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Abstract: This study details the development of a lightweight and high performance model, targeting
real-time object detection. Several designed features were integrated into the proposed framework to
accomplish a light weight, rapid execution, and optimal performance in object detection. Foremost,
a sparse and lightweight structure was chosen as the network’s backbone, and feature fusion was
performed using modified feature pyramid networks. Recent learning strategies in data augmentation,
mixed precision training, and network sparsity were incorporated to substantially enhance the
generalization for the lightweight model and boost the detection accuracy. Moreover, knowledge
distillation was applied to tackle dropping issues, and a student–teacher learning mechanism was
also integrated to ensure the best performance. The model was comprehensively tested using the
MS-COCO 2017 dataset, and the experimental results clearly demonstrated that the proposed model
could obtain a high detection performance in comparison to state-of-the-art methods, and required
minimal computational resources, making it feasible for many real-time deployments.
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1. Introduction

In computer vision evolution, object detection [1] is ubiquitous in many real-time
applications, but still has many challenges for deployment. The main purpose of object
detection is to detect the target object in an image, and locate a plurality of target positions
and object types in each picture. The traditional object detection methods have many
limitations, due to the computing hardware and availability of data [2,3]. In addition, the
majority of methods rely on human annotations to create a knowledge base for a particular
task, and computers are only required to make the inference rules. However, in recent years,
with the growth of artificial intelligence and computational resources, the whole process
can be machine driven, without much human effort. The major difference is that, classical
object detection methods involve obtaining features through human experience rules and
expert opinions, whereas artificial intelligence makes use of a complex neural network
architecture, which can be trained to automatically extract strong and discriminative
features. The field of computer vision covers a very wide range of research fields such as
scene recognition [4], image reconstruction [5], image generation [6], face recognition [7],
traffic scenes [8], object detection [9], etc. The proposed method was developed by keeping
the important practical constraints such as a good detection accuracy, higher frame rate
processing, and minimal computational resources. The main application scope of the
proposed method is in autonomous driving and smart video surveillance systems.

2. Related Work

Object detection is generally performed with images or videos, and the objective is
to locate borders and also to indicate the range and location of the object. Subsequently,
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to classify the category of the object (such as people, cars, airplanes, horses, etc.), and
give the classification probability. In comparison with simple image classification, this
is a more challenging task, because the position of multiple objects needs to be detected
from the image or video. Objects may vary greatly in size or be occluded by other objects
(only part of the appearance can be seen); or there may be changes in environmental light
and shadow (backlighting, shadows), differences in the same category (dogs of different
breeds and colors), and differences in viewing angles (head-up view, aerial photography,
depression angle, etc.). Additional challenges occur in practical scenarios, which demand
multiple object detection algorithms, performing within limited time constraints and
computation resources.

Object detection is mainly divided into two different types of method. In terms of
architecture flow, they can be directly divided into one-stage object detection and two-stage
object detection.

The earlier methods in object detection used low-level eigenvalues for preliminary
estimation. To avoid deficiencies, a large number (thousands) of candidate regions were
generally used for subsequent object judgements. This process consumes a lot of computing
resources, and is incapable of listing all the large and small candidate areas. The early
strategy was to refer to the lines and textures of the picture to estimate the possible object
position. For example, the selective search method, which is still frequently used, is based
on this strategy. In other approaches, the texture distribution in the area is used as the
feature value, and then a separator, such as a support vector machine (SVM) [10], is used
to make judgments. A common method is a histogram of gradients (HoG) [11], which
uses the magnitude and direction of change of shading (the difference between adjacent
image values) to describe the texture. As for the evaluation method of object detection, IoU
(intersection over union) is most commonly used to calculate the overlap of the detected
object’s target and its real position. The main issues with the traditional methods are the
robustness towards object size, lighting conditions, object categories, and that most are
limited to single object detection. With the advancements in deep learning methods, recent
works have predominantly been based on deep convolutional neural network architectures.

The former works on deep learning-based approaches involve two-stage object detec-
tion, such as object position detection and classification, which are performed separately,
and, hence, there is a large limitation in performance. Some early representatives include
region-based convolutional neural networks (R-CNN) [12], spatial pyramidal pose net (SPP-
NET) [13], etc. To improve the above-mentioned methods, many streamlined one-stage
object detection approaches have been proposed. The main difference is that the object
location detection and classification are changed to one-stage object detection models, such
as you only look once (YOLO) [14–16], single-shot detector (SSD) [17], fully convolutional
one-stage object detector (FCOS) [18], EfficientDet [19], etc.

Recently, the YOLOV4 [16] method verified the influence of State-of-the-Art’s Bag-
of-Freebies and Bag-of-Specials target detection methods in the detector training process.
These training techniques successfully improved the speed and accuracy. The backbone
architecture uses an improved CSPDarknet53 based on the YOLOv3 [14]. By dividing
the base layer into two parts, the originally separated two parts are recombined through
the transition layer, including a 1 × 1 convolutional layer and a pooling layer. Thus, the
network architecture can be made richer, and the gradient of fusion features reduces the
amount of calculation. This strategy increases the overall learning ability of the CNN
network and also makes it lighter. The part of neck replaces the original feature pyramid
network (FPN) [20] structure with a path aggregation network (PA-Net) [21], which is
based on FPN to improve the single path from the original upper layer to the lower layer,
to two-way transmission, with the use of a spatial pyramid pooling (SPP) [22] method to
change the original feature addition to feature merging. Although there is a slight increase
in calculation, the detection efficiency is improved.

More recently, YOLOv4-tiny [23] was proposed, which has a better efficiency than
YOLOv4, and had promising results with the MS-COCO [24] dataset. This method used
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a powerful model scaling method, and the FPN structure is inherited in its once-for-all
structure. Moreover, another notable work, termed Nanodet [25], was proposed based on
the assign guidance module (AGM) and the dynamic soft label assigner (DSLA), and was
incorporated and implemented in mobile devices. The Nanodet model can present a higher
FPS rate than YOLOv4-tiny and has a better accuracy. In this work, we considered the two
latest lightweight object detection models as the baseline, and developed an even more
efficient and lightweight model, which can perform better than the above methods in terms
of the FPS and detection accuracy.

The critical limitations and contribution of the existing works are as follows:
The main improvements are in terms of the lightweight backbone, anchor-free detec-

tion, sparse modelling, data augmentation, and knowledge distillation. The integration has
substantially improvised the training, inference speed, and detection accuracy.

In Figure 1, a comparison of the leading object detection models, with respect to the
average precision (AP) and frames per second (FPS), is illustrated. In comparison to all of
the former methods, it can be seen that the proposed model can achieve the highest FPS, as
well as a better precision in comparison to YOLOv4-tiny and EfficientDet. Moreover, the
proposed model has a lightweight backend that can be quickly trained and combined with
anchor-free detection methods.
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Figure 1. Comparison of average prediction (AP) accuracy with respect to the frame processing speed
(FPS) against the state-of-the-art methods. SSD [17], EfficientDet [19], Retina Net [26], DETR [27],
YOLO v3 [14], v3-tiny [15], v4 [16], v4-tiny [23].

It is concluded that most of the existing solutions are based on model search and
iterative methods, which are computationally intensive and time-consuming. To over-
come this problem, the proposed solution uses mixed precision [28] and sparse network
generation [29] to improve the model training and inference speed.

In general, YOLOv4-tiny has a lower accuracy in place of its high FPS processing.
In the proposed approach, the accuracy is improved through data augmentation and
knowledge distillation [30], without compromising the processing speed. The proposed
model has superior performance than YOLOv4-tiny, by around 8%; and this is achieved
with a model size reduction of around 40%.

In a nutshell, the proposed method has advantages compared with other methods in
terms of the processing efficiency and accuracy.
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3. Proposed Work

The main network architecture of this study is shown in Figure 2 and is similar to
one-stage object detection algorithms such as FCOS [18] and EfficientDet [19], and is mainly
composed of a backbone, neck, and head.
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which is based on the Efficient-Lite model [31], and a modified path aggregation network (PAN) [20]
using Generalized focal loss v2 [32] as the detection head representation and loss function.

Normally, to localize and detect the category of the target from an image, we first ex-
tract some necessary feature data from the image, such as HOG features, and subsequently
use these features to achieve positioning and classification. In the field of deep learning, the
backbone of the network is responsible for extracting features from images. Among them,
there are many well-known models to choose from, such as ResNet [33], MobileNet [34,35],
ShuffleNet [36], etc. The reasons for choosing EfficientDet-lite [31] as the backbone for
object detection in this study were as follows: EfficientDet based CNN model has achieved
the state-of-the-art performance in object detection. It uses the AutoML MNAS [37] frame-
work to execute a neural architecture search (NAS) to develop the base model and combine
the features of compound scaling. It has a good accuracy and excellent model size, and has
attracted widespread attention recently. EfficientNet-lite is a lightweight and improved
version of EfficientNet, and the model removes the use of the squeeze-and-excite module,
as this module is not optimized for mobile use, and the ReLU6 [38] activation function is
replaced by a swish activation function. To make it easier to quantify, fixed stem and head
modules are added to ensure the lightweight advantage of model scaling. Compared with
the MobileNetV2 [35], ResNet-50 [33], and Inception-V4 [39], EfficientNet-lite has a better
trade-off in performance between accuracy and size.

The classification of objects by this model does not have much room for improvement,
due to the usage of a pre-trained backbone network. In addition, the accuracy of positioning
has a great impact on the performance of the target detection algorithm. Among the various
datasets or actual application scenarios, localization ambiguity is widespread. Specifically,
it is difficult for lightweight object detection networks to detect fuzzy boundaries. Gener-
alized focal loss [40] uses a general discrete distribution to express the uncertainty of the
target frame, and the target frame is expressed as a probability distribution, without any
prior knowledge restrictions. As opposed to the above methods, Zheng [28] introduced
distillation learning into the localization branch of the target detection network, and pro-
posed to use the localization distillation to improve the ability of the target frame, using a
high-performance teacher network. This can solve the problems of location ambiguity and
learning through distillation. Hence, the student network can solve the problem of location
ambiguity similarly to the teacher network.

Conventional object detectors are usually trained offline, and, thus, researchers can
make full use of this feature to find a better training method that improves accuracy
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without increasing inference overheads. In this approach, the training strategy is altered,
referring to Bag of Freebies, which can improve the accuracy, for example, of some of the
image pre-processing methods such as MixUp and CutMix. Furthermore, mosaic data
augmentation, GIoU loss, label smoothing, knowledge distillation [30], etc., with mixed
precision training [28] and sparsity model generation [29] are used.

The object detection and identification system proposed in this study is a one-stage
object detection, inspired by Nanodet and based on a lightweight convolutional network,
by modifying the path aggregation network (PAN) and using Generalized focal loss v2 as
the detection head representation and loss function to achieve real-time object detection. In
terms of the object detection, anchor-based models such as YOLO and SSD have always
occupied a dominant position. The main purpose of this research was to develop an instant
anchor-free detection model, which can provide a performance not inferior to YOLOv4-tiny,
and that is also convenient for training and transplantation.

Some plug-in modules or post-processing methods can improve the detection accuracy,
but have a small impact on the inference time, and these methods are called ‘bag of specials’.
Plug-in modules are usually used to enhance the specific attributes of the model, such
as expanding the receptive field, introducing an attention mechanism, and strengthening
the ability to combine features. Post-processing involves fine-tuning some mechanisms
in accordance with the predicted results of the model. The post-processing comprises of
fine-tuning some mechanisms based on the predicted results. For example, the structure
of the FPN is adjusted along with the alternate activation function and Generalized Focal
Loss v2 [32] to obtain superior classification accuracy.

Most of the previous studies have used FP32 (single precision) [23,25] for neural network
training. In recent years, NVIDIA has proposed the use of FP32 + FP16 mixed format, namely
mixed precision training (MPT). MPT [28] uses half-precision floating-point numbers to
accelerate training, while minimizing precision loss. It uses FP16 to record weights and
gradients. This has the effect of accelerating training, while reducing memory usage. The
value range of FP16 is 5.96 × 10−8~65,504, while FP32 is 1.4 × 10−45~3.4 × 10−38. It can be
seen from the scope of FP16 that the biggest problem in comparison to the FP32 neural
network is the reduction in accuracy. In addition, some points on the requirement of
GPU computational resources for existing models and techniques for their efficient usage
are presented.

Even though the introduction of GPUs has accelerated the training process; due to the
rapid evolution in model complexity, the demand for multiple GPUs and tensor processing
unit (TPUs) training keeps on increasing. For instance, the former architectures such
as AlexNet used two GPUs to train ImageNet for 5–6 days in 2012. Similarly, training
ResNeXt-101 in 2017 required eight GPU acceleration for more than 10 days. By 2019,
Noisy-Student [41], a self-growth framework through knowledge distillation proposed by
Google, required more than 1000 TPU training for 7 days. Some studies have begun to
explore structured pruning and have achieved good results, but other studies have used
unstructured sparsity pruning for accuracy; however, unstructured data (0-D) is difficult to
use with modern vector and matrix math instructions, which has led to the development of
more complex methods integrated with deep learning frameworks for acceleration.

As training models often uses the ReLU activation function, many weights are 0. In
this study, it was observed that the gradient disappeared when training with ReLU6 after
generating the sparsity model. This is due to the fact that 50% of the weights are not
involved in the gradient update because of the mask, as shown in Figure 3. ReLU6 sets the
negative values to 0, so that the overall network cannot continue to converge when very
few weights can hold values. The unstructured sparse matrix caused by the ReLU6 cannot
provide hardware acceleration through deep learning, and, thus, this study chose to use
automatic sparsity [4] to generate 50% sparsity. This was the main reason for switching the
activation function to the self-regularized non-monotonic activation function (Mish) [42]
and sigmoid weighted linear units (SiLU) [43].
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This study used the automatic sparsity module under the NVIDIA PyTorch Extension
to generate sparse networks. As shown in Figure 4, in the weight matrix, two random
masks for every four elements were called a 2:4 sparseness, and this can be supported in
Tensor Core hardware level acceleration.
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Using this approach to generate a sparse network, the original network could be
trained to a certain stage, and subsequently the network sparseness could be improved. It
can avoid the premature mask weight at the beginning, which causes the training conver-
gence to be affected too much. As the convergence is stable, sparse network generation is
used to improve the training speed and training accuracy.

4. Experiments and Results

This section covers the extensive experiments with the object detection technology
to validate the performance of the proposed work. The description covers the dataset,
evaluation metrics, and computational resources, and inference studies are provided.
Furthermore, the implementation details of this study, including the model architecture
for training and its parameters and the ablation studies are explained in detail. Finally,
the public database MS COCO [24] was tested and compared with the former methods,
as shown in Table 1. For model training and testing, 118 k and 5 k images were used,
respectively. The results of each experiment were analyzed to verify the effectiveness of
the proposed method. For evaluation, average precision (AP) was used, which refers to
the area under the precision-recall curve. Generally, AP is calculated for all classes, and
its average is defined as the mean average precision (mAP). Furthermore, the AP50 refers
to the 50% region correctly detected in comparison to the ground truth, and for AP75
candidate images over 75% regions are counted.
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Table 1. Comparison among the state-of-the-art detectors.

Model Backbone Model Size FPS mAP AP 50 AP 75

SSD [17] VGG 100 MB 36 28.8% 48.5% 30.3%

DETR [27] R50+
Transformers 159 M 28 42.0% 62.4% 44.2%

EfficientDet [19] EfficientNet-B0 15.5 MB 16 33.8% 52.2% 35.8%
RetinaNet [26] ResNet101 329 MB 11 34.4% 53.1% 36.8%
YOLOv3 [14] Darknet-53 246.5 MB 66 33.0% 57.9% 34.3%

YOLOv3
-Tiny [15] Darknet-19 33.2 MB 345 15.3% 33.1% 12.4%

YOLOv4
-Tiny [23] CSPNet-15 23.1 MB 330 22.0% 40.2% 20.7%

Proposed EfficientNet
-Lite 15.1 MB 362 30.7% 47.9% 32.4%

This study ensured the performance of the model for real-time applications with a
good detection accuracy. To achieve a greater adaptability, EfficientNet-Lite with integrated
scaling capabilities was used as the detection network (backbone). After fine-tuning, the
SiLU was chosen as the activation function; compared to ReLU6, Mish, and LeakyReLU.
The reason for this is that sparse pruning was used in the acceleration strategy. If ReLU
is used, its characteristics cannot preserve negative values during the training process,
as shown in Figure 5, which can easily lead to failures. Regarding the vanishing gra-
dient issues, the model was tested with Mish and SiLU. SiLU was found to provide a
better performance empirically, and, thus, was used as the activation function for the
backbone model.
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The learning rate was initialized from 0.0003 and increased up to 0.16 in 500 steps.
The computer system comprised an Intel(R) Gold 5218 (2X) CPU with DDR4 2666 MHz
ECC RDIMM 64 GB*8 RAM, and NVIDIA GeForce RTX 3090 GPU 24 GB*2. The batch
size was set at 128. Mixed FP16 and FP32 precisions were adopted for training, the mixed
parameters were set to NVIDIA Apex AMP O3, and the training time was around 4 days
and 12 h.
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During the inference stage, the model weights were saved and converted to ONNX [44]
format. The converted model size was only 15.1 MB, compared to the 245 MB of YOLOv4
and 23.1 MB of YOLOv4-tiny. The lightweight model has great performance advantages
for mobile or edge processing. Our proposed method uses a NVIDIA RTX 2080 Ti with
NCNN [45] to give the model a more than 47 percent accuracy improvement over AP50,
which also exceeds the detection performance of 300 FPS. We used the frames per second
(FPS) and COCO2017 Val mAP as evaluation indicators to balance the evaluation of perfor-
mance and accuracy. The FPS was tested using a single NVIDIA RTX 2080 Ti, to perform
a batch size of 1 prediction time test, and convert it to per second. In total, there were
80 object categories in COCO, and mAP was calculated across the AP of each object category
and taking the average value.

The ablation tests are provided in Table 2, in which EfficientNet-Lite0 and EfficientNet-
Lite1 were adopted as the backbone of the network, to allow adaption in the experiment
and achieve a good balance between performance and processing speed. EfficientNet
was selected with experimental group 1 as the base, in which Lite0 as the backbone used
320 × 320 as the input resolution. Although the mAP of the control experimental group
1 was 5% lower than that of group 5, it had an advantage in terms of the speed, and it
was still possible that the detection network could achieve a certain accuracy to reduce
the probability of misjudgment or missed detection. Other experiments tested alternative
activation functions and used different training strategies. If Generalized focal loss v2 was
used, the model size could be slightly improved. Although the performance impact was
small, it still had a positive impact on accuracy.

Table 2. Performance comparison of different EfficientNet versions.

Proposed Backbone Input
Size

Activation
Function Head Prune Distillation Mix

Precision
mAP

(0.5:0.95) FPS

1 EfficientNet
-Lite0 320 ReLU6 GFLv1 24.7% 405

2 EfficientNet
-Lite1 416 Mish GFLv1 27.35% 330

3 EfficientNet
-Lite1 416 SiLU GFLv1 • 27.61% 355

4 EfficientNet
-Lite1 416 SiLU GFLv2 • • 29.72% 362

5 EfficientNet
-Lite1 416 SiLU GFLv2 • • • 30.7% 362

The MS-COCO [28] Val set was used to verify the performance of the proposed module.
Experimental Group 2 used Mish as the activation function with reference to YOLOv4, and
increased the input size to the same size 416 × 416 as YOLOv4-tiny, which was 2.6% higher
than the baseline accuracy and around 5.3% higher than that of YOLOv4-tiny. Experiment
Group 3 replaced the activation function with SiLU and added mixed precision training,
which increased the performance by around 0.3% compared with experiment Group 2.
Experimental Groups 4 and 5 both used the SiLU activation function and Generalized focal
loss v2 as the detection head, and added mixed precision training and sparse network
pruning, which could improve the performance in comparison with Group 3 by around
2.1%. If compared to the benchmark experimental Group 1, it was improved by around 5%,
which is about 14.4% higher than YOLOv3-tiny and 7.7% than YOLOv4.

Experimental Group 5 added localization distillation on this basis to finally increase
the accuracy to 30.7%. The overall parameters were only 4 M, and the final recorded model
size was 15.1 MB.

This study focused on balancing the execution speed and accuracy of the model. The
one-stage anchor-free FCOS was used with ATSS [46] target sampling, and Generalized
Focal Lossv2 [24] was used as the loss function to perform the target classification and
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regression calculation of the frame. This method removes the FCOS, and the centerness
branch saves a lot of convolution operations. Furthermore, we added additional branches
in order to use border regression statistics, to make up for the accuracy loss in classification;
and the mixed precision training, sparse network pruning, model training parameter fine-
tuning, mosaic stitching data enhancement, training strategies, such as data distillation,
could not only ensure the speed of calculation, but also improved the accuracy. The
evaluation value was superior to YOLOv4-tiny in terms of mAP by 7.7%.

Some practical images were adopted for comparison with Nanodet-320 and YOLOv4-
tiny-416 and the proposed method with Group 5 configuration.

As shown in Figure 6, it can be seen that YOLOv4-tiny does not fit the boundary
of the detected person, and the skis are not detected. In addition, the person at the top-
left corner is not detected. On the other hand, Nanodet misclassifies skis as a surfboard.
Conversely, the proposed method has more accurate results, which correctly classifies the
skis, bounding boxes are precisely placed on the targets, and more individuals are detected
in the top. Similar results are also found in the Figure 7, in which the proposed model
detected more objects with good decision boundaries.

Electronics 2022, 11, x FOR PEER REVIEW 9 of 13 
 

 

Experimental Group 5 added localization distillation on this basis to finally increase 
the accuracy to 30.7%. The overall parameters were only 4 M, and the final recorded model 
size was 15.1 MB. 

This study focused on balancing the execution speed and accuracy of the model. The 
one-stage anchor-free FCOS was used with ATSS [46] target sampling, and Generalized 
Focal Lossv2 [24] was used as the loss function to perform the target classification and 
regression calculation of the frame. This method removes the FCOS, and the centerness 
branch saves a lot of convolution operations. Furthermore, we added additional branches 
in order to use border regression statistics, to make up for the accuracy loss in classifica-
tion; and the mixed precision training, sparse network pruning, model training parameter 
fine-tuning, mosaic stitching data enhancement, training strategies, such as data distilla-
tion, could not only ensure the speed of calculation, but also improved the accuracy. The 
evaluation value was superior to YOLOv4-tiny in terms of mAP by 7.7%. 

Some practical images were adopted for comparison with Nanodet-320 and 
YOLOv4-tiny-416 and the proposed method with Group 5 configuration. 

As shown in Figure 6, it can be seen that YOLOv4-tiny does not fit the boundary of 
the detected person, and the skis are not detected. In addition, the person at the top-left 
corner is not detected. On the other hand, Nanodet misclassifies skis as a surfboard. Con-
versely, the proposed method has more accurate results, which correctly classifies the skis, 
bounding boxes are precisely placed on the targets, and more individuals are detected in 
the top. Similar results are also found in the Figure 7, in which the proposed model de-
tected more objects with good decision boundaries.  

  
(a) Detected by Nanodet. (b) Detected by Yolov4-tiny. 

 

(c) Proposed. 

Figure 6. Performance comparison for water-skiing image. Figure 6. Performance comparison for water-skiing image.



Electronics 2022, 11, 575 10 of 13Electronics 2022, 11, x FOR PEER REVIEW 10 of 13 
 

 

  
(a) Detected by Nanodet. (b) Detected by Yolov4-tiny.  

 

(c) Proposed. 

  

(d) Detected by Nanodet. (e) Detected by Yolov4-tiny. 

 

(f) Proposed. 

Figure 7. Performance comparison for detection of vehicles and people in city scenes. 
Figure 7. Performance comparison for detection of vehicles and people in city scenes.



Electronics 2022, 11, 575 11 of 13

From Figure 7a it can be seen that Nanodet failed to detect small vehicles, this is due to
its smaller image input size to improve the detection speed, and, hence, it loses the ability
to detect small objects. In Figure 7b, YOLOv4-tiny failed to detect some people standing
near the vehicles, whereas from Figure 7c it can be inferred that the proposed method had a
better multiple object detection capacity and also had a rapid execution. In addition, it can
be seen that some traffic light signals and people cycling were not detected by the proposed
method. From analysis, we found that an increase in input size can resolve some of these
issues; however, this also affects the processing speed. Hence, there exists a clear trade-off
between the prediction accuracy and detection speed, which will be addressed in the future.
Figure 7d–f also illustrates the same phenomenon in city scenes, and the proposed model
had a superior detection performance.

5. Conclusions

In this study, a lightweight CNN model was designed, and an accelerated training
strategy was used to improve the inference speed, while maintaining a good detection
accuracy. Robust object detection models normally require a deep architecture, which
requires more parameters and is harder to train. In addition, many state-of-the-art objects
models are trained with multiple GPUs or TPUs, which are not feasible for real-time
applications and costlier for wide deployment. In this study, effective data enhancement
was performed using the knowledge distillation method to improve the detection accuracy
with the lightweight models. Moreover, the use of increased network sparsity, the reduction
of excessive convolutional layer connections, the pre-selection mechanism of removing the
box anchor, and the optimization of the loss function feedback mechanism of the detection
head lead to a large-scale network using fewer model parameters. Experimental results
on the public dataset MS-COCO 2017 showed that the proposed method could achieve a
good detection accuracy, with rapid execution. The future scope of this work is to further
improve the detection of multiple objects for high resolution images, without compromising
the prediction speed. To summarize, the critical advantages of the proposed method are
that the model can be easily trained and requires limited computational resources. Hence,
the proposed method is feasible for many real-time applications and provides a more
cost-effective solution.
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