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Abstract: Information security is of pivotal concern for consistently streaming information over the
widespread internetwork. The bottleneck flow of incoming and outgoing data traffic introduces the
issues of malicious activities taken place by intruders, hackers and attackers in the form of authenticity
obstruction, gridlocking data traffic, vandalizing data and crashing the established network. The
issue of emerging suspicious activities is managed by the domain of Intrusion Detection Systems
(IDS). The IDS consistently monitors the network for the identification of suspicious activities, and
generates alarm and indication in the presence of malicious threats and worms. The performance
of IDS is improved by using different machine learning algorithms. In this paper, the Nesterov-
Accelerated Adaptive Moment Estimation–Stochastic Gradient Descent (HNADAM-SDG) algorithm
is proposed to determine the performance of Intrusion Detection Systems IDS. The algorithm is
used to optimize IDS systems by hybridization and tuning of hyperparameters. The performance of
algorithm is compared with other classification algorithms such as logistic regression, ridge classifier
and ensemble algorithms where the experimental analysis and computations show the improved
accuracy with 99.8%, sensitivity with 99.7%, and specificity with 99.5%.

Keywords: Intrusion Detection System (IDS); HNADAM-SDG (Hybrid Nesterov-Accelerated
Adaptive Moment Estimation–Stochastic Gradient Descent); Network-Based Intrusion Detection
System (NIDS)

1. Introduction

The extensive practice of technology over a widespread network introduces the im-
portance of information security. The illegitimate activities of intruders are kept under
consistent monitoring, provided by different security software such as firewalls, anti-
malware systems, anomaly detection systems, endpoint systems and IDS. The availability
of on demand resources allows users to store the voluminous amount of data and informa-
tion over the service provider’s platform, where the platforms are open sourced software,
open clouds and integrated development environments. The extent of exposure to virtual
resources give arise to the evolving problem of virtual security threats. Ref. [1] found that
security threats can arise within the network or outside the network by multiple intruders
in the form of cyber-attacks, malware and worms. IDS are detection systems that track
malicious activities by monitoring incoming and outgoing network traffic, the alarm or
alerts are generated based on the identification of unusual activities within the network.
The alarm is generated if the intruder attempts to hamper the virtual security by gaining
unauthorized access to the private network, wide area network, personal network, personal
computer and large scale computer hubs by passing information to the administration of
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the security breach. The IDS system aims to catch the suspicious activity of intruders or
hackers before they forge the information by crashing the network system. The IDS are
defined as network based IDS, host based IDS, signature based IDS and anomaly based
IDS. The one of the most popularly used IDS is SNORT, which usually works on a Unix or
Linux based operating system with a lightweight network based IDS [2]. The IDS system
installed over any network is used for the detection of malicious activities and to keep
track of different types of cyber-attacks imposed over the network. The recorded attack
patterns help to identify future attack occurrences in any organization, to change and
adopt the enhanced security systems. It is able to track bugs or network configurations.
The IDS sensory devices are the other methodology to make the system more secure and
sustainable, by using an alarm filtering technique to differentiate between malicious and
normal activity patterns.

The Figure 1 shows the schematic representation of IDS [3]. This is the illustration for
designing an IDS model where hypertuning and optimization is the technique. The method-
ology to design a machine learning algorithm with a good classification and prediction
result involves data collection, data preprocessing, feature selection, data reduction and
classification [4]. The IDS works as a monitoring system that constantly tracks incoming
and outgoing network traffic. The network attack and malicious activity is captured in the
form of data which are then used for understanding attack patterns and for changing the
security model on the basis of updated attack patterns.

Figure 1. Schematic Representation of IDS.

Gap Analysis

The hyperparameter optimization algorithms’ performance depends on various fac-
tors such as total hidden layers, total per-layer units, dropout amount, regularizer learning
rate and weight decay. The non-optimal setting of hyperparameters will drastically affect
the algorithm performance, that varies from an extremely low learning rate to a very large
learning rate. The cogency of the paper is defined as finding the hyperparameter optimiza-
tion methodology for a UNSW-NB15 dataset to gain higher accuracy by minimizing the
generalization error. The proposed HNADAM-SDG algorithm trains the network with only
a subset of hyperparameter configurations where the subset of configuration is randomly
opted. The hyperparameters are defined before the model training to provide the flexibility
to fit the model on the basis of dataset. The compulsions of the gradient descent algorithm
are accelerated by the optimization of the hyperparameters. The performance analysis and
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experimental analysis of the algorithm is compared with other classification algorithms by
adapting the hyperparameter optimization and feature selection techniques. The research
questions for the paper are:

• RQ1—To find the combination of hyperparameters to maximize the performance of
model by diminishing generalization error and computational cost.

• RQ2—To find a hyperparameter response space which depends on methodology,
hyperparameters, dataset and metrics.

• RQ3—To deploy a methodology by the sampling of candidate parameters using a
cross-validation scheme.

The paper is presented by combining multiple sections, as Section 2 represents related
work. The detailed description of the dataset has been explained in Section 3, and the
detailed explanation of the methodology used in the proposed algorithm has been explained
in Section 4. In Section 5, the proposed algorithm has been explained in detail, in Section 6,
the results observed from the proposed algorithm and the discussion of the result has been
done, and in Section 7, the conclusion of the proposed work has been explained.

2. Related Work

In the recent research trends, it has been observed that the method of feature selection
is modified to boost the classification performance of the designed model. It has been found
by [5], that, based on features selection and data reduction, the classification performance
of the model enhances. The authors performed a test on three different sets of features to
validate its hypothesis of enhancing the performance of a model on the basis of different
features, and the performance of classification model became faster when the size of data
was small. The three feature section methods used are IG + Correlation, Multimodal
fusion, and GA + LR. The accuracy and precision was computed in two different scenarios,
and performance was measured without data reduction. It was found that in the second
scenario, the performances of three feature sets were increased by 0.02%, and in first
scenario, the performances were increased by 0.03%.

These authors [6], made a survey in the area of the usage of a neural network for IDS.
The survey includes the study of different types of dataset that are extensively used for
designing IDS as a KDD Cup 1999, NSL-KDD, UNSW-NB-15 and Kyoto2006+. The neural
network technology is often combined with hybrid models for better performance. The
different datasets studied shows some drawbacks of being redundant and older.

The challenges faced by IDS is during occurrences of newly generated cyber-attacks.
The existing cyber-attacks are easily detected by the model on the basis of the attack pattern.

A hybrid approach has been introduced by [2], for analyzing the IDS using Naïve
Bayes, and the improved BAT algorithm by analyzing selected features. The author vali-
dates the hypothesis that the feature section methodology improves the performance of
the anomaly detection model. In this, the features are ranked on the basis of their weight
values using the IG algorithm, the features marked with same ranks or that fall in the
category of same weights are grouped together to form sets which are then applied using
the BA algorithm.

The processing of subsets results in feature optimization, the optimized features are
applied over the random forest algorithm in the form of different sized feature sets, such
as 15, 20, and 35, and found that the random forest results into a better classification
performance. An IDS for advanced metering infrastructure (AMI) in grid systems has
been done by [7], as they are the target due to its two-way communication ability over
internetwork. To overcome the problem of considering global and temporal characteristics
of malicious information, the long short-term memory (LSTM) networks, based on the
convolution neural network (CNN) algorithm, is used, which is fused with cross layer
features over AMI IDS. The authors proposed an LSTM-CNN feature-fusion based cross
layer IDS to track the normal and suspicious behavior of data. The KDD Cup 99 and
NSL-KDD dataset was used with the proposed algorithm to test and train the model.
The proposed model showed an overall accuracy of 99.79%. An IDS model, based on
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data integrity, attacked the DI-EIDS to achieve a low false alarm rate and a high sensing
rate, [8]. The proposed methodology is classified as sampling and feature selection based
on attack patterns tracked by IDS. The black forest classifier (BFC) was used for training
the model, grey wolf optimization (GWO) and deviation forest (d-forest) was used for the
optimization of the ratio and barriers’ removal for the sampling selection. The research
gap is that the training procedure takes a longer time than usual, and it is used only
for the detection of data integrity based attacks. The overall accuracy for the DI-EIDS
algorithm is 94.7%, with overall precision, recall and F-measure as 62.7%, 67.1% and 62.5%,
respectively. For the prediction measures, in comparison with the NB, ELM, and SVM
algorithms, the algorithm shows a low false alarm rate. A new hybridization technique
is proposed by the authors [9], to provide security to the cloud computing environment
against phishing, fake identity and data absconding detection. The proposed algorithm
upgrades the fitness value automatically by modifying clusters using fuzzy based ANN.
The spider monkey optimization method is used for dataset and dimensionality reduction.
The NSL-KDD dataset is reduced and optimized by the FCM-SMO cluster classifier. It is
found that the performance of the proposed algorithm outstands existing algorithms, such
as ANN, FCM+SVM, and ANN+FCM. The overall accuracy of the hybridization algorithm
is ranging between 80 and 85% with precision, sensitivity, F-measure and specificity as
0.85%, 85%, 95%, 67%, 75%, 85%, and 88%, respectively.

The authors [10], found that the implementation of machine learning methods depends
on the validation and availability of data, as the higher dimensionality has an adverse
impact on the performance of the machine learning algorithm. The authors developed
a genetic algorithm based on a novel fitness function and featuring selection methodol-
ogy that preserves the information using intrusion detection for network security. The
developed methodology, GbFS, enhances the accuracy by 99.80%. Ref. [11], the authors
optimized fragments of the assembly of DNA using a metaheuristic consensus approach
over an overlap layout. The outcomes of the methodology show the average performance
as compared with other methodologies over 25 datasets. Ref. [12], the authors guaranteed
the detection of an impersonation attack in device to device communication using a rein-
forcement learning attack technique. The performance of the algorithm is reported in terms
of false alarm rate, detection rate and error rate. Ref. [13], the authors studied how the
varying stress levels of drivers impact the control of the vehicle and the associated risk in
road accidents with high stress levels, hence it is proved that a reduced stress level is the
major key to mitigate accident. The authors used a machine learning approach to study the
links between brain dynamics and physiology. The study concludes that SVM performs
better among different classification algorithms, with an accuracy of 97.95%. Ref. [14],
found that the IDS plays the vital role in achieving security for information. The signature
based anomaly detection based approach is used to detect a sophisticated attack, which
frequently changes its patterns, and is traced on the basis of its traces. The authors provide
an experimental review for network intrusion management methodology based on a neural
network and deep learning. The experimental analysis is performed considering time
complexity and accuracy. Ref. [15], studies that the network IDS is used to determine the
frequency of normal and network traffic for the detection of anomaly behavior. The authors
proposed a deep learning based classification approach for feature extraction. The accuracy
of 99% was achieved when compared with other algorithms over latest dataset. Ref. [16],
authors proposed a machine learning based multi stage optimization network intrusion
detection based approach. The study is based on the impact of oversampling on modeling
different training samples using multiple feature selection techniques. The authors found
that the performance of the model was enhanced with 99% accuracy for the CCIDS and
UNSW-15 dataset. Ref. [17], authors evaluated the KDD 99 dataset with a significant
supervised feature selection approach in the network IDS, various experimental analysis
approaches were used to measure complexity, correlation and performance. Ref. [18], found
that the anomalies are detected by using various artificial intelligence based algorithms, the
quality of detection is improved by reducing the false negative rate. The condensed nearest
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neighbor’s approach is used over the NSL-KDD dataset for the classification and regression
of samples. The experimental analysis shows the improvement in the detection rate with a
decreased processing time. Ref. [19], authors proposed a red-black tree full-nodes based
integrity approach over multi-copy dynamic data. Ref. [20], found that the authentication,
based on a unique ID, is required to deal with the issue of malicious activities over the
cloud storage systems. Refs. [21,22], authors found that the conventional Internet of Things
(IoT) technology is used in the industrial sector. The extensive expansion of IoT in the
industrial sector gives rise to the obstruction of information security. The authors proposed
a novel HDRaNN algorithm for the detection of intrusions in the network and found that
the algorithm shows a high accuracy of 98% and 99% for two different datasets, such as
UNSW-NB15 and DS2OS.

Research Gap

• The performance of the machine learning algorithm is dependent on the selection
of hyperparameters.

• Hyperparameter optimization algorithm performance depends on various factors,
such as total hidden layers, total per-layer units, dropout amount, regularizer learning
rate and weight decay.

• The non-optimal setting of hyperparameters will drastically affect how the algorithm
performance varies from an extremely low learning rate to a very large learning rate.

• The hyper-tuning approach varies depending on the type of dataset, the nature of the
dataset and its size, as there is no well-defined formula to find hyperparameters.

3. Dataset Description

The UNSW-NB15 dataset was created by the PerfectStorm tool in the Australian Centre
for Cyber Security Cyber Range Lab for the tracking of synthetic and normal contemporary
attack patterns. In this, 100 Gb of Pcap Raw traffic files are used by the Tcpdump tool, [23].
The dataset encloses the attack patterns for nine types of attacks, such as Backdoors, Fuzzers,
Analytical, DoS, Exploits, generic, reconnaissance, worms, shellcode, and phishing. The
HANADAM-SDG algorithm is used to analyze and train 49 features developed with class
labels in the dataset. The total of 2,540,044 records are used, which are segregated into
four CSV extended files, such as UNSW-NB151.csv, UNSW-NB152.csv, UNSW-NB3.csv and
UNSW-NB4.csv [24].

The lists of event files and truth table files are named as UNSW-NB15 Ground_Truth.csv
and UNSW-NB15 List_Event.csv [25].

The test and train datasets as UNSW-NB151.csv, and UNSW-NB152.csv. The total
number of training and testing records includes 175,341 and 82,332 from different types of
normal and attack patterns. The datasets are freely accessible for research and academic
purposes in perpetuity.

In Figure 2 the x-axis in all the bar graphs shows the captured normal attack patterns
and represents nine different attacks as Normal, Generic, Exploits, Fuzzers, Denial of
Services, Reconnaissance, Backdoor, Shellcode and Worms, where the y-axis represents the
count of the number of records in Figure 2.

The distribution of the training dataset and testing dataset on the basis of different
types of normal and attack behaviors is represented in Figure 2.
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Figure 2. Dataset Description.

4. Traditional Regression Analysis

Regression is the methodology to find the functional relation between two or multiple
variables. The way the straight line fits over the variables defines the linear regression.

The fitted line equation, which shows the average relationship between two variables
and the predicted P value of the dependent variable for the given Q value of the variable,
is in Equation (1) [8].

X = p + qY, (1)

where X and Y are dependent and independent variables, p is bias and Error Rate is X,
actual points—X. The error is the difference of points from the line.

For example, if we have values for two variables, say P and Q, and it is needed to fit a
line over the top of the points P and Q, and if it is required to check how these points are
fitted to the line, then we compute the error value, as in Equation (2) [9]

Error Value = Xactual − X, (2)

The error is the distance between the fitted line and the point. Here, for the second
entry and third entry we get the error of 1 and −1.

To remove the negative entries so that the overall result will not be zero or wrong, we
will square the error values. The line is the best fit if the magnitudes of deviations are low
for an individual case, for large values of deviation the method of “least squares” is used to
minimize the squared deviation in Equation (3) [8].

Thus, for minimization,
∑(y−Y)2 (3)
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where y is the variable value and Y is the line. For the coefficients of the least square
regression, the line equation a and b is given by Equations (4) and (5) [3,8].

∑ y = Ma + b ∑ x (4)

∑ xy = a ∑ x + b ∑ x2 (5)

Here, M includes the total number of cases (Equations (4) and (5) are “normal equa-
tions”) for simplification [8,26],

b =
∑ xy− (∑ x) (∑ y)

M

∑ x2 − (∑ x)2

M

, (6)

a =
∑ y
M
− b ∑ x

M
. (7)

If the line passes through (x, y),

b =
∑ xy

M − xy
∑ x2

M − x2
, (8)

Here, the denominator is a variance of the variable x, and the numerator is defined as
the covariance of the variables x and y. This shows the line of the least squared deviation
and shows the manner in which the regression line fits on x, using Equations (6)–(9) [8].

a = y− bx, (9)

The Equation (8) relation between variance and covariance is written as Equation (10) [6,8].

b =
cov(x, y)

var x
, (10)

The value of the x variable is predicted by using the given value for the y variable,
which is represented as the regression of x on y and the equation becomes,

x = a + by.

The xy with b shows the slope of the regression line for x on y. Similarly, the yx with b
shows the slope of regression for y on x. The equation bxy is given as Equations (11)–(13) [20].

bxy =
cov(x, y)

var y
, (11)

The regression analysis for grouped data follows the same procedure as for the simple
linear regression for two variables, apart from the criteria that all the data items that fall
into one group are approximated to have a value equal to the mid-point value of a specified
group where the data are organized in a two-way matrix, as in Equation (12).

byx=
∑ f xy

M − ∑ f x
M ·∑ f y

M
∑ f x2

M − (∑ f x
M )2

, (12)

Here, the numerator is the frequency and the count of those items which have their
values in the specified group for the term variables x and y.

=
∑ f dxdy

M − ∑ f dx
M

∑ f dy
M

∑ f d2
x

M −
(

∑ f dx
M

) , (13)
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Linear Regression is a supervised learning based algorithm which targets prediction
values considering independent variables that define the relationship between multiple
variables and forecasting.

The relationship between multiple variables and forecasting and the relationship
between dependent and independent variables differ the regression model. The dependent
variable (s) is predicted by a given independent variable (t) to define a linear relationship
between (s-input) and (t-output). For linear regression, the hypothesis function is given in
Equation (14) [20,27]

t = ∝1 +∝2 ×s, (14)

Here, p is a univariate input training data and q is the data labels. The regression
training model should fit a line to predict the data labels for a particular value of one
input variable.

The model fits the best when the accurate value of ∝1 and ∝2 is computed, it predicts
the value of q on the basis of input value p. The best fit values of ∝1 and ∝2 is computed
or updated by using a cost function. To achieve the best fit, the regression model objects
to predict data labels (q) in such a way that the difference between the true value and
predicted value is minimum. The cost function is used for updating the best fit values of ∝1
and ∝2 to minimize the error rate using Equations (15)–(17) [11,12].

mini
1
n∑n

k=1(preditionk − qk)
2, (15)

M =
1
n ∑n

k=1(predictionk − qk)
2, (16)

RMSEV =

√
∑n

k=1 (qprediction,k − qk)
2

k
, (17)

Here the root mean square of the difference of the (q) predicted value and the (q) real
value is the cost function (M). The cost function is to calculate the difference in the true
value and predicted value. Root Mean Squared Error Value is defined by the square root of
the mean of the error value square.

The Figure 3 represents the HNADAM-SDG flow chart, having a tendency to lower
itself during convergence, and is represented using variable momentum and a step size, as
in Equation (18) [5].

Mij(k + 1) = Mij(k) + ∆Mij(k) + β∆ Mij(k− 1), (18)

Here, N is the error function, Mij the weight, and ∆Mij is the continuous change in
the value of the weight for each loop. The objective is to minimize the gradient of N by
following the methodology in Figure 3.
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Figure 3. HNADAM-SGD flow chart.

5. Proposed Hyperparameter Optimization Algorithm

Linear regression is used to measure the relationship between the population of
variables based on collected paired samples. The correlation of variables is determined to
further compute the mathematical relationship to predict the value of one variable from
the other variable, and to observe the change in the value of variable.

Let the study variable be ‘p’ and explanatory variable be ‘q’, the items for variable ‘p’
and ‘q’ are paired as, (q1, p1), (q2, p2), . . . . . . , (qm, pm), the simplest form of relation is a
linear relationship which is defined as p = x + yq, the line is required to fit along the points.
To make the line fit best, the values of a and b are to be maintained accurately.
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The least square estimation is made for the best fit of the variables. The exact relation
between the variables is found by approximating the relationship along the line, so the line
equation can be rewritten as p = x + yq. Here, p is the predicted or estimated value of p.
The exact relationship among the variables is defined as p= x+yq=error, the error here is
the difference between the predicted value and actual value for (q1, p1), (q2, p2), . . . . . . ,
(qm, pm), the error is computed as (pj − q − xqj) for I = 1, 2, . . . ., n, to find the values of a
and b, for which the difference is the minimum for the best fit.

In the least square estimation, the summation of the squared residuals is the minimum.
The differentiation is separately obtained for a and b, having derivative to be zero. The a
and b estimates are defined in Equations (19)–(21) [5].

â = y− b̂x, (19)

ŷ =
∑m

j=1
(
aj − a

)(
bi − b

)
∑n

i=1(ai − a)2
=

SSXY
SSX

, (20)

The least square estimation (LSE) r for b is,

r = ŷ

√√√√∑m
b=1 (qi − q)2

∑m
j=1 (pi − p)2 = ŷ

√
SSX
SSY

, (21)

Here r and ŷ are same. Coefficient of determination is used when there is no linear
relationship between the variables, the residual quantities are as in Equation (22) [11].

pi − x− yqj , where (j = 1, 2, . . . . . . , m) (22)

The fitted linear model has a small magnitude of the residuals, the variability of Y
using X shows how the change in the values of Y affects the prediction of the values. The
variance is computed as in Equations (23)–(30) [11].

1
m ∑m

j=1 (pi − p)2, (23)

this is partitioned as,

1
m ∑m

j=1 (pj − p)2=
1
m ∑m

j=1 (pj − p̂j + p̂j − p)2=
1
m ∑m

j=1 (pj − p̂j)
2 +

1
m ∑m

j=1 ( p̂j − p)2, (24)

∑m
j=1 (pj − p)2 = ∑m

j=1 (pj − p̂j)
2 + ∑m

j=1 (pj − p)2, (25)

1
m ∑m

j=1

(
pj − p̂j

)(
p̂j − p

)
= 0, (26)

Here pj − p̂j is the residual.
The sum of the squares due to errors (SSE) is defined as

∑m
j=1 (pj − p̂j)

2, (27)

The sum of the squares due to regression (SSR) is given as

∑m
j=1 ( p̂j − p)2, (28)

The total variability in p is,

P(SST =
1
m ∑m

j=1 (pj − p)2), (29)
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R2 = SSR/SST = 1 − (SSE/SST), (30)

0 ≤ R2 ≤ 1, when R2 is near to 1, and then it is to be found that most of the variability
falls in y and the model is the best fit, and when R2 is close to 0 then it defines that there is
not much variability in Y and the model is not a good fit.

The variability of Y values around the predicted regression line is measured by estimat-

ing the standard error as Spq =
√

SSE
m−2 , when the predicted outcome is close to the observed

values then the standard error is less, for the hypothesis as in Equation (31)–(34) [9,28].

Hα(A) =∝0 + ∝1 A, (31)

We need to fit, for the training data, and so the cost function is used as the mean
squared error:

Mean Squared Error =
1
k ∑k

j=1 (qj − qvector j)
2, (32)

This error is minimized by using a gradient descent optimization algorithm, such as:

∝k = ∝k − θ
∂

∂ ∝k
B(∝0, ∝1) f or k = 0 and k = 1, (33)

The testing of the hypothesis using a correlation coefficient along the slope is given by
the test statistic,

Tc =
b̂√
SSE

(n−2)SSX

, (34)

testing the hypothesis Ho where b = 0 and Ha where b 6= 0.To predict the Y value using the
fitted line, the confidence interval and prediction interval are used, which defines the point
of estimation of the population.

The confidence interval is shown in Equation (35) [9].

p̂j ± s∝/2 (d. f . = m− 2)Spq

√
1
m

+
(qj−q)2

SSX
, (35)

The prediction interval is shown in Equation (36) [26].

p̂j ± s∝/2 (d. f . = m− 2)Spq

√
1 +

1
m

+
(qi−q)2

SSX
, (36)

To define the individual variable value, the defined value must be obtained using a
prediction interval.

The gradient descent algorithm uses the gradient of function parameters to identify
the search space. HNADAM-SDG is based on the NADAM Nesterov Momentum version
of gradient descent. Hypertuning is used for attaining the betterment of performance. This
algorithm follows the negative values of objective parameters to relocate the minimum
of function. It measures the displacement in weight with respect to the displacement in
error. The gradient is also understood as the function of a slope. The gradient is inversely
proportional to the steepness of the slope. The learning of the model depends on the
steepness of the slope. If the slope tends to zero, then the model stops learning, which is
given by Equations (37)–(49) [29].

p = nq + b, (37)

Error = p− p, (38)

Error2 (Cost Function) = Estimated Value−Actual Value =
(
(p− p)2, (39)
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L.F = ((nq + b) − b)2, loss function = L.F, (40)

L.F = ((nq + b) − p)2, (41)

L.F = f(n,b), (42)

Total Loss = T.LTotal =
1
M ∑M

j=1 (
(
nj + b

)
− pj)

2, (43)

∂s
∂n

=
∂

∂b
(∑M

j=1

(
nqj + b

)
− pj)

2
), (44)

∂s
∂b

=
∂

∂b

(
M

∑
j=1

((nqj + b)− pj)
3

)
, (45)

The gradient descent with respect to “b”

∂

∂b
=

∂

∂b

(
∑M

j=1((nqj + b)− pj)
2
)

, (46)

∂

∂b
= 2

(
M

∑
j=1

((nqj + b)− pj)

)
(47)

The gradient descent with respect to “n” is given by Equations (48) and (49) [29,30].

∂s
∂n

=
∂

∂n

(
∑M

j=1((nqj + b)− pj)
2
)

, (48)

∂s
∂n

= 2

(
M

∑
j=1

((nqj + b)− pj)

)
(49)

Experimental Analysis

The UNSW-NB15 dataset comprises 254,004 attacks of data, categorized as normal
and attack. A total of 49 features were there [32], including flow and packed based features
from data packets. Attacks were categorized into different classes, such as normal, analysis,
backdoor, DoS, Exploits, Fuzzers, Worms, Generic, Shellcode and Reconnaissance [33]. The
list of features selected for experimental analysis is presented in the Table 1.

Table 1. Selected Features.

S.No. Feature Name Description

1 Proto Protocol

2 Dur Duration

3 State State Protocol

4 Service Services by Network

5 Spkts Source to Destination Packet Count

6 Dpkts Destination to Source Packet Count

7 Sbytes Transaction Bytes Source to destination

8 Dbytes Transaction Bytes Destination to Source
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Table 1. Cont.

S.No. Feature Name Description

9 Rate Data Rates

10 Sttl Source to destination Time to Live Value

11 Dttl Destination to source Time to Live Value

12 Sload Source Bits per second

13 Dload Destination Bits per second

14 Sloss Source packets retransmitted or dropped

15 Dloss Destination packets retransmitted or dropped

16 Sinpkt Source interpacket arrival time (mSec)

17 Dinpkt Destination interpacket arrival time (mSec)

18 Sjit Source jitter (mSec)

19 Djit Destination jitter (mSec)

20 Swin Source TCP window advertisement value

21 Stcpb Destination TCP window advertisement value

22 Dtcpb Destination TCP base sequence number

23 Dwin Destination TCP window advertisement value

24 Tcprtt TCP connection setup round-trip time

The HNADAM-SDG algorithm (Algorithm 1) is employed over the dataset with the
list of selected features. The complexity of the algorithm (Algorithm 2) is determined by
computing the sum of all the gradients to lower the computation cost per iteration with the
convergence of necessary iterations. The algorithm adopts the methodology to uniformly
select the observation as n and used the estimator function f(s) as fn(s).

Algorithm 1: HNADAM-SDG

Initialize “m” and “c” in the start with a random number.
Calculate gradient.
Update the calculated gradient with respect to “m” and “c” using Equations (50)–(52) [31].

∂s
∂n

=
∂

∂n

(
∑M

j=1((nqj + b)− pj)
2
)

, (50)

∂s
∂n

= 2
(
∑M

j=1((nqj + b)− pj)
)

, (51)

The learning rate is multiplied by “n” and “b”.
Update the value of “n” and “b” for every step.
The class-conditional densities are not being modeled in the logistic discrimination:
Model Parameter β

Parameter Initialization,
Normal distribution β ∼ M

(
Q, θ2)

Initial vector n = 0,
Initial vector u = 0,
Initial steps T = 0
Initial convergence parameter as Boolean = F,
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Algorithm 1: Cont.

While Boolean = = F,
Do shuffle the training set T for each mini-batch b ⊂ T and do the update step T = T + 1
Compute the gradient vector G = ∇βL(β; b) on the mini-batch b.
Update Vector n.
m = α1.n + (1− α1).G
Update Vector n = α2.u + (1− α2).G@G
Rescal Vector ∃ = n

1−αT
1

Rescal Vector U = U/
(
1αT

2
)

Update Variable in Equation (52) [29]

β = β− m√
u + x

@

(
α1m +

(1− α1)

1− αT
2

.G

)
, (52)

End for
If convergence condition holds then
Boolean = T
End if
End while
Return model variable β

The iterative loop, For i = 0,——,c
Pi ← rand(−0.10, 0.10) to compute random variable ranging between −0.10 to 0.10
The iteration is made:
Repeat
For i = 0,—–,

∆Pi ← 0
For i = 0,—–,c

0← 0 + Pi AT
i

B← sigmoid(0)
∆Pj ← ∆Pj +

(
RT − B

)
AT

i
For j = 0,—–,d

Pi ← Pi + n∆Pi
Until convergence repeat the iteration
The iterative loop For j = 1,—-,v
For i = 0,—-,c

Pij ← rand(−0.10, 0.10)
The iteration is made using
Repeat
For j = 1,—-,v

For i = 0,—-,c
∆Pij ← 0

For T = 1,—-,m
For j = 1,—–,v

Qi ← 0
For i = 0,—–,c

Qi ← Qi + Pij AT
i

For i = 1,—–,v
Bj ← exponential(Qi)/Συ exponential(Qυ)

For j = 1,—–,v
For i = 0,—–,c

∆Pij ← ∆Pij +
(

RT
i − B

)
xT

j
For j = 1,—–,v

For i = 0,—–,d
Pij ← Pij + n∆Pij

Repeat the iteration until convergence.
Training T; Learning Rate N; Normal Distribution θ; Decay Parameters α1, α2
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Algorithm 2: Complexity Computation

Initialize the weights as s1
For m = 1 to M do
Observation of sample n uniformly as random in Equation (53) [29].

sm + 1 ← sm − β∇ fm (sm), (53)

end for
wM return.

This holds O(n) computations, as the number of iterations (i) is larger in the testing and
training of the sampled dataset. The computation cost is determined, as defined in Table 2.

Table 2. Complexity of HNADAM-SDG algorithm.

Method Iterations Per Iteration Cost Total Cost

HNADAM-SDG O(1/ ∈) O(i) O(i/ ∈)

The computation cost of HNADAM-SDG is better and more efficient as it shows
linearity for the different training sets. If the matrix size is (p,q), then the total cost would
be O(kpq), where k denotes the number of epochs and q is the number of attributes per
sample, which is not zero.

6. Results and Discussion

The performance of the HNADAM-SDG algorithm is compared with logistic regres-
sion, ridge classifier and ensemble techniques. The UNSW-NB15 training and testing
data is used for training and testing of the IDS model on the basis of occurrences of at-
tacks. The performance measures are accuracy and error rate that are driven from the
confusion matrix.

The Figure 4 shows the classification of data using the confusion matrix, which is a
two by two matrix consisting of outcomes produced by a binary classifier as the overall
accuracy, error-rate, sensitivity, precision and specificity. The binary classifier produces
results, with labels such as 0/1 and Yes/No. The instances of all the test data is predicted
using the classifier as true positive, true negative, false positive and false negative. The
matrix derives the error rate and accuracy as the primary measure. Here, the confusion
matrix computes the accuracy as 0.51 and error rate as 0.489; the matrix is built between
the true label and predicted label, with labels such as 0/1, and having a data scale.

The Figure 5 shows the learning curves for logistic regression, ridge classifier and
HNADAM-SDG techniques. The learning curve is measured by taking samples from a
training dataset to measure a model of performance by computing the error rate over a
validation dataset. The best fit algorithm has a zero error rate to fit the data points. The error
rate of the model varies as the size of the training instance fluctuates. The curve shows the
change in error, training score and cross validation score as the training instance changes.

The Table 3 represents the performance measures for different algorithms such as
logistic regression, ridge classifier, HNADAM-SDG and Ensemble techniques, applied
over the dataset to predict the emerging attack patterns. The performance is measured by
computing precision, recall, F1-score and the support value for the 0/1, macro average,
accuracy and weighted average.
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Figure 4. Binary Classification Confusion Matrix.

Table 3. Performance Matrix.

Logistic Regression

Precision Recall F1-Score Support

0 0.48 0.82 0.61 3971

1 0.99 0.96 0.98 78,361

Accuracy 0.96 82,332

Macro Average 0.74 0.89 0.80 82,332

Weighted Average 0.98 0.96 0.96 82,332

Ridge Classifier

Precision Recall F1-Score Support

0 0.70 0.72 0.71 3971

1 0.99 0.98 0.98 78,361

Accuracy 0.98 82,332

Macro Average 0.85 0.86 0.85 82,332

Weighted Average 0.98 0.98 0.98 82,332

HNADAM-SDG

Precision Recall F1-Score Support

0 0.71 0.70 0.71 3971

1 0.99 0.98 0.99 78,361

Accuracy 0.99 82,332

Macro Average 0.87 0.88 0.86 82,332

Weighted Average 0.98 0.98 0.98 82,332

Ensemble

Precision Recall F1-Score Support

0 0.49 0.80 0.60 3971

1 0.98 0.98 0.98 78,361

Accuracy 0.97 82,332

Macro Average 0.76 0.88 0.86 82,332

Weighted Average 0.98 0.96 0.97 82,332
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The Table 4 represents the processing time for various algorithms on the basis of the
training and testing times for logistic regression, ridge classifier, HNADAM-SDG and
Ensemble techniques applied over the dataset to predict the emerging attack patterns.

Table 4. Time Complexity Analysis.

Processing Time

S.No. Algorithms Training Time (Second) Testing Time (Second)

1. Logistic Regression 500.23 15.23

2. Ridge Classifier 450.50 14.56

3. HNADAM-SDG 300.30 12.42

4. Ensemble 780.48 20.31

The Figure 6 shows the ROC curve areas for the logistic regression, ridge classifier,
HNADAM-SDG and ensemble algorithms to find the area under the curve of the receiver
characteristic operator (ROC) to find plots denoting TPR and FPR, considering the threshold
value, by obtaining the probability curve to separate the signal from the noise. The higher
value of the area under the curve represents the better performance of the algorithm.

Figure 6. Roc Curve Areas.

AUC = 1 denotes that all positive and negative classes are pointed correctly using
a classifier.

0.5 < AUC < 1 shows that the chance of distinguishing between positive and negative
classes is higher.

AUC = 0.5 shows that the classifier is not able to distinguish between positive and
negative classes.

The higher value of the X-axis shows the higher number of false positives, while the
Y-axis shows the higher number of true positives.

The statistical measures of sensitivity and specificity are used for measuring the
performance of the algorithms, which is computed as Equations (54) and (55) as [29]. Here
NTP is the total number of true positives, NFN is the total number of false negatives, NTN
is the number of true negatives and NFP is the number of false positives.

Sensitivity =
NTP

NTP + NFN
, (54)

Specificity =
NTN

NTN + NFP
, (55)
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The Table 5 shows the performance analysis for the comparison of the performance
of different algorithms applied over the dataset. The accuracy, sensitivity and specificity
represent the best fit model for testing and training.

Table 5. Performance Analysis.

Performance Analysis

Algorithms Accuracy Sensitivity(s) Specificity

1. Logistic Regression 0.967 0.955 0.971

2. Ridge Classifier 0.986 0.961 0.989

3. HNADAM-SDG 0.998 0.977 0.995

4. Ensemble 0.977 0.957 0.963

7. Research Limitations

• The hyperparameter optimization algorithm performance depends on various factors
such as total hidden layers, total per-layer units, dropout amount, the regularizer
learning rate and weight decay.

• The non-optimal setting of hyperparameters will drastically affect the algorithm’s per-
formance, that varies from extremely a low learning rate to a very large learning rate.

• The hypertuning approach varies depending upon the type of dataset, the nature of
the dataset, and its size as there is no well-defined formula to find hyperparameters.

• The criticality is to choose what number of parameters are going to be tested, due to
which performance gets affected by the extremely low learning rate of (1 − e−5) or the
very large learning rate of 10, by opting for the wrong hyperparameters.

• There exists no well-defined formula to find hyperparameters as it depends on the
algorithm type, the dataset and the dataset size.

• The performance of the algorithm varies with the change in the dataset’s parameters.

8. Conclusions and Future Scope

In this paper, the IDS model is determined using the hybridization of the HNADAM-
SDG algorithm. The performance of the algorithm is compared with other classification
algorithms by adapting feature selection and optimization techniques. The algorithm is
used for testing and training of the UNSW-NB15 dataset. The HNADAM-SDG techniques
are used to measure the relationship between the population of variables based on col-
lected paired samples. The correlation of variables is determined to further compute the
mathematical relationship, to predict the value of one variable based on another variable,
and to observe the change in the value of variables. The best fit algorithm has a zero error
rate to fit the data points. The error rate of the model varies depending on the size of the
training samples. The performance is visualized using learning curves and AUC-ROC
curve areas. In the future, the IDS will help in mitigating the impact of malicious activities
over emerging information sharing platforms. The IDS will evolve in diversified research
areas such as,

• The IDS for Internet of Things (IoT), which is the booming area for attackers. This
includes breaching security of automotive, wearable and connected devices.

• The IDS for cyber insurance, which is the upcoming ideology to receive attention to
mitigate the damages from upcoming data losses, sabotage and theft events.

• The IDS for analyzing the effectiveness of nature inspired optimization algorithms
over the latest datasets, such as CCIDS and streaming datasets.
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