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Abstract: Citrus fruit diseases have an egregious impact on both the quality and quantity of the
citrus fruit production and market. Automatic detection of severity is essential for the high-quality
production of fruit. In the current work, a citrus fruit dataset is preprocessed by rescaling and
establishing bounding boxes with labeled image software. Then, a selective search, which combines
the capabilities of both an extensive search and graph-based segmentation, is applied. The proposed
deep neural network (DNN) model is trained to detect targeted areas of the disease with its severity
level using citrus fruits that have been labeled with the help of a domain expert with four severity
levels (high, medium, low and healthy) as ground truth. Transfer learning using VGGNet is applied
to implement a multi-classification framework for each class of severity. The model predicts the
low severity level with 99% accuracy, and the high severity level with 98% accuracy. The model
demonstrates 96% accuracy in detecting healthy conditions and 97% accuracy in detecting medium
severity levels. The result of the work shows that the proposed approach is valid, and it is efficient
for detecting citrus fruit disease at four levels of severity.

Keywords: deep learning; graph based segmentation; object detection; disease; citrus fruits; transfer
learning; severity

1. Introduction

According to the FAO (FAOSTAT 2019) [1], world citrus fruit production is estimated
to be at 157.98 million of tons, with oranges accounting for more than half of the total.
Producers seek to produce superior fruits at a cheaper cost that are free of any disease insects
and pathogens; this task can be accomplished through the use of appropriate mechanized
standards and predictive maintenance techniques [2]. Fruit diseases create a substantial
danger to modern farming production of citrus. The citrus sector needs early and automatic
identification of diseases during post-harvesting since a few contaminated fruits might
disseminate the disease to the entire sequence during processing or shipment. The severity
of the disease is a crucial parameter for determining the extent of the disease and affects
yield production. The ability to diagnose disease severity quickly and accurately would help
to prevent production deficits; disease severity has been previously determined by trained
professionals by visually inspecting plant tissues. The high cost and limited efficiency
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of human disease assessment stymies modernized agriculture’s rapid progress [3]. This
paper presents deep learning models for the image-based automatic diagnosis of citrus
fruit disease severity levels. We address the issues of determining the severity of disease
in citrus fruits in a multi-classification framework using a deep learning model in this
paper. Section 1 presents the introduction and contributions of the paper. The rest of the
paper is organized as follows: Section 2 provides the literature review. Section 3 presents
the proposed algorithm for the disease and severity detection of the citrus fruits and
detailed description of the materials and methodology used by the model. Further, results
evaluation is presented in Section 4. Finally, the paper is concluded in Section 5.

Contributions of the Paper

The objective of this paper is to develop a deep learning model that classifies the
disease according to the severity level and to identify the disease-affected area of the citrus
fruit. The proposed model has the ability to recognize and classify the infected areas of
citrus fruits. It is a powerful approach for automatically identifying the citrus fruit disease
severity and can be further extended to reinforce a unified citrus disease identification
system for real-world applications. The current study helps to mitigate and prevent the
fruit disease at the initial stages and can be able to control the cost of the disease when
safeguarding the surroundings globally.

2. Literature Review

Effective surveillance and diagnosis of resistant cultivars is critical for disease con-
trol and prevention for healthy yields. Using watershed segmentation, a novel machine
vision system for the automatic identification of diseases was proposed. Two kinds of
diseases, i.e., yellow rust and Septoria, were accurately detected using the proposed ap-
proach [4]. The severity of leaf rust disease can result in a reduction in sugar production.
As a result, illness signs must be discovered as soon as possible, and appropriate actions
should be implemented to prevent the disease from spreading or progressing. A faster
region-based convolutional neural network framework was constructed by altering the
parameters of the model and a faster R-CNN framework was developed for the detec-
tion of leaf spot infestation in sugar. The technique provided for severity detection of
disease with image-based systems was trained on 155 images, and classification accuracy
of 95.48% was obtained [5]. The citrus industry is still working on developing technologies
for automatically identifying deterioration in citrus fruit throughout quality control. Using
three distinct manifold learning approaches, the viability of reflectance spectroscopy in the
visible and near-infrared regions was tested for the early identification of the root cause of
rot by Penicillium digitatum in citrus fruit [6]. Controlling the spread of disease requires
its diagnosis and then destroying the cause, particularly for citrus huanglongbing (HLB)-
infected trees. Ground investigation is an arduous and time-consuming task. It is rare to
find a large-area analysis tool for citrus orchards with excellent efficiency. The possibility of
large-area monitoring of citrus HLB using low-altitude remote sensing was explored [7].
Nowadays, citrus fruit exports to international markets are significantly hampered by fruit
disorders such as citrus canker, black spot and scab. As a result, thorough procedures
must be performed prior to the transportation of fruits to mitigate the presence of citrus
damaged by them. A model based on a feature selection method with a classifier trained on
quarantine disease for disease detection is being deployed [8]. Among the most significant
components used for enhancing agricultural products, scalability and waste reduction are
considered to be criteria for evaluating quality. An optimized convolutional neural net-
work system was developed to identify visible flaws in sour lemon, evaluate them and
devise a better solution. To detect and characterize abnormalities, lemon images were
taken and divided into two categories, i.e., healthy and impaired. Following preprocessing,
the images were classified using an improved CNN model. To improve the outcomes,
a stochastic pooling mechanism with augmentation techniques was implemented [9]. A
machine vision system to detect irregularities in citrus peel and evaluate the nature of the
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defect was designed. The image is segmented into defective zones using the Sobel gradient.
Following this, color and texture features are retrieved, some of which are associated with
high-order statistics [10]. Disease detection is currently conducted manually by domain
experts using harmful ultraviolet rays on fruits. The utilization of hyperspectral imaging
technologies allows for the advancement of systems for the automatic detection of disease.
A methodology was proposed to develop a multi-classification system using the receiver
operating characteristic curve to detect fungal infections in citrus fruits. The developed
system helped in reducing the set of features and achieved an accuracy rate of 89% [11].

3. Materials and Methods

The proposed model for detecting affected areas and the severity levels of the citrus
fruit disease comprises five modules, as shown in Figure 1. The first module targets
the collection of citrus fruit images.The second module is used to label the healthy and
infected images by using expert knowledge. For labeling the images, an open-source tool
is used [12]. Labeling is the process of providing annotation to the graphical images and
labeling the bounding box for object detection. Annotations of the images are stored as
XML files in Pascal VOC form; the process of annotating the images is further explained
in Section 3.2. The third module is the combination of graph-based segmentation and
object detection to produce regions of proposal that are independent of the class. The most
similar regions are grouped together and the similarity is calculated between the regions,
which is further explained in Section 3.4. A CNN network using transfer learning extracts a
fixed-length feature map for each region in the fourth module. The last module represents
the implementation of multi-class sequential CNN models that determine the severity level
of the citrus fruit disease using a softmax function, as explained in Section 3.6.

Figure 1. The overall process of detection of the citrus fruit disease severity levels.

3.1. Dataset

Fruit diseases severely affect the product quality, market segment and revenue. Citrus
is an important source of vitamins A and C. Citrus illnesses, on the other hand, have a neg-
ative impact on citrus fruit output and quality [11]. Citrus plants such as lemons, oranges,
grapefruit and limes are susceptible to a variety of citrus diseases, such as anthracnose,
HLB, scab, black spot and other fungal infections [13]. Adequate datasets are necessary for
object detection and the classification process using deep learning. All the images collected
for the dataset were downloaded from online datasets and collected from the sources,
i.e., PlantVillage and Kaggle [14,15]. After taking the images from the publicly available
source, the images were prepared for obtaining the severity of the disease with the help of
a domain expert.
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3.2. Annotation

Before training a model, image annotation is an essential image preprocessing step.
During the training phase, a model can learn the labeled features. As a result, the quality
of the training model is strongly influenced by the precision of the feature labeling. As
several types of disease appear to be relatively similar, knowledge of the different types of
fruit diseases could aid the machine in learning traits important to different fruit diseases.
A scientist of horticulture helped with the data annotation. The expert considered the
diameter, color features, shape and the surface area of the affected portion of the disease
present in the image in order to determine the extent of damage in the fruit. The labeling
only included the exterior features of the image, while interior damage was not considered.
The outcome of the annotated image was coordinates and bounding boxes, and the practice
of image annotation required the labeling of disease locations in the image. Labeling is a
free graphical image annotation tool that locates and categorizes the disease severity in an
image and stores it as an XML file with the matching xmin, xmax, ymin and ymax data
for each bounding box [16,17]. There is an XML file in the Annotation folder for a single
JPEG file in the JPEG Images folder. Each object’s bounding box is saved in an XML file. It
is difficult to work with annotation data for each image in a separate file. Therefore, we
used Panda modules to combine each of these XML files into one CSV file. Annotations
were first made in a Panda data framework called “df anno”, which was then saved as a
CSV file. Then, after the CSV file was segregated, containing the annotated data of citrus
fruits, into four disease severity categories: healthy, medium, high and low. We then built
an object for each class of severity. Next, we iterated each row of an object to extract the
image name and URL from the object file and read it. Then, on each category’s object, the
accuracy of object detection was measured. Table 1 represents the total number of citrus
samples taken for training and testing.

Table 1. Citrus sample counts in training and testing.

Classes Sample Count for
Training

Sample Count for
Testing

Healthy 1173 293
Low Severity 737 184
Middle Severity 774 194
High Severity 625 156

3.3. Proposed Algorithm for Detecting Severity Regions of the Citrus Diseases

Input the colored image(Img)

(1) Perform BoundingBox(Img) and annotate the image, i.e., Annotate(Img), where
BoundingBox(Img) is used to create boundary coordinates on affected areas of the
image and the Annotate(Img) function is used to create and extract the annotated
image as an XML file for each image.

(2) Create object for each category (i.e., healthy, low, medium and high).
(3) Repeat step 5 for each object.
(4) Repeat step 6 for each row of single object.
(5) Extract Img_name and Img_url from object and perform preprocessing.
(6) Extract region using graph-based segmentation to determine the region proposal.
(7) Repeat step 9-11 for each extracted segment region.
(8) Compute texture gradient of the image (using LBP).
(9) Extract HSV for entire image using color histogram having COLOUR_CHANNELS

(3)* bins with a total of 25 bins.
(10) Augment regions with histogram parameters and return region proposal.
(11) Repeat step 13 and 14 for neighboring pair of regions

(
AU, AV

)
.
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(12) (Compute similarity Sim(AU ,AV) = colour similarity Simcolor (AU ,AV) + texture similarity
Sim texture (AU ,AV) + size similarity Sim size

(
AU, AV

)
+ fill similarity Sim 5 8 ;;

(
AU, AV

) )
.

(13) Merge regions, in order ((8<(AU , AV) , R).

(14) Calculate IOU for regions.

The precision of object detection highly affects the disease and severity recognition
accuracy so a robust automatic detection system is proposed using image processing
techniques. This algorithm was used to perform the preprocessing and object identification
task for different disease locations and severity of disease present in citrus fruits. Graph-
based segmentation was implemented to obtain the region proposal of each image. The
above steps of the algorithm were implemented to obtain the region proposal and object
detection was performed.

3.4. Steps of Selective Search to Obtain the Region Proposal

Initial regions were generated using Felzenszwalb’s graph-based segmentation ap-
proach. The results after implementation are represented in Figure 2.

Figure 2. Original image and segmented image sample of citrus fruit.

The next step was to add labels to the segmented regions of the image [18]. Visualiza-
tion of labels output after Felzenszwalb segmentation is shown in Figure 3.

After segmentation, a great deal of useless labels or labels are generated belonging
to one object. The next step is to group labels that belong to one object based on the most
similar regions. For this grouping, Local Binary Pattern (LBP) was implemented [19]. To
capture the texture similarities of the initial regions, for each initial region, LBP features
were calculated. The calculated texture gradient for an entire image was computed and the
results are shown in Figure 4.

(a)

Figure 3. Cont.
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(b)

Figure 3. (a) Labels on original image and on Felzenszwalb-segmentated image; (b) Felzenszwalb-
segmented image.

Figure 4. Texture gradient for LBP feature.

Next, we collected the RGB values on a scale of 0 to 1, the highest and lowest RGB
values, as well as the point of difference, by following Equations (1) to (6).

' =
A

255
, � =

6

255
, � =

1

255
. (1)

Vmax = MAX(R, G, B). (2)

Vmin = MIN(R, G, B). (3)

X = +<0G −+<8=. (4)

Hhue =



60◦ ∗
(
� − �
X

mod 6
)
, Vmax = R

60◦ ∗
(
� − '
X
+ 2

)
, Vmax = G

60◦ ∗
(
' −�
X
+ 4

)
, Vmax = B

(5)
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(saturation =

{
0, X = 0
X

+ max
, X ≠ 0

V = +max

(6)

The Hue Saturation Value (HSV) format symbolizes how paints of multiple colors
blend altogether, with the saturation component also representing different intensities of
vibrantly colored paints and the value component representing the combination of each of
these paints with different ratios of black or white paints [20]. Figure 5 represents an HSV
image with calculated min–max values.

Figure 5. HSV image with min–max values.

The sum of the histogram intersection of color (8<2>;>A (AU , AV) was calculated to mea-
sure the color similarity. One-dimensional color histograms were derived for individ-
ual color channels for each region using 25 bins, which was found to be effective. Three RGB
color channels resulted in a color histogram with dimensions d = 75 for each region. The L1
norm was used to normalize the color histograms. The histogram intersection was used to
determine the similarity using Equation (7).

(8<2>;>A (AU , AV) =
∑3=75
;=1 <8=(2ℎ8BC ;U, 2ℎ8BC ;V). (7)

The color histograms can be efficiently propagated through the hierarchy by using the
following Equation (8).

2ℎ8BC =
B8I4(AU) ∗ 2U + B8I4(AV) ∗ 2V

B8I4(AU) + B8I4(AV)
. (8)

The sum of the histogram intersection of texture (8<C4GCDA4(AU , AV) was calculated
to measure the texture similarity. The L1 norm was adopted to normalize the texture
histograms. In Equation (9), the histogram intersection is used to determine similarity:

(8<C4GCDA4(AU , AV) =
∑3
;=1 <8=(Cℎ8BC ;U, Cℎ8BC ;V). (9)
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Next,we calculated the image’s size similarity (8<B8I4(AU , AV) , which promotes the rapid
fusion of tiny regions. This constrains the size of regions in S, i.e., regions that have not
yet been merged, throughout the procedure. This is also advantageous since it enables the
generation of object locations at all scales throughout the image. For instance, it inhibits
an individual region from devouring most other regions one after the other, giving all
scales exclusively at the location of this developing region. (8<B8I4(AU , AV) is defined as the
percentage of the image that AU and AV collectively inhabit, whereas B8I4(8<6) specifies the
image’s pixel size in Equation (10):

(8<B8I4(AU , AV) =
B8I4(AU) + B8I4(AV)

B8I4(8<6) . (10)

Following this, we computed the fill similarity throughout the image. (8< 5 8;;(AU , AV)
determines how effectively the regions AU and AVfit together. The goal is to fill up the gaps:
if AU is included in AV , it is reasonable to merge them first to prevent any gaps. If AU and AV
are barely touching one another, they would most certainly form an odd region and should
not be combined. Only the sizes of the regions and the enclosed boxes are incorporated
in order to ensure a quick evaluation. In particular, we defined ��>GUV as the compact
bounding box encompassing AU and AV . (8< 5 8;;(AU , AV) therefore represents the proportion
of the image in ��>GUV that is not covered by the regions of AU and AV in Equation (11).

(8< 5 8;;(AU , AV) =
B8I4

(
��>GUV

)
− B8I4(AU) − B8I4(AV)

B8I4(8<6) . (11)

Then, we retrieve a list of regions that intersect. We calculate the similarities between
each pair of neighboring regions and then produce the sum of the regions’ similarities
using Equation (12). We obtain the total of two regions’ similarity, which is a composite of
the four types of similarity mentioned previously.

(8<(AU , AV) = (8<2>;>A (AU , AV) + (8<C4GCDA4(AU , AV)+
(8<B8I4(AU , AV)+(8< 5 8;;(AU , AV) .

(12)

We next calculate the similarity of all regions using Equation (13).

(8<>E4A0;; =
∑#
8 9== (8<(AU , AV) . (13)

Next, we merge the regions and then remove already merged regions and calculate a
new similarity value. The following steps should be followed in order to merge the regions.

Merge regions in order s (ri, r j, R)

(1) Retrieve the pair of regions with the highest degree of similarity from the similarity
dictionary.

(2) Merge the region pairs and add them to the dictionary of regions.
(3) Eliminate all pairs of regions from the similarity dictionary in which one of the

regions is defined in step 1.
(4) Determine the degree of similarity between the newly combined region and the

regions and their intersecting regions (intersecting region is the region that is to be
deleted).

return (regions)
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3.5. Intersection of Union on Overlapped Region

To train a classifier using CNN features as input, we require ground truth labels
for each candidate region. However, there is a quandary over how to identify a region
that partially overlaps when a portion of the fruit is included. To address this issue, an
overlap threshold value will be used below which regions will be regarded as negatives.
Intersect over Union (IoU) is a frequently used metric for determining the similarity of
the projected bounding box to the ground truth bounding box using Equations (14)–(16).
The aim is to examine the area of overlap between two boxes to the cumulative area of the
two boxes [21,22]. Figure 6 shows the region of Intersection over Union.

Figure 6. Intersection of Union on overlapped region.

(U1, V1) = (max(a1), max(x1)). (14)

(U2, V2) = (min(12), min(G2)). (15)

Overlapping region = width ∗ height

Else

Overlapping region = 0

Combined region=Area of (Box1) + Area of (Box2)−
Overlapping Region .

(16)

Training features are created and ground truth is divided into 4 pickled objects that
contain candidate regions with an IoU > 0.75. The same object can have a large number of
small candidate regions that hardly provide new information, so, for each object, only the
candidate region will be chosen. Other pickled objects correspond to the particular object
captured in the first object. The remaining two picked objects contain all the candidate
regions that do not contain a citrus fruit object, i.e., IoU < 0.4, and information regarding
the particular object that was not captured in the first object.

3.6. Warp the Regions Proposed by the Selective Search

To calculate features for a region proposal, the transformation of image samples in the
region into a form that is compatible with the CNN is required [23]. All pixels in a tight
bounding box around the candidate region are warped to the desired size irrespective of its
size or aspect ratio. We elongate the tight bounding box before to warping so that there are
exactly p pixels of warped image across the original box (we use p = 16). VGG16 specifies
that the image must have the dimensions (height, width, Nchannel) = (224, 224, 3). The
region proposal given by the selective search often does not correspond to the image with
the dimensions 224 in height and width. Thus, all pixels in the region proposal need to be
warped to the CNN’s input size.
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3.6.1. Feature Extraction

Using VGGNet16, a 4096-feature map is extracted from each region proposal. VGGNet
is the current state of the art, with advanced and efficient identification capabilities, and it is
frequently used for transfer learning due to its portability. Only 3 × 3 convolutions are used
by VGGNet. VGGNet, on the other hand, contains many extra filters [24]. It has 16 layers,
each with its own set of trainable weights. It is now the most popular method for obtaining
features from images. VGGNet’s weight composition is open to the public. VGGNet is only
used for feature extraction and not for classification purposes. For classification, the last
three layers were removed from the network. Forward propagation of a mean-subtracted
RGB 227 × 227 image through 5 convolution layers and 2 fully connected dense layers is
used to compute features.

3.6.2. Transfer Learning

Transfer learning is a powerful approach to machine learning that makes CNNs to
learn for one goal and they are repurposed as the foundation for a model on a different
task. Despite initiating the training from scratch by arbitrarily instantiating the weights, a
pre-trained network can be used to initialize the weights on large labeled datasets such as
public datasets [25]. The ImageNet project is a massive visual database designed for use in
the development of visual object recognition [26]. In this article, leveraging a pre-trained
model is investigated from the enormous ImageNet dataset, which is then used to a obtain
the severity trained on the citrus fruit dataset. The following are the key processes of
the transfer learning technique. The proposed model using transfer learning is shown in
Figure 7.

Figure 7. Proposed CNN model with transfer learning.

The first step is to determine the base networks of the transfer learning and assign
the network’s weights by using the pre-trained CNN model. These weights are available
for download from an online source. Then, we reconstruct the network structure by
manipulating the bottom layers of the network. A new modified network structure can be
obtained using this approach. The newly constructed networks can then be fine-tuned in
order to minimize the loss function using the dataset and associated labels. Specifically,
the Adaptive Moment Estimation (Adam) algorithm is used to determine the optimized
weights with control of the loss function using sparse categorical cross-entropy as a loss
function. Thus, for transfer learning, a VGGNet pre-trained model was used on ImageNet,
and a sequential CNN model was used to train the newly updated neural networks using
the citrus fruit datasets. The method offers the features of VGGNet with a sequential
CNN. From the initial layers, i.e., 1;>2:1_2>E1 to FC1(Dense) are from the VGGNet.Dense,
�4=B4_1,�4=B4_2 is substituted with the sequential CNN model. Lastly, a softmax classifier
is used for multi-classification of the severity classes of citrus disease. Thus, the new model
generally consists of two sections, in which the first section is the pre-trained model and the
other section contains the perpetuated layers employed on a multi-scale feature vector for
multi-classification. Table 2 lists the parameters of the implemented deep learning model.
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Table 2. The related parameters of the implemented model.

Layer Layer Type Kernel
Size

Stride Neuron
Size

Maps Param #

Block1_conv1 Convolutional
layer

3 × 3 1 224 × 224 3 1792

Block1_conv2 Convolutional
layer

3 × 3 1 224 × 224 64 36,928

Block1_pool Pooling layer P1 2 × 2 2 112 × 112 64 0
Block2_conv1 Convolutional

layer
3 × 3 1 112 × 112 64 73,856

Block2_conv2 Convolutional
layer C4

3 × 3 1 112 × 112 128 147,584

Block2_pool Pooling layer P2 2 × 2 2 56 × 56 128 0
Block3_conv1 Convolutional

layer
3 × 3 1 56 × 56 128 295,168

Block3_conv2 Convolutional
layer

3 × 3 1 56 × 56 256 590,080

Block3_conv3 Convolutional
layer

3 × 3 1 56 × 56 256 590,080

Block3_pool Pooling layer P3 2 × 2 2 28 × 28 256 0
Block4_conv1 Convolutional

layer
3 × 3 1 28 × 28 256 1,180,160

Block4_conv2 Convolutional
layer

3 × 3 1 28 × 28 512 23,598,038

Block4_conv3 Convolutional
layer

3 × 3 1 28 × 28 512 23,598,038

Block4_pool Pooling layer P4 2 × 2 2 14 × 14 512 0
Block5_conv1 Convolutional

layer
3 × 3 1 14 × 14 512 23,598,038

Block5_conv2 Convolutional
layer

3 × 3 1 14 × 14 512 23598038

Block5_conv3 Convolutional
layer

3 × 3 1 14 × 14 512 23,598,038

Block5_pool Pooling layer P5 2 × 2 2 7 × 7 512 0
Flatten Flatten —– —– —— 25,088 0
Fc1 (Dense) ——– —– —– —— 4096 102,764,

544
Dense
(Dense)

Sequential CNN —– —– —— 32 131,104

Dense_1
(Dense)

Sequential CNN —— —– ——- 32 1056

Dense_2
(Dense)

Sequential CNN —— —– —— 4 132

Output Softmax ——- —— Classifier 4 —-

4. Result Analysis

The training accuracy is the percentage of the correctly defined data samples in the
training set. Similarly, the validation accuracy refers to the percentage of the correctly
elucidated data samples from some of the other samples. The dataset is divided into
two sets, one set comprising images for training and other for validation. The 80–20
cross-validation process is used to train and validate the model. For validation, multiple
investigations are carried out with shuffled images [26]. New, randomly selected images
are used to test the efficiency of the model. Sparse categorical cross-entropy for the loss
function was used to determine the classification model’s performance. The overall training
accuracy achieved by the model is 95%. The Adam optimizer is selected for the model
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to optimize the cross-entropy function [27]. The result of the implemented convolution
neural network model on randomly selected test images was analyzed and represented as
a confusion matrix, as shown in Table 3. Figure 8 depicts the classification accuracy and
loss gained after the training and validation process of the model.

Table 3. Confusion matrices for all levels of severity of disease present in citrus fruits.

Class Healthy Low Medium High

Healthy 21 0 0 0
Low 0 25 0 1
Medium 3 0 25 0
High 1 0 0 24

Figure 8. Loss and accuracy curves of the implemented model.

Out of the four levels of disease severity of the citrus fruits, the model is able to predict
the low severity level with accuracy of 99%, precision of 100%, recall 84% and an F1 score
of 91%. For high severity levels of the disease, our model recorded accuracy of 98% when
compared to other classes. For the detection of healthy conditions, the model displays 96%
accuracy, and it shows 97% accuracy in the case of the medium severity level. The accuracy,
precision, recall and F1 score calculated for each severity level of the citrus fruit disease are
listed in Table 4.

Table 4. Accuracy, precision, recall and F1 score of the model.

Class Accuracy Precision Recall F1 Score

Healthy 96% 100% 84% 91%
Low 99% 96% 100% 98%

Medium 97% 89% 100% 94%
High 98% 96% 96% 96%

Figure 9 depicts some of the graphical outcomes of the proposed automatic disease
recognition system. The results demonstrate that the accuracy of the disease severity level of
citrus fruits was assessed as low severity (95.9%), high severity (99.7%), medium severity
(95.6%) and healthy (99.7%). As demonstrated in Figure 9, our system can efficiently di-
agnose the image dataset with four severity levels of disease, and has been compared to
expert manual evaluation. The results reveal that disease severity identification is quite
accurate and falls within the domain experts’ acceptable range.
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Figure 9. Result showing four levels of severity in image samples.

5. Conclusions

Fruit diseases are the most serious threats to global agricultural progress, and they have
a strong influence on food safety. As a result, automatic diagnosis of citrus fruit diseases
is increasingly desirable in analytics. Deep learning approaches, specifically CNNs, have
demonstrated an encouraging ability to resolve the majority of the difficult classification
problems. Transfer learning for deep CNNs is investigated in this research with the goal of
improving the learning ability of obtaining the severity level, and a sequential VGGNet16
architecture is developed for the diagnosis of four severity levels of the disease present in
citrus fruit. The pre-trained VGGNet16 is updated by substituting its bottom layers with an
extended convolutional layer that includes a dense layer with ReLu activation and sparse
categorical cross-entropy for the loss function used to determine the classification model’s
performance. The Adam optimizer is selected for the model to optimize the cross-entropy
function. Lastly, a fully connected softmax layer was inserted as the classification layer in
order to obtain the four severity levels of the disease. Test accuracy achieved on randomly
selected images for healthy, low level, high level and medium levels of disease was 96%,
99%, 98% and 97%.
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