are used as
regularization term of variational model shown as follows:

Rc(u) = 〈1, φc(Kcu; Wc)〉 (38)

where u is a CT image, φc is a linear interpolation and Kc is a convolution. Kc and Wc
are learned by training. The network architecture corresponds to unrolling the first-order
gradient method:

ut = ut−1 − K>c φ′c(Kcut−1; Wc)− λc A>(Aut−1 − d). (39)

JSR-net [62] was proposed to solve limited angle CT reconstruction. It unrolled the
ADMM algorithm for JSR-model. The computation of two inverse matrices and the thresh-
olding function in JSR-model are replaced by neural networks. The former is substituted
by a three-level DenseNet with LM-ResNet structure and the latter by a three-layer convo-
lutional network. The object function of JSR model has the following form,

min
u,f

F(u, f, Y) + ‖λ1W1u‖1,2 + ‖λ2W2f‖1,2, (40)

where

F(u, f, Y) =
1
2
‖RΓc(f− Y)‖2 +

α

2
‖RΓ(Pu− f)‖2 +

γ

2
‖RΓc(Pu− Y)‖2, (41)

and Γc represents sampling angles.

3.3. Neural Networks as Image Projections

Most works of CT reconstruction using deep learning methods belong to this category.
The authors of [63] applied a fully-connected network to refine the middle result of tradi-
tional iterative algorithms. A three-layer CNN was used to low-dose CT reconstruction task
in [64,65]. The input of network is initial reconstruction of the FBP algorithm. The authors
of [66] proposed to applied a U-Net for reconstruction. Residual structures were considered
in [67]. Later, the authors of [68] proposed to add bypass connections and utilize the Haar
wavelet as down-sampling and up-sampling to improve the reconstruction.

Almost all of methods employ L2 or L1 norm loss of image. Some works also apply
other type of loss functions. Perceptual loss was used in [69]. Adversarial loss function was
exploited in [70]. A discriminator was used to help to refine the details of reconstruction by
adversarial training.
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Some works change the object of Pimage. It means that there are explicit Ux and Vx.
In [71], input of the U-Net is the result of wavelet decomposition of the initial reconstruction
image which purpose is to utilize multi-scale information. In other word, Ux and Vx is
related to wavelet decomposition and synthesis. Using sinogram measurements as network
inputs was proposed by [72]. For different angles of view, corresponding sinogram was
expand to a image by back projection and these images were stacked to form a tensor. Then
it was used as input of a 15-layer CNN. In this work, Ux is the process of sinogram and
Vx is merge into Px. In [73], interpolated sinogram was used as the input of a U-Net and
the output is the accurate sinogram. When output of network is obtained, FBP algorithm
is applied to compute the final reconstruction. In this method, Ux is the transform from
initial image to sinogram space, Vx is executed by the FBP algorithm and Px is the U-Net.
Thus, the projection operator is executed in sinogram space. This is an example illustrating
a difference between medical application and general CS problem. In fact, sinogram is
the measurement y and there exists a transform and its inverse between measurement
space and image space. We can also regard the method in [73] as a projection model
in measurement space. Similar to [73,74] used a U-Net to reconstruct under-sampled
sinogram. Besides, a discriminator and adversarial training was exploited in this work.
The input of the discriminator is the sinogram with limited angles and full-size output
of generative.

All the works mentioned above only consist of one Pimage and no Pdc. Similar methods
can be seen in [75–81]. Next, deep learning methods with more than one Pimage and Pdc
will be reviewed.

The authors of [82] considered a regularization term of Fields of Experts and used a
simple first-order gradient method to solve the object function. It has the following form:

xt+1 = xt −
(

λtAT(Axt − y
)
+

K

∑
k=1

(
Gt

k
)T

γt
k
(
Gt

kxt)), (42)

where ∑K
k=1
(
Gt

k
)T

γt
k
(
Gt

kxt) is related to Fields of Experts. This term was replaced by a
three-layer CNN which plays the role of the Pimage. Since Equation (42) is in an iterative
form, the network contains many Pimages and Pdcs.

The authors of [83] proposed to unroll the ADMM algorithm and added a regulariza-
tion term about sinogram to original object function. Thus, there are two types of Pimages.
The object function is shown as follows:

min
x,y

1
2
‖y− ŷ‖2

Σ−1
y

+
1
2
‖Ax− y‖2

Σ−1
x

+ λRy(y) + γRx(x). (43)

Though there is an explicit transform relationship between sinogram y and image x,
in the optimization task they are split to exploit λRy(y). The sinogram regularization is

Ry = 1
2 ∑j ∑m∈Nj

ωjm
(
yj − ym

)2. When the iteration is unrolled into a network, a ResNet
was applied to deal with γRx(x). Besides, L2 norm loss with weights (indicated by Σy and
Σx) was used for y and x. In [84], unrolling the ADMM network was also used. However,
proximal operator of the regularization term was substituted by a U-Net. In [85], a more
complex object function is solved by unrolling the ADMM network. The ADMM iteration
contains four proximal operators and they were all replaced by three-layer CNNs. That is
to say, both Pimages and Pdcs are represented by neural networks.

The authors of [86] used a denoising auto-encoder with soft-thresholding function
as Pimage and solved the Pdc by FISTA. In each stage, a cleaner image z is obtained by the
denoising model and FISTA is used to keep data fidelity of z. Because FISTA is not unrolled
into a network, the parameters in the Pimage cannot be trained in an end-to-end manner.
A stage-wise training scheme was proposed to solve the problem.

In [87], a proximal forward backward splitting algorithm was unrolled into a network
to reconstruct CT image. It is similar to ISTA network and the proximal operator is replaced
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by a CNN. However, instead of last iteration result, all iteration results before are used as
the input of CNN in next iteration. In addition, the pseudo-inverse of measuring matrix
rather than transposition is used to compute the Pdc.

Scale invariant property was exploited in [88]. It is combined with the unrolling
network. Specifically, the granularity in each iteration becomes finer and in last iteration
the original full measuring matrix is used. The iteration has the following form:{

fi = Λθi

(
f̃i,∇Di

(
f̃i; g
))

,
f̃i+1 = τi+1( fi),

(44)

where ∇Di( fi; g) := A∗i (Ai( fi)− πi(g)), Λθi corresponds to the Pimage and τi+1 is upsam-
pling operator. The multi-scale idea is similar to multi-level structure in U-Net. Thus,
the unrolling form is represented by a U-Net.

In [89], both CNNs and traditional algorithms are used to reconstruct CT image.
The methods are used alternatively to improve reconstruction. The recurrent scheme means
that there are two types of Pimage (CNNs and the regularization term in iterative algorithms)
and one type of Pdc. FBPConvNet is chosen as the neural network structure and PWLS-EP
or PWLS-ULTRA is the choice for the iterative algorithm. Similar to [86], the training
scheme is a stage-wise process.

Other deep learning method in unrolling form can be seen in [90,91] and etc.

3.4. Discussion

Most works on CT reconstruction are very close to solve a denoising problem. We
found that there are few works that focus on latent variable search of generative models or
probability model due to the complexity of the measurement matrix. How to design effec-
tive algorithm to combine generative models or probability models and CT reconstruction
is an interesting direction in this area.

4. Deep Learning Methods for Magnetic Resonance Imaging
4.1. Overview

In this section, we focus on under-sampled MRI reconstruction which is an important
application of CS reconstruction. Some properties of MRI reconstruction distinguish it
from other CS problem. Firstly, the image is in the field of complex number. In MRI
reconstruction, the measurement is called k-space coefficient which is, in fact, the result
of the Fourier transform of image. Thus, the measurement and image are represented by
complex number. The magnitude of image is used to show the image. For traditional
iterative methods, the operations of real number are easy generalized to complex number.
However, how to deal with complex number for neural network is a problem since it
is based on tensor operations. For most works using deep learning methods, complex
numbers are represented by two-channels tensors, i.e., any x ∈ Cn is regarded as in
R2n. This treatment is equivalent to regard complex number images as two-channel real
number images and all the computation is based on real numbers. Another kind of
method is to simultaneously keep the complex number operation and use two-channel
representation [92]. Secondly, there is a special imaging method called parallel imaging
which makes the linear model more complex. In parallel imaging, several coils are utilized
and each one corresponds to a k-space measurement, respectively. If every coil is under-
sampled, reconstruction images will be still of high quality while reducing scan time.
However, the acceleration of this method is limited. Combining with CS reconstruction can
further accelerate the scan. In addition, for each coil there is a sensitive matrix differing
in every scan and relating to the k-space measurements. The forward model has the
following form:

yi = ASix = MFSix, i = 1, 2, . . . , c, (45)

where A represents the Fourier transform F with under-sampled mask M, Si is sensitive
matrix for the ith coil and c is the number of coils. Since sensitive matrices are not fixed
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parameters, they have to be estimated when reconstruction. A common approach is to
estimate sensitive matrices beforehand using SENSE [93] or other algorithms and then
regard ASi as a fixed measuring matrix. Therefore, each coil has its own data consistency.
This is the main difference between single-coil imaging and parallel imaging.

Besides, it is worthy of mention that the Pdc in MRI has a very popular form as follows:

ŷj =

{
F(N (x))j, if j /∈ Ω,
F(N (x))j+λyj

1+λ , if j ∈ Ω.
(46)

where Ω is the sampled position, N (x) is the current reconstructed result and F is the
Fourier transform. λ is the weight to control the extent of data consistency. When λ = ∞,
original sampled k-space coefficients will be retained.

In later sections, deep learning methods will be also divided into several categories
and the criterion is the same to Section 2. Each categories will be further divided into
non-parallel imaging and parallel imaging sub-categories if necessary.

4.2. Model-Based Methods with Learnable Parts
4.2.1. Non-Parallel Imaging

In [94], the original objection function is as follows:

x̂ = arg min
x

{
1
2
‖Ax− y‖2

2 +
L

∑
l=1

λl g(Dlx)

}
. (47)

Based on ADMM algorithm, the linear transform Dl in regularization terms was
replaced by learnable convolutions and the shrinkage function in iterations was substituted
by a learnable piece-wise linear function. step lengths is also learnable parameters. Later,
the authors proposed another form of the ADMM network in [95]. Similar to [94,96] also
unrolled a ADMM network. Because the noise model is supposed to be symmetric α-stable,
therefore L1 norm loss is adopted. In practical terms, a smoothing term is used to replace
L1 norm. IFR-CS model was proposed in [97] which network architecture is based on [7].
Besides data consistency and proximal operator of the regularization term, a refine step
was added in the iterations.

4.2.2. Parallel Imaging

The authors of [98] proposed a variational network which is based on the Fields of
Experts model. The regularization term in this modelR(u) is ∑Nk

i=1〈Φi(Kiu), 1〉. The first-
order gradient method is used to solve the original object function which has the follow-
ing form:

ut+1 = ut −
Nk

∑
i=1

(
Kt

i
)>Φt′

i
(
Kt

i u
t)− λtA∗

(
Aut − y

)
, 0 ≤ t ≤ T − 1. (48)

All the parameters are learnable including K, Φi and λ. Φt′
i is represented by Gaussian

radius basis functions. As for sensitive matrices, they are estimated by ESPIRiT [99]
algorithm beforehand. The authors of [100] considered parallel imaging and their method
is similar to [94]. There are also some works such as [101–103] that can be put under
this category.

4.3. Neural Networks as Image Projections
4.3.1. Non-Parallel Imaging

The authors of [104] may be the first to apply deep learning in MRI reconstruction.
Their method is to train a three-layer CNN beforehand and use the network to reconstruct
image. Three ways were proposed in [104]. The first one is to minimize the following
object function:
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∥∥∥C
(

AHy; Θ̂
)
− x
∥∥∥2

2
+ λ‖y−Ax‖2

2 (49)

where C is the trained network. C plays the role of the Pimage and the minimization of
Equation (49) corresponds to Pdc. The second one is to add an extra regularization to
Equation (49). In the third way, the output of C

(
AHy; Θ̂

)
is used as the initial value for a

traditional CS reconstruction algorithm.
The authors of [105] proposed to reconstruct the magnitude and phase of image,

respectively. The network architecture is a U-Net with global residual learning. Since the
value of phase in noisy district is random and meaningless, magnitude network is trained
first to ascertain ROI and phase network is trained only in ROI.

The authors of [106] proposed to use conditional GAN to reconstruct MRI whose
generative network is U-Net. This method is, in essence, adding adversarial loss function
to train the Pimage. Besides MSE loss of images and adversarial loss, perceptual loss is also
used. The authors of [107] applied SSIM loss to dynamic MRI reconstruction. Later, in [108],
MSE loss of k-space is added. The authors of [109] proposed to utilize dense connection
structure in the bottleneck part of U-Net. The authors of [110] proposed to use adversarial
loss function in LSGAN [111]. In addition, the weighted average of L1 norm and L2 norm
loss function is utilized. To make training stable, the weight of adversarial loss is set to zero
at the beginning of training. Some works modified the structure of U-Net to improve the
reconstruction. In [112], convolutions of different sizes were exploited to extract multi-scale
information. The features extracted from different convolutions are fused to be the input of
the next layer. In [113], dilated convolutions were utilized and residual learning structure
was added in the bottleneck of the U-Net. In [114] two U-Nets with residual structures
were connected sequentially as the generative network.

Since Pdc is easy to implement, many works whose method contains only one Pimage
also add one Pdc to correct the reconstruction and keep data consistency. For example,
ref. [115] proposed to correct k-space coefficients after using a U-Net to reconstruct images.
Some works attempt to reconstruct both image and k-space coefficients. The authors of [116]
proposed to use a residual U-Net to reconstruct k-space coefficients and another U-Net for
images. These two networks are connected by the inverse of Fourier transform. Recon-
structing k-space coefficients is similar to reconstruct sinogram of CT, which is discussed in
Section 3. Thus, it corresponds to a Pimage which is defined in k-space. The authors of [117]
proposed to employ four networks for reconstruction which is named by KIKI-net. Two is
for images and two for k-space coefficients. The order is k-space, image, k-space and image
(KIKI). For each image network, Pdc is added to guarantee data consistency and connect
adjacent networks.

There are also many works utilize more than one Pimage and Pdc which form an un-
rolling network. Some works called it cascade structure because it is not necessary to be
derived from an iterative algorithm. However, they are similar in essence because of the
alternate order between Pimages and Pdcs. The authors of [118] proposed a network architec-
ture where CNNs and data consistency are connected alternately. Since the reconstruction
object is dynamic MRI, multi-frame images are trained simultaneously and 3D convolution
is used. In [119], the output of each CNN in the cascade networks are concatenated at last
and a convolutional layer is used to obtain the final reconstruction. The authors of [120]
combined neural networks and traditional ADMM algorithm. The training and inference
process are both in an ADMM iteration form. The authors of [121] proposed to unroll the
Chambolle–Pock algorithm and Pdc is also replaced by a four-layer CNN.

In addition, some works made innovations in network design. The authors of [122]
proposed to use dilated convolutions and share parameters in the cascade networks. Dense
connections were added to an unrolling network in [123]. The authors of [124] proposed to
use a cascade network for k-space reconstruction followed by a network for image.

Recent works considered other types of loss function. The authors of [125] considered
to use adversarial loss function and proposed a trick to balance different loss functions.
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In [126] perceptual loss was used. In addition, attention layers were applied to U-Net as
the Pimage. In [127], three cascade networks are connected sequentially and their output
is concatenated to the last convolutional layer. In each cascade network, convolutions
with different strides are used to utilized different scale information. Each network is
a RNN which is equivalent to an unrolling form network. In [128], multi-contrast MRI
reconstruction was considered and a convolution-shared network was proposed.

4.3.2. Parallel Imaging

The authors of [129] utilized a U-Net to reconstruct parallel imaging. WGAN [130]
was exploited in [131] and three sequentially connected U-Nets were used as the generator.
In training stage, MSE loss of image and k-space, adversarial loss and perceptual loss are
applied. The authors of [132] considered 3d MRI reconstruction. The proposed network
contains two parts, MS-net for feature extraction and RC-net for reconstruction.

As for methods of unrolling form, most works applied similar network architectures
in Section 4.3.1 and the main difference is on the Pdc since each coil has its own data
consistency equation. The authors of [133] unrolled a proximal gradient algorithm to a
network and applied it to 3d MRI reconstruction. CNNs are used to replace proximal
operators. A U-Net was used in [134] to substitute the proximal operator in the ADMM
algorithm. In [135], CNNs and data consistency layers are connected alternately and two
different process of multi-coil were considered. The authors of [136] proposed to unrolled a
first-order gradient method and the regularization term in object function is related to a
neural network. The authors of [137] applied the method in [43] to parallel MR imaging.
The authors of [138] proposed to utilized variable splitting algorithm. The object function
has the following form:

min
m,u,xi

λ

2

nc

∑
i=1
‖DFxi − yi‖2

2 +R(u) +
α

2

nc

∑
i=1
‖xi − Sim‖2

2 +
β

2
‖u−m‖2

2, (50)

where D is the sampling matrix and m is the reconstructed image. xi represents the the
result of image multiplying by the sensitive matrix of the ith coil. A denoiser network is

used to replace the computation of arg minu
β
2

∥∥∥u−mk
∥∥∥2

2
+R(u). In [139] complex number

operation was combined with neural networks. The authors of [140] proposed to jointly
estimate images and sensitive matrices in a unrolling network. The original object function
is as follows:

1
2 ∑

l
‖MFVl − yl‖2

2 +
ρ

2 ∑
l
‖Sl �U −Vl‖2

2 + β ∑
l

R(Sl) + λP(U), (51)

where U represents the image and Sl is the sensitive matrix. The proximal operator of R(Sl)
and P(U) of corresponding iteration are substituted by two sub-blocks and each sub-block
contains several sub-networks.

In order to guarantee the convergence of the unrolling network, ref. [141] proposed
to use a judgement condition to decide whether to receive the result of the neural net-
work Pimage.

Besides the reviewed works above, deep learning methods consisting of single Pimage
can be seen in [92,142–157], etc. Other unrolling form deep learning methods can be seen
in [158–170], etc.

4.4. Latent Variable Search of Generative Models

A recent work [171] belongs to this category, the purpose of which is to reconstruct
parallel imaging of MRI. First, a GAN is trained to generate MRI images. When reconstruct-
ing images, besides latent variable, parameters of generative network is also optimized.
The reconstruction process contains two stage. In the first stage, the following optimization
problem is solved:
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min
z∈Rd

1
2
‖AGθ(z)− y‖2, s.t. ‖z‖ ≤

√
d. (52)

Then, in the second stage, latent variable and parameters are both optimized:

min
(z,θ)∈Rd×Rl

1
2
‖AGθ(z)− y‖2, s.t. ‖z‖ ≤

√
d. (53)

In addition, the sensitive matrices are estimated by the ESPIRiT algorithm.

4.5. Neural Networks Based Probability Models

The authors of [172] proposed to estimate the prior distribution by a trained VAE [173]
and use it to optimize the Bayesian model through projection onto convex sets (POCS)
algorithm. PixelCNN++ [174] was used in [175] to represent the prior distribution and a
gradient-projection algorithm was applied to solved the Bayesian model.

4.6. Unsupervised Methods

In this category, most related works are based on the DIP method which has been
reviewed in Section 2.6. The authors of [176] used DIP directly and made no modification.
The authors of [177] applied it to dynamic MRI reconstruction and exploited linear interpo-
lation to obtain inputs of the network for continuous multi-frame images. Meanwhile, the
authors of [178] used measurements and zero-fill reconstruction as labels to train a network.
The loss function is similar to the one in DIP method and has the following form:

L(y, ŷ) = α‖y− ŷ‖1 + β‖Φy− S�Φ(x̂)‖1 + γ‖Iθ(y)− Iθ(ŷ)‖1. (54)

Here, y is not measurement but zero-fill reconstruction from under-sampled k-space
coefficients and ŷ is the reconstructed image. They are used as the input of the network
Iθ . x̂ is the output of Iθ ; S is the sampling matrix and Φ is Fourier transform. Besides the
DIP method, in [179] a novel loss function was designed to implement an unsupervised
training scheme. The under-sampled k-space index is divided into two groups which is
denoted by Ω = Θ ∪Λ. Correspondingly, measurement y and measuring matrix can also
be divided into (yΘ, EΘ) and (yΛ, EΛ). (yΛ, EΛ) is used as labels and (yΘ, EΘ) as training
inputs. Then the loss function has the following form:

1
N

N

∑
i=1
L
(

yi
Λ, Ei

Λ

(
f
(

yi
Θ, Ei

Θ; θ
)))

, (55)

where f represents the reconstruction algorithm. Though the method of [179] belongs to
unsupervised learning, f in this work is an unrolling form network which similar to the
ones reviewed in Section 4.3.

4.7. Discussion

Different from CT reconstruction, the measurement matrix in MRI reconstruction is
very simple (Fourier transform) and computable. Thus, it is more easy to propose various
categories of methods for reconstruction similar to CS reconstruction. We observed that re-
viewed works cover all the categories mentioned in Section 2 and many unrolling methods
were proposed. The trend of deep learning method is similar to CS reconstruction. How-
ever, the peculiarity of kspace data and parallel imaging distinguish MRI reconstruction
from other medical image reconstruction. The sensitive matrics in parallel imaging also
present a challenge for researchers.
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5. Deep Learning Methods for Positron-Emission Tomography
5.1. Overview

Positron-emission Tomography is another common medical imaging tool which uti-
lizes radioactive material. It needs some detectors to receive photons emitted by radioactive
element. To reduce the risk, the reconstruction from low-dose PET is desired. Different to
CT, the number of detectors is not decreased in most low-dose PET. Thus, in low-dose PET
reconstruction, the forward model somehow cannot be deemed as a compressed sensing
problem. However, many works that focus on the reconstruction of PET employ deep
learning methods similar to CS reconstruction. Those methods can also be classified as
some categories discussed in Section 2. Therefore, in this section, we still review some
related works of low-dose PET reconstruction.

5.2. Neural Networks as Image Projections

In [180], the initial reconstruction results are obtained by a traditional method with
different weights. Then the patches of those results are fed into a fully-connected network
to produce better reconstruction. The authors of [181] proposed to use a U-Net to transform
low-dose PET images to the ones of high quality. The global residual learning structure is
utilized and L1 norm is used as the loss function. In addition, several adjacent slices are the
input of network. The perceptual loss was exploited in [182]. The network is trained by
simulated data at first and then refined by real data. The authors of [183] proposed to use a
conditional WGAN to perform 3d reconstruction. The backbone of the generative network
is a U-Net and the input is a 3d low-dose PET image. At the beginning and final part of the
generative network, 3d convolutions are used while in the middle part 2d convolutions
are applied. The training scheme includes two stages. In the first stage, MSE and SSIM
loss are used to train the generative network, and in the second stage, adversarial loss
and perceptual loss are added to train the model. Similar to [183], in [184] a conditional
GAN was proposed. The generative network is a 3d U-Net and its input is patches of
low-dose PET images. Besides, a multi-GAN refinement treatment was proposed for better
performance. The output of former GAN is used as the input of the next one and each
GAN is trained one by one. Some works attempted to exploit other modality information
to help PET reconstruction. In [185,186], MR images are fed into network as extra input.
For PET, the measurement is also called sinogram since it is similar to CT. In some works it
is considered to be the input of networks rather than the initial reconstruction. The authors
of [187] used sinogram as the input of a conditional GAN whose generative network is still
a U-Net. The authors of [188] used it as the input of a CNN and preprocessed the sinogram
before feeding it to the network to reduce the effect of random noise.

Some works are proposed to utilize multiple networks or unroll an iterative algorithm.
The authors of [189] proposed a Learned Primal-Dual method which contains two types of
U-Nets: one for images and the other for sinogram. These U-Nets are ordered alternatively
and connected to each other through measuring matrix and its transposition. The authors
of [190] proposed to combine a denoising network and an iterative algorithm. A denoising
model DnCNN is trained in advance and added to the logarithmic likelihood function as a
regularization. The object function has the following form:

Nm

∑
i=1

[Ax]i + ri − yi log([Ax]i + ri) +
β

2
‖x− q� fw(x)− b‖2

2. (56)

Equation (56) is solved by ADMM after variable splitting. THhe authors of [191]
proposed MAPEM-Net which unrolls the ADMM algorithm. A U-Net is used to replace the
proximal operator of regularization term. The authors of [192] proposed to use a trained
conditional GAN as a constraint for the logarithmic likelihood function. The optimization
problem is as follows:

max
x,α
{ηL(y|Pα + s + r)) + L(y|Px + s + r))}, s.t., x = f(α), (57)
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where f represents the generative network and α is five slices of low-dose images. ADMM
algorithm is applied to solve it.

5.3. Latent Variable Search of Generative Models

The method proposed by [193] can be regarded to belong this category. However,
there is something different. In [193], the generative model is a denoising U-Net instead of
a GAN or VAE. After pre-training the network, it is used as a constraint for logarithmic
likelihood function. The optimization problem can be written as follows:

max
x

L(y|x), (58)

s.t. x = f (α), (59)

where L represents the likelihood function, f is the network and α is the input. It is solved
by ADMM algorithm.

5.4. Unsupervised Methods

In this part, most works also applied DIP method to PET reconstruction. Similar
to [193], in [194], a logarithmic likelihood function with a constraint that x is the output of a
network is the object function for optimization. However, the network is untrained and the
input is fixed. Then it turns to be a DIP-like problem. L-BFGS algorithm is used to solve it.
The authors of [195] applied an almost same framework for PET reconstruction except that
the input of network is replace by a related CT or MR image. The authors of [196] proposed
to combine DIP and non-negative matrix factorization to reconstruct dynamic PET images.
DIP is used for image representation and non-negative matrix factorization for controlling
temporal sparsity. The object function has the following form:

minimize
Θ,B

L := DKL

(
Y‖PABT

)
+ α
∥∥∥AT

∥∥∥2

p,2
+ β‖B‖2

QV, (60)

s.t. A = [a1, . . . , aR] ≥ 0, B ≥ 0, (61)

ar = φ(u|θr) ∈ [0, 1]Ni , (62)

‖ar‖∞ = 1 for r = 1, 2, . . . , R. (63)

For other works using DIP unsupervised method, the reader can refer to [197–199].

5.5. Discussion

Because the measuring model of PET is the most complex (Poisson noise and ill-posed
measurement matrix), it is hard to design Pdc and different unrolling methods. Therefore,
image domain is usually considered in PET reconstruction and it is often regarded as a
denoising problem using popular U-Net, which is somehow similar to CT reconstruction.

6. Discussion and Future Directions

We have reviewed many works of the deep learning application in CS, CT, MRI and
PET reconstruction. Though they are different in details, these works hold a common
character, satisfying framework F which is described in Section 1. In general, most neural
networks play the role of Pimage. Therefore, the reconstruction framework is the same to
traditional methods.

We may ask: what is the advantages of deep learning? In the framework F , Pimage
is the key part, because in most cases, the Pdc is easy to derive. Thus, the performance
of a reconstruction algorithm usually depends on the design of Pimage. For traditional
methods, Pimage is derived from a hand-designed image prior distribution or regularization
terms. Even if some method are similar to data-driven methods such as dictionary learning,
the L1 norm and the form of linear transform are determined in advance. The drawback
of the hand-designed model is that it may be insufficient or inaccurate to depict the real
prior distribution of signals. However, deep learning holds two advantages that make it
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successful. Firstly, it is data-driven. If a large dataset is available, the model can directly
utilize the distribution information hidden in training data. Secondly, it allow researchers
to design more complex and flexible model to better represent the image prior distribution.

However, deep learning also has a disadvantage that has not been solved well. In [200],
three tests were used to inspect the stability of deep learning. Several popular models are
compared to traditional methods. The results show that there is some instability problem
in deep learning, while there isstrong stability for traditional methods. The lack of training
data may be another handicap for medical applications.

Nevertheless, deep learning provides a powerful tool which can be used to learn
prior information from data. More specifically, there are three types of models proposed
in current research. Neural networks are used to depict Pimage, p(x) or Mimage directly.
Usually, a CNN denoising-like model is used to represent Pimage, the projection operator
(see Sections 2.3, 3.3, 4.3 and 5.2). In the MAP method, the network is exploited to compute
the prior distribution p(x) (see Sections 2.5 and 4.5). Generative models are utilized to
depict image manifold Mimage (see Sections 2.4, 4.4, 4.6, 5.3 and 5.4).

As for future research, how to design more efficient network is a clear direction. We
have seen three types of deep learning model. Which one is the best? What is the relation-
ship between different models, Pimage, Mimage and p(x). These questions have not been
answered. Actually, Pimage, Mimage and p(x) are different facets of one thing, the image
prior. Combining them all may a feasible way to design novel networks. The breakthrough
of deep learning theory ought to be helpful. It may tell us how a network plays the role
of Pimage or how it can represent a complex manifold. It can also provide new ideas to
train the model. In addition, the statistical properties of image or signal prior distribu-
tion can inspire researchers to design more feasible and robust network architectures.
For example, the property of multi-scale has been considered in many works. Few shot
learning, robustness of networks and computation efficiency are also worthy of attention.
Besides, the theoretical properties of deep learning reconstruction methods, including the
existence and uniqueness of solution and the convergence of algorithm, are important
research directions in the future. Another important issue discussed less in this review
is the measurement noise and artifacts, which will lead to noisy images in real life. It is
necessary to alleviate the effect of noise and artifacts. One of methods is pre–Processing of
these noisy images, for example, denoising using 1st and 2nd generation wavelets [201].
Readers can refer to [202] for more works about it. Security [203] and privacy-perserving
problem [204] are also important in image reconstruction, especially in medical image
reconstruction tasks. However, they have not been studied deeply. In addition, compressed
sensing, or inverse problem also exists in the area of surveillance [205], medical [206],
agriculture [207], speech [208] and telecommunications. Our proposed framework may be
helpful to inspire researchers to improve their works.

7. Conclusions

Deep learning has been proved to be successful in CS reconstruction. In this paper,
we review some works on it and its medical applications using deep learning methods.
A framework F is derived to better understand these approaches. We define two projection
operators toward image prior and data consistency, respectively, and any reconstruction
algorithm can be decomposed to the two parts. Based on it, several categories are analyzed
and relationship between them is built. It also helps us to connect deep learning methods
to traditional iterative algorithms. Our analysis illustrates that the key to solve CS problem
and its medical applications is how to depict the image prior to this. We hope that the
proposed framework and our observation may provide a new perspective to improve the
current work.
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