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Abstract: In a hardware-based neuromorphic computation system, using emerging nonvolatile
memory devices as artificial synapses, which have an inelastic memory characteristic, has attracted
considerable interest. In contrast, the elastic artificial neurons have received much less attention.
An ideal material system that is suitable for mimicking biological neurons is the one with volatile
(or mono-stable) resistive change property. Vanadium dioxide (VO2) is a well-known material that
exhibits an abrupt and volatile insulator-to-metal transition property. In this work, we experimentally
demonstrate that pulse-driven two-terminal VO2 devices behave in a leaky integrate-and-fire (LIF)
manner, and they elastically relax back to their initial value after firing, thus, mimicking the behavior
of biological neurons. The VO2 device with a channel length of 20 µm can be driven to fire by a single
long-duration pulse (>83 µs) or multiple short-duration pulses. We further model the VO2 devices
as resistive networks based on their granular domain structure, with resistivities corresponding to
the insulator or metallic states. Simulation results confirm that the volatile resistive transition under
voltage pulse driving is caused by the formation of a metallic filament in an avalanche-like process,
while this volatile metallic filament will relax back to the insulating state at the end of driving pulses.
The simulation offers a microscopic view of the dynamic and abrupt filament formation process to
explain the experimentally observed LIF behavior. These results suggest that VO2 insulator–metal
transition could be exploited for artificial neurons.

Keywords: neuromorphic computation; artificial neurons; VO2; volatile resistive transition; leaky
integrate-and-fire

1. Introduction

Artificial neural networks (ANNs) are the backbone of machine learning and have
been attracting considerable interest [1,2]. In an ANN, a large number of artificial neurons
are interconnected by an even larger number of artificial synapses. They are commonly
implemented through machine learning software, running on silicon-based hardware, and
such an approach has been proved to be successful, evidenced by the rapid development
of deep learning applications [3,4]. However, this approach also faces the challenge of
limited computation capability, and its low energy efficiency will ultimately constrain the
maximum number of neurons that could be simulated to a level less than the human brain,
by several orders of magnitudes [5].

In this regard, biological neurons mimic neuromorphic systems, in which artificial
neurons and artificial synapses are directly implemented by dedicated devices and have
intrinsic superiority [6,7]. Such a hardware-based ANN commonly uses a crossbar architec-
ture to simulate dendrites and axons for interconnections between neurons and conducting
wires to simulate the transmission of processed signals from the neuron body down to the
axons. Different devices have been proposed to mimic the distributed processing function
of individual neurons, and for the distributed memory function of synapses between the
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pre-synaptic neurons and the post-synaptic neurons. It is true that Si-based devices, in-
cluding transistors, resistors and capacitors, could be used to build artificial neurons and
synapses, but multiple components are needed for one neuron or synapse, giving rise to a
complex implementation [8]. Therefore, intense efforts have been devoted to exploring non-
Si materials with unique properties that could be exploited to construct artificial neurons
and synapses, with a simple configuration for easy large-scale integration [6,9–11].

It turns out that nonvolatile memory (NVM) devices, such as those based on non-
volatile resistive switching, are superior candidates for synapses that require learning and
memory function, while the artificial neurons might be constructed from certain materials
that have mono-state volatile resistive transiting property. The fundamental reason for
the difference in artificial neuron and synapse implementation comes from the “elastic”
property of neurons vs. “inelastic” synapses [12,13]. It is noted that in an M × N crossbar
matrix configuration, the number of synapses is M × N, which is much more than the
(M + N) number of neurons. Much work has been reported on synapses, with much less
attention on artificial neurons [14].

The information processing or signaling function of biologic neurons comes from their
dynamic process and spiking behavior that have been described by different models. In par-
ticular, the leaky integrate-and-fire (LIF) model has been widely adapted for neuromorphic
computation. LIF describes the relationship between the neuronal membrane current as the
input, and the membrane voltage as the output. In this model, the input spiking current
train is accumulated, accompanied by current leakage through the membrane, to change
the membrane potential from the resting value; when this potential reaches a threshold,
the neuron fires with a spiking output and the potential of the neuron membrane then
“elastically” restores to its resting state after a refractory period. In addition, stochastics
is another property of neuron dynamics. Long-term chaotic fluctuations in human brain
waves exhibit significant functions in memory recall, inferences, and other high-level brain
functions, which are desirable to be mimicked in advanced ANNs. Probabilistic computing,
by using truly stochastic artificial neurons but not quasi-random noise generated by extra
circuits or algorithms, might be essential for ANNs to achieve high-level brain functions,
such as imagination and inference.

Artificial neurons have been created using silicon devices [15,16], which have multiple
components, nonideal for dense integration and energy efficiency. Si neurons also lack
intrinsic stochastic dynamics and are applied for deterministic computation. Various
non-Si materials, investigated for NVM devices, are also in study for developing resistive
switching neurons [17], phase change neurons [18], ferroelectric neurons [19], spintronic
neurons [20], and others, some of which may also have intrinsic stochastic properties. Each
of these approaches have their pros and cons, in terms of complexity (number of devices),
energy efficiency, firing rate, on/off ratio, etc. All of them are under investigation, and
none have shown performance dominance over others.

It turns out that those materials with abrupt insulator–metal transition (IMT) prop-
erties could be good candidates for artificial neurons, including stochastic neurons, as
demonstrated by Mott insulators, such as GaTa4Se8 [21] and NbO2 [22]. The volatile and
abrupt IMT process in these materials produces “S”-shape negative differential resistance,
ensuring the artificial neuron “elastically” restores to its resting state after firing a spike,
without using any feedback resetting circuit. With proper designs using a few components,
many functions of biological neurons can be emulated. The random conductive filament
formation makes them truly stochastic. Taken together, Mott insulators could be an ideal
candidate for biologically plausible and stochastic artificial neurons.

In this work, we investigate vanadium dioxide (VO2) based two-terminal devices
that show an LIF behavior. VO2 has attracted much attention due to its IMT at ~67 ◦C,
which results in an abrupt electrical resistivity change, by 3–5 orders of magnitude, along
with significant changes in the index of refraction [23]. Besides thermally triggering IMT,
optical, electrical, mechanical and doping have all been reported as successfully inducing
the transition [24,25]. This unusual phenomenon has been exploited in various applications,
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such as smart window, optical storage, switch devices, and THz modulators [26–30].
Exploiting VO2 for neuromorphic and quantum computations are also in progress [31–35].
The volatile and abrupt features of its IMT may suggest its LIF signature. Here, we apply
electrical pulses to induce the IMT in two-terminal VO2 devices, demonstrating its LIF
function for artificial neuron applications [36]. We further conduct numerical simulation to
explain the observed phenomena.

2. Materials and Methods

VO2 thin films (~120 nm thick) were prepared by reactive dc magnetron sputtering
of a vanadium metal target (99.9% purity) in an Ar/O2 gas on c-cut sapphire substrates,
as previously reported [37]. Briefly, the substrate temperature was heated to 600 ◦C. The
pressure of the gas mixture was maintained at 3 mTorr with 6% O2/Ar flow ratio, which
translates to O2 and Ar flow rates of ~1.05 and ~17.43 sccm, respectively. The sputtering
power was controlled at ~130 watt for the 2-inch target to maintain a deposition rate of
2 nm/min. After growth, the temperature was ramped down at a rate of 5 ◦C/min in
the same gas environment. No post-growth annealing was conducted for the VO2 films.
The material quality was characterized using scanning electron microscopy (SEM) and
X-ray diffraction (XRD) analysis, and its temperature-dependent electrical resistivity was
measured using the Van der Pauw method. Two-terminal VO2 devices were fabricated via
photolithography patterning, with Ti/Au deposited by e-beam evaporation as the metal
contact. Driven by voltage pulses, these devices were characterized to confirm their LIF
behavior. Using a resistive network model and considering the field effect on the IMT, the
metallic filament formation process and the leak, integration, and fire behavior of VO2
devices driven by voltage pulses were simulated in MATLAB.

3. Results
3.1. VO2 Material Properties

As shown in the SEM image in Figure 1a, the deposited VO2 film has a granular
morphology with a grain size ~100 nm, and several small grains aggregate into a large
cluster with a dimension up to around half a micrometer. XRD measurement (Figure 1b)
confirms the monocrystalline structure of the VO2 film, with monoclinic (020) as the growth
plane on the c-cut sapphire substrate. The temperature-dependent resistivity of the VO2
thin film is shown in Figure 1c. The resistivity has more than three orders of magnitude
change across its IMT, which occurs around 342 K (or 69 ◦C). This transition is relatively
abrupt, with a small hysteresis window of 3–4 K.

Electronics 2022, 11, x FOR PEER REVIEW 3 of 11 
 

 

transition [24,25]. This unusual phenomenon has been exploited in various applications, 
such as smart window, optical storage, switch devices, and THz modulators [26–30]. Ex-
ploiting VO2 for neuromorphic and quantum computations are also in progress [31–35]. 
The volatile and abrupt features of its IMT may suggest its LIF signature. Here, we apply 
electrical pulses to induce the IMT in two-terminal VO2 devices, demonstrating its LIF 
function for artificial neuron applications [36]. We further conduct numerical simulation 
to explain the observed phenomena. 

2. Materials and Methods 
VO2 thin films (~120 nm thick) were prepared by reactive dc magnetron sputtering 

of a vanadium metal target (99.9% purity) in an Ar/O2 gas on c-cut sapphire substrates, as 
previously reported [37]. Briefly, the substrate temperature was heated to 600 °C. The 
pressure of the gas mixture was maintained at 3 mTorr with 6% O2/Ar flow ratio, which 
translates to O2 and Ar flow rates of ~1.05 and ~17.43 sccm, respectively. The sputtering 
power was controlled at ~130 watt for the 2-inch target to maintain a deposition rate of 2 
nm/min. After growth, the temperature was ramped down at a rate of 5 °C/min in the 
same gas environment. No post-growth annealing was conducted for the VO2 films. The 
material quality was characterized using scanning electron microscopy (SEM) and X-ray 
diffraction (XRD) analysis, and its temperature-dependent electrical resistivity was meas-
ured using the Van der Pauw method. Two-terminal VO2 devices were fabricated via pho-
tolithography patterning, with Ti/Au deposited by e-beam evaporation as the metal con-
tact. Driven by voltage pulses, these devices were characterized to confirm their LIF be-
havior. Using a resistive network model and considering the field effect on the IMT, the 
metallic filament formation process and the leak, integration, and fire behavior of VO2 
devices driven by voltage pulses were simulated in MATLAB. 

3. Results 
3.1. VO2 Material Properties 

As shown in the SEM image in Figure 1a, the deposited VO2 film has a granular mor-
phology with a grain size ~100 nm, and several small grains aggregate into a large cluster 
with a dimension up to around half a micrometer. XRD measurement (Figure 1b) confirms 
the monocrystalline structure of the VO2 film, with monoclinic (020) as the growth plane 
on the c-cut sapphire substrate. The temperature-dependent resistivity of the VO2 thin 
film is shown in Figure 1c. The resistivity has more than three orders of magnitude change 
across its IMT, which occurs around 342 K (or 69 °C). This transition is relatively abrupt, 
with a small hysteresis window of 3–4 K. 

 
Figure 1. (a) SEM image and (b) XRD θ-2θ measurement of VO2 thin films grown on c-cut sapphire 
substrate. (c) Temperature-dependent resistivity showing the IMT of VO2. 

3.2. VO2 Behavior under Voltage Pulses 
In two-terminal VO2 devices, the abrupt IMT can also be triggered by electric pulses 

above a threshold electric field. The experimental circuit is shown schematically in Figure 
2a, where a two-terminal VO2 device under test (DUT) is protected by a current-limiting 

Figure 1. (a) SEM image and (b) XRD θ-2θ measurement of VO2 thin films grown on c-cut sapphire
substrate. (c) Temperature-dependent resistivity showing the IMT of VO2.

3.2. VO2 Behavior under Voltage Pulses

In two-terminal VO2 devices, the abrupt IMT can also be triggered by electric pulses
above a threshold electric field. The experimental circuit is shown schematically in Figure 2a,
where a two-terminal VO2 device under test (DUT) is protected by a current-limiting resistor
(RL) of 5 kΩ and the voltage drop on the DUT is monitored by a digital oscilloscope. A
representative example of voltage pulse-driven resistive transition behavior of VO2 devices
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at room temperature is presented in Figure 2b, where the VO2 DUT has a channel length
of 20 µm and a single 10 V and 100 µs driving pulse (VD) is applied to the DUT and RL.
After a delay time of 83 µs, the voltage across the DUT decreases by only 0.4 V, but then it
abruptly decreases from 8.5 V to 0.6 V. Correspondingly, the current in the circuit increases
abruptly during the 83–100 µs time range, in analogy to the firing of a biological neuron
(Figure 2c). This current firing is a direct consequence of the resistive transition of the DUT
from a high to a low resistance state, as verified in Figure 2d. When a bias is applied, VO2
resistance initially only shows a slight reduction due to sparse individual metallic domain
formation; then, a filamentary metallic conductive path is abruptly formed, shortening
the two electrodes, resulting in dramatic diminishing in the resistance and increase in the
current. This firing delay time depends on the amplitude of the driving pulse and the
separation between the two electrodes. The observed current spiking, firing delay time
(tFire), and only a small change in resistance during this delay time (Figure 2b–d) suggest
that the VO2 device behaves similarly to the integrating function of a biological neuron.
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Figure 2. (a) Schematic of the circuit used to test VO2 devices. An example of VO2 IMT stimulated by
a 10 V pulse of 100 µs time duration: (b) applied voltage (red curve) and measured device voltage
(blue curve), measured device current (c) and resistance (d), during a 100 µs pulse.

With the abrupt formation of a filamentary conductive path bridging the two elec-
trodes, the VO2 device abruptly jumps to its low resistance state, firing a large current in the
circuit. On the other hand, this metastable filamentary path can also be easily disrupted at
the end of the driving pulse; the device will then recede back to its high resistive state after
a short delay. Unlike the resistive random-access memory (ReRAM) devices that have high
and low two stable resistance states and the resistive switching is nonvolatile, the resistive
transition in VO2 under pulse driven is volatile, with the high resistance as the stable
mono-state. However, the VO2 device does need time to transit from its low resistance
to the stable high resistance state. This is caused by the thermally activated relaxation of
the metallic domains in the conductive filament [38]. We speculate that immediately after
the driving pulse is null, the device resistance will abruptly soar up as the consequence
of the conductive filament breaking up, following which it will slowly relax back to its
high resistance value, as all metallic domains transit to the insulating state by thermally
surmounting an energy barrier. It is this relaxation time (tr) that is corelated to the leaky
performance of the VO2 device. A fast relaxation time corresponds to a large leak, or a
rapid transition of VO2 domains from the metallic to the insulating phase, clearly indicating
that this parameter is dependent on the material properties and device design. The device
temperature is also a key parameter, since it is a thermally activated process.

Depending on the amplitude of the voltage pulse, a given VO2 device needs dif-
ferent tFire, during which individual metallic domains grow, until a continuous metallic
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filament is formed to fire. This observation indicates that the growth of metallic domains
is an accumulative process, which brings out another feature of the LIF neuromorphic
functionality—integration. To better understand this behavior and to provide a direct
analogy to the LIF characteristic of biological neurons, we injected a train of electric pulses
into the DUT. For a defined pulse amplitude (10 V in this work), as long as the pulse
duration (ton) is shorter than tFire (~83 µs), multiple pulses will be required for the DUT
firing. Meanwhile, the pulse off time duration (toff) must also be shorter than the metallic
domain relaxation time (tr), to ensure a net growth in the quantity of individual metallic
domains before a threshold is reached for the abrupt formation of a conductive filament.
Figure 3 shows the voltage waveforms applied to a VO2 device using a fixed 10 V amplitude
but different duty cycles and the corresponding device current response. In Figure 3a,
with the on/off 50/30 µs pulse train, the VO2 device fires in the 3rd pulse, while for the
on/off 50/60 µs pulse train, it does not fire until the 7th pulse (Figure 3b). When the pulse
train is changed to 30/15 µs, the number of pulses required for firing further extends to 13
(Figure 3c). These three examples show that the total pulse duration necessary to trigger the
firing depends on the pulse train on/off setting. The fact that the firing can be triggered by
pulses with time duration shorter than tFire suggests an integration effect of short pulses in
the VO2 device. Moreover, the sheer fact that the total pulse duration before firing is much
longer than tFire reveals the leaky behavior of the device, which is further corroborated by
noting that, for pulses with the same ton = 50 µs, when toff is extended from 30 µs to 60 µs,
the needed pulses to fire (NFire) increases from three to seven.
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Figure 3. Applied voltage pulse waveforms (top) and measured device current (bottom) for different
pulse duty cycles and fixed 10 V amplitude. (a) ton = 50 µs and toff = 30 µs, (b) ton = 50 µs and
toff = 60 µs, and (c) ton = 15 µs and toff = 30 µs.

3.3. Simulating VO2 LIF Behavior

To visualize the voltage-driven phase transition process in the VO2 devices and under-
stand the mechanism of leaky-integral and fire function, a 2D resistor network model [39]
was developed to simulate its resistance transition behavior and particularly, the avalanche
process of the conductive filament formation. Considering the granular structure of the
VO2 film, the device can be modeled as a multi-domain-based resistive network, as shown
in Figure 4a, where each domain is represented by a pixel. Following Refs. [40,41], each
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domain contains four identical resistors, which connect to the neighboring domains. The
average voltage across a domain (∆V) is formulated as follows:

∆V =
(
(V1 − V3)

2 + (V2 − V4)
2
)1/2

(1)
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Figure 4. (a) Resistive network model of the VO2 device under voltage bias used in the simulation.
A few random pixels (light red) are shown in the metallic phase. Energy barriers for IMT and MIT
without bias (b) and with bias (c). (d) A conducting filament formed between two electrodes, leading
to an abrupt decrease in VO2 device resistance. (after [41,42]).

As illustrated in Figure 4b, at room temperature, without voltage biasing, VO2 is
more stable in the insulating phase than the metallic phase. As the voltage bias is applied,
the electric field energy will raise the energy level of the insulting phase, thus reducing
the corresponding energy barrier and enhancing the probability of insulator–metal transi-
tion (PIMT), while that for metal–insulator transition PMIT does not change, shown below
(Figure 4c):

PIMT = e−(EB−q∆V)/kT (2)

PMIT = e−(EB−EM)/kT (3)

where EB is the energy barrier for the IMT and EM is the energy difference between the two phases,
while q, k and T are the electronic charge, Boltzmann constant, and temperature, respectively.

The simulation was conducted in MATLAB. In the time sweeping used in the sim-
ulation, the voltage across each domain and its phase state are calculated. Once a do-
main switches from the insulating phase to the metallic phase, its reduced ∆V will result
in slightly higher voltage drop on its surrounding insulating domains. According to
Equation (2), a higher voltage drop on a domain will enhance its probability to switch into
the metallic phase. Therefore, although initially very few random pixels are in the metallic
phase, as their density increases to a certain threshold, the positive feedback will suddenly
cause an avalanching process, leading to the metallic conducting filament formation along
the electric field direction (Figure 4d), as revealed by the simulation results in Figure 5.

In these simulations, we used a resistance network comprising of 150 × 50 pixels. All
the parameters, including the external voltage bias and load resistance, were set to the same
as those to test the device in Figure 2. We considered 10,000 simulation steps. After the bias
is applied on the device (Figure 5a), the VO2 device enters the “integration” stage. Only a
few random domains become metallic (Figure 5c), and its number grows very slowly, which
only has trivial influence on the total resistance of the device. However, after the bias is
applied for enough time, a small number of metallic domains are formed on the same rows
(see Figure 5d) and this number will dramatically increase, resulting in the formation of a
narrow metallic filament (see Figure 5d). Once this filament is created, both the resistance
of the VO2 device and the applied voltage across it are dramatically reduced, accompanied
by a current flow (“firing”). The newly established dynamic equilibrium will maintain the
metallic filament with this current flow; in other words, the ratio of the metallic domains
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stays at a relatively stable number, as shown in Figure 5b. The phenomena observed in
these simulations are in good agreement with the experimental data shown in Figure 2.
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This resistor network modeling was also applied to simulate the VO2 LIF behavior,
when applying a train of voltage pulses into the device. Figure 6a,b show the applied
driving pulses and the corresponding current, experimentally measured. The metallic
domain distribution is shown in Figure 6c–f. Initially, the number of metallic domains starts
to slowly grow (the integration stage), and some of them switch back to the insulating
state particularly when the pulse is off (the leaky stage). When the metallic domains have
accumulated enough, an abrupt avalanching process sets in, with a metallic filament created
in a short period of time, and a burst current pulse erupts (the firing stage). The simulation
clearly reveals that the formation of the metallic filament is a nearly instantaneous event,
although a process is needed for a particular series of driven pulses, during which the
integrating and leaking processes take place.
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4. Discussion

In this work, the experimental results, further verified by numerical modelling, suggest
that the electric pulse-driven resistive transition in VO2 is a volatile process with elastic
properties. Its elastic properties come from the fact that at the end of the individual
driving pulse, in which VO2 fires, it will restore to its original high-resistance state after
a short relaxation time. This non-memory property prevents VO2 from being used for
synaptic devices that must provide memory function. However, this same volatile resistive
transition, combined with the firing delay and the relaxation time, can be prospectively
used to implement the leaky integrate-and-fire function, which mimics the basic biological
neuron behavior.

In the LIF model of biological neurons, the input spiking current train is accumulated
across the membrane capacitor, with the membrane current as the leak channel to change
the membrane potential. In our VO2 neuron, which has a simple design, consisting of one
single VO2 resistor and a current limiting resistor, the input is the voltage pulse train, which
increases the ratio of metallic domains over the total domains in the VO2 device, with the
thermal relaxation of metallic domains to insulating domains as the leak channel. When
the metallic domain ratio reaches a certain threshold for percolative conducting filament
formation, a strong nonlinear avalanche process sets in, causing the device firing with a
current pulse generation. The width of this current pulse is determined by the ending
edge of the input voltage pulse. Since in the LIF model, and the more general spiking
neural network, information is encoded in the timing of spike sequences but not each spike
shape, the width of the output current pulse is not critical. However, for energy-efficient
computation, this pulse width should be minimized. To improve this simple design, so
that the output pulse is more like that of LIF neuron model, an integration capacitor can
be included to form a Pearson–Anson relaxation oscillator [43], by exploiting the negative
resistive behavior in VO2 when a conductive filament is formed [44].

The LIF neuron model, however, has fewer neuron-computation functions than more
accurate biological neuron models [45], such as the Hodgkin–Huxley model, in which,
specific voltage-dependent ion channels, one for sodium and another one for potassium,
control the flow of those ions through the cell membrane. Similarly, a two-stage VO2 neuron
can be designed to implement biologically more plausible neurons [22,35].

The mature digital and analog silicon-based metal oxide semiconductor (MOS) tech-
nologies have been used for fabricating Si neurons. However, dozens of MOS transistors
and other components are needed for a single neuron, which limits the integration density
and energy efficiency. Another critical issue for Si neurons is the lack of intrinsic stochastic-
ity, which hinders them in implementing some complex computational tasks that require
stochastic neuronal populations, such as Bayesian inference [18]. In contrast, leveraging
the IMT in Mott insulators, including VO2, multifunctional neurons with rich neuronal
dynamic behaviors could be designed with very few components to achieve high inte-
gration density and energy efficiency. Furthermore, the intrinsic stochastic phenomenon
in the VO2 IMT process [46] can also be exploited to emulate the stochastic processes in
biological neurons.

5. Conclusions

We performed a study, by combing experimental measurements and simulation, on
VO2-based resistive transition devices, aiming for leaky integrate-and-fire model based
artificial neurons. The experimental data shows that two-terminal VO2 devices, thanks to
their abrupt and volatile insulator-to-metal transition, exhibit the basic LIF spiking neuron
characteristic with elasticity. A resistor network model was used to simulate the behavior of
the voltage pulse-driven VO2 resistive transition by incorporating the effect of the electric
field across each VO2 domain, on their insulator-to-metal transition, under single long
pulse or multiple short pulse conditions. The simulations confirm that the volatile and
elastic resistive transition under voltage pulse is caused by an avalanche-like creation and
relaxation of volatile metallic filament. The simulation offers a microscopic view on the
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dynamic and abrupt filament formation process to explain its LIF behavior. This study
suggests that two-terminal VO2 volatile resistive transition devices could be prospectively
used for artificial neurons.
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