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Abstract: Autonomous maneuver decision making is the core of intelligent warfare, which has
become the main research direction to enable unmanned aerial vehicles (UAVs) to independently
generate control commands and complete air combat tasks according to environmental situation
information. In this paper, an autonomous maneuver decision making method is proposed for air
combat by two cooperative UAVs, which is showcased by using the typical olive formation strategy
as a practical example. First, a UAV situation assessment model based on the relative situation is
proposed, which uses the real-time target and UAV location information to assess the current situation
or threat. Second, the continuous air combat state space is discretized into a 13 dimensional space
for dimension reduction and quantitative description, and 15 typical action commands instead of
a continuous control space are designed to reduce the difficulty of UAV training. Third, a reward
function is designed based on the situation assessment which includes the real-time gain due to
maneuver and the final combat winning/losing gain. Fourth, an improved training data sampling
strategy is proposed, which samples the data in the experience pool based on priority to accelerate
the training convergence. Fifth, a hybrid autonomous maneuver decision strategy for dual-UAV
olive formation air combat is proposed which realizes the UAV capability of obstacle avoidance,
formation and confrontation. Finally, the air combat task of dual-UAV olive formation is simulated
and the results show that the proposed method can help the UAVs defeat the enemy effectively
and outperforms the deep Q network (DQN) method without priority sampling in terms of the
convergence speed.

Keywords: air combat; maneuver decision; reinforcement learning; priority sampling; situation assessment

1. Introduction

With the progress of combat mode and the expansion of combat scale, modern air
combat gradually extends from the within visual range (WVR) air combat to the beyond
visual range (BVR) air combat [1]. Unmanned aerial vehicles (UAVs) are more and more
widely used in military tasks such as investigation, monitoring and target attack [2] because
of their low cost, strong mobility and high concealment. Due to the limitations of a single
UAV’s mission and combat capability, autonomous multi-UAV cooperative air combats
have become a research hotspot in recent years [3].

Autonomous air combat maneuver decision making refers to the process of auto-
matically generating the maneuver control decisions of UAVs based on mathematical
optimization and artificial intelligence [4], which requires that UAVs have independent
capabilities for autonomous sensing, information processing and decision-making abili-
ties [5]. At present, there are many autonomous decision making methods for UAV air
combat maneuver control, which can be roughly divided into two categories: Analytical
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solution methods and intelligent optimization methods. Analytical solutions include matrix
games, influence diagrams, differential games, etc. Matrix game method [6] uses a linear
program to find the optimal solution in a short decision time, which cannot guarantee
global optimization. In addition, this method needs to introduce expert experience to
design the income matrix in line with the actual air combat, which is time consuming
and laborious. The maneuver decision making method based on influence graph [7,8] can
intuitively express the air combat model of key factors such as threat, situation and pilot’s
subjective preference through influence graph, but it is difficult to obtain the analytical
solution by this method, and the calculation time is long. So the influence graph cannot
meet the real-time performance of air combat decision making. In [9,10], the knowledge of
game theory is introduced into air combat to realize the one-to-one autonomous maneuver
decision of UAV, and the method in [9] solved the curse of dimension problem by using
fuzzy theory. However, the method in [9] does not take into account the current state of
the enemy aircraft when designing the state, and lacks confrontation simulation results.
The method used in [10] has complex calculation and poor real-time performance, and
is not suitable for the high dynamic environment. The differential game method [11] is
the most practical decision making model for studying air combat games. However, due
to the difficulty in setting the performance function, the huge amount of calculation and
the ill condition after the model is simplified, although the differential game theory has
been developed for many years, it has not produced a more reasonable description of
actual air combat. In [12], researchers propose an air-to-air confrontation method based
on uncertain interval information, but only analyze the influence of different factors on air
combat effect, and do not consider the maneuver model of UAV. In addition, the method
in [12] needs to calculate the revenue and expenditure matrix, which is cumbersome and
has low real-time performance. In short, the analytical solution method needs to accurately
model and describe the decision model, which cannot be applied to the air combat scene
without model or incomplete environment information, and cannot meet the requirements
of intelligent air combat.

Intelligent optimization methods mainly include expert system method [13], neural
network method [14] and some other optimization algorithms such as fuzzy tree, particle
swarm optimization [15] and reinforcement learning. The maneuver decision making
method based on the expert system has mature technology and is easy to implement,
but its disadvantage is that the establishment of the knowledge base is complex and it
is difficult to fully cover all air combat situations. The maneuver decision making based
on the neural network has strong robustness and learning ability, but it is a supervised
learning method, which cannot be applied without a training set. While the application
of neural networks in air combat decision making has practical value, it is worth further
exploration and improvement. A maneuver decision making method based on the fuzzy
tree is proposed in [16], which can guide UAVs to make more targeted maneuver decisions
according to a real-time combat situation. However, the design of fuzzy tree is difficult
and the hyper-parameters are complex and diverse, and expert experience needs to be
introduced. In [17], researchers use dynamic game and particle swarm optimization to
realize multi-agent task allocation and confrontation. This method will make the payment
matrix of both parties become huge with the increase of the number of agents, and the
income matrix needs to be designed manually. Therefore, subjective factors have a great
impact on the experimental results. In addition, the simulation result is a two-dimensional
plane without considering the maneuver control model of UAV, which is very different
from the real maneuver.

Reinforcement learning [18] is an intelligent optimization method that uses the “trial
and error” method to interact with the environment, learns from the environment and
improves the performance with time [19]. It overcomes the shortcomings of complex
modeling, difficult sample marking and cumbersome solutions of other methods, and can
produce a series of decision sequences considering long-term effects through self-interactive
training without manual intervention. It is a feasible modeling method for autonomous
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decision making of air combat maneuvers in artificial intelligence [20,21]. The autonomous
maneuver decision making problem of air combat based on deep reinforcement learning
is studied in [22–26]. In [22,23], researchers verify the performance of the algorithm by
building a high simulation combat platform, and has good experimental results. However,
the reward function in [23] is sparse, and the reward is 0 in most states of each round,
which is not conducive to network training. The robust multi-agent reinforcement learning
(MARL) algorithm framework is used in [24] to solve the problem that the reinforcement
learning algorithm cannot converge due to the unstable environment in the training pro-
cess. However, the simulation environment in [24] is a two-dimensional plane and the
simulation test initialization is fixed, which makes it hard to be applied in the dynamic
confrontation scenarios. Many aspects of UAV situation assessment is considered in [25],
but UAV uses absolute coordinates as the state input, which is highly dependent on spatial
characteristics. In [26], researchers use Monte Carlo reinforcement learning to carry out
research. The biggest problem is that the agent needs to complete a complete air combat
process to evaluate the reward. Moreover, the above references consider the one-to-one
air combat scenario, which has limited reference value for the research of multi-aircraft
cooperative autonomous control. There are few studies on multi-agent confrontation using
reinforcement learning algorithms. In [27], a novel autonomous aerial combat maneuver
strategy generation algorithm based on state-adversarial deep deterministic policy gradient
algorithm (SA-DDPG) is proposed, which considers the error of the airborne sensor and
uses a reward shaping method based on maximum entropy inverse reinforcement learning
algorithm. However, the reliance on expert knowledge in the design of reward functions in
this paper is not conducive to extension to more complex air combat environments. In [28]
researchers propose an air combat decision-making model based on reinforcement learning
framework, and use long short-term memory (LSTM) to generate a new displacement
prediction. However, the simulation experiments in [28] rely on an off-the-shelf game
environment, which is not conducive to the extension of the study and it studies the air
combat problem of searching for observation station in a non-threatening environment,
which differs significantly from the air combat mission of this paper. Based on the MARL
method, the simulation in [29] of multiple UAVs arriving at their destinations from any
departure points in a large-scale complex environment is realized. However, the modeling
environment is planar, and a sparse reward function is used, and only distance penalty is
considered. The method for maneuver decision making of multi-UAV formation air combat
in [30] is robust. However, there are no simulation results, and there are only three maneu-
ver behaviors. The deep deterministic policy gradient (DDPG) algorithm is used in [31]
to realize the maneuver decision of the dynamic change of UAV quantity in the process
of swarm air combat. The algorithm has robustness and expansibility, but the waypoint
model is used in this paper, which cannot describe the maneuver characteristics of UAV.
Other researches on air combat based on reinforcement learning, the intelligent decision
making technology for multi-UAV prevention and control proposed in [21,32]. The control
method of UAV autonomous avoiding missile threat based on deep reinforcement learning
introduced in [33,34]. Deep reinforcement learning is used in [35] to build an intelligent
command framework and so on. These studies focus on the feasibility of reinforcement
learning methods in solving some air combat problems, which has little correlation with
our autonomous maneuver decision making problem, but provides some ideas for our
research. In addition, uniform sampling is used in [21–26,29,30,32], which means that the
probability of all experiences in the experience pool being extracted and utilized is the
same, thus ignoring the different importance of each experience, resulting in long training
time and extremely unstable.

Generally speaking, at present, the research on air combat maneuver decision making
based on reinforcement learning mainly focuses on single UAV confrontation tasks, and the
research on multi-UAV confrontation and multi-UAV cooperation are in the initial exploration
stage. These studies have one or more of the following problems: Dimension explosion, rewards



Electronics 2022, 11, 467 4 of 22

are sparse and delayed, simple simulation environment, lack of maneuver model, incomplete
situation assessment and random uniform sampling leads to slow training.

In this paper, an autonomous maneuver decision making method based on deep
reinforcement learning is proposed for dual-UAV cooperative air combat. The main contri-
butions are as follows. First, aiming at the problems of dimension explosion, sparse and
delayed rewards and incomplete situation assessment, we discretize the continuous air
combat state space into 13 dimensions for dimension reduction and quantitative descrip-
tion of air combat states. Then the situation assessment model is established based on the
relative location between the UAV and the target. Second, a reward function is designed
according to the situation assessment results which includes the real-time gain due to ma-
neuver and the final combat winning/losing gain. Such a design helps to solve the problem
of sparse and delayed reward in the games of long-running time for ending. Third, aiming
at the problem of slow convergence caused by random sampling in conventional DQN
learning, an improved priority sampling strategy is proposed to accelerate the convergence
of the DQN network training. Fourth, we apply and modify the designed autonomous
maneuver decision making method for the typical task of dual-UAV olive formation air
combat, which enables the UAVs to own the capability of collision avoidance, formation
and confrontation. Finally, the proposed method is validated by simulation using practical
fixed-wing UAV models and compared with the DQN learning method without priority
sampling. The simulation results show that our method can make the two UAVs defeat the
enemy effectively and improve the performance in terms of the convergence speed.

The following parts are arranged as follows: Section 2 is the problem formulation.
Section 3 is the air combat confrontation algorithm based on deep reinforcement learning.
Section 4 is the description of typical air combat scenarios and the design of dual-UAV co-
operative autonomous maneuver strategy. Section 5 conducts simulation analysis. Section
6 summarizes the full paper.

2. Problem Formulation

This paper studies the autonomous maneuver control decision of multi-UAV BVR
cooperative tracking and close combat. Maneuver control model and situation assessment
are the premises of UAV maneuver decision. Therefore, in the following sections, we will
elaborate on UAV autonomous maneuver decision making from three aspects: Maneuver
control model, situation assessment and maneuver control decision.

2.1. UAV Dynamic Model

As shown in Figure 1, in the ground coordinate system, the ox, oy and oz are the east,
north and vertical directions respectively. The motion model of UAV in the coordinate
system is given by 

ẋ = v cos γ sin ψ,
ẏ = v cos γ cos ψ,
ż = v sin γ;

(1)

where x, y and z represent the position of the UAV in the coordinate system, v represents
the current speed direction of the UAV, ẋ, ẏ and ż represent the change rate of v in the three
coordinate axis directions, v′ is the projection of v on the xoy plane, γ is the angle between
v′ and v, and γ represents the pitch angle, ψ is the angle between v′ and oy axis, and ψ
represents the yaw angle. In the same coordinate system, the dynamic model of UAV can
be expressed as 

v̇ = g(nx − sin γ),
γ̇ = g

v (nz cos µ− cos γ),
ψ̇ = gnz sin µ

v cos γ ,
(2)

where g is the gravitational acceleration. nx ∈ R and nz ∈ R represent tangential overload
and normal overload, and µ ∈ [−π, π] represents the roll angle around v. [nx, nz, µ] ∈ R3

are the feasible basic control parameters in the UAV maneuver control model and they
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jointly control the direction and magnitude of UAV speed. [nx, nz, µ] are often used as the
command for air combat maneuver decision making.

Figure 1. Motion model of UAV.

2.2. Situation Assessment Model

As shown in Figure 2, denote by PUt and PTt the position of UAV and target at time
t. Denote by ϕUt the angle between the vectors PTt − PUt and vUt , named as the lag angle,
and similarly, ϕTt for the angle between the vectors PTt − PUt and vTt , named as lead angle,
which are defined as

ϕUt= arccos
(

vUt(PTt − PUt)

‖vUt‖‖PTt − PUt‖

)
, 0 ≤ ϕUt ≤ π, (3)

ϕTt= arccos
(

vTt(PTt − PUt)

‖vTt‖‖PTt − PUt‖

)
, 0 ≤ ϕTt ≤ π, (4)

where DUtTt = ‖PTt − PUt‖ is the distance between UAV and target.
Based on the attack model [36] and evaluation function [31,37], the effective attack

range of a UAV in the air combat is a cone with an axis in the direction of vUt and angle
of ϕm, which is truncated by a ball of radius Dmax as shown in Figure 2, where Dmax
represents the attack range of weapons. Similarly, we can define the cone-shape attack
range for the target. The UAV should try to follow the target as much as possible. That is,
the smaller the ϕUt is, the greater the probability of UAV successfully attacking the target is.
On the contrary, the larger the ϕTt is, the greater the probability of the target successfully
attacking UAV is. Therefore, we define

ηAt = ϕUt + ϕTt (5)
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to reflect the changes of the angle situation between the target and the UAV in the process
of air combat confrontation, and there is 0 ≤ ηAt ≤ 2π. The smaller the ηAt is, the more
means that the UAV is in pursuit posture confrontation the target. In addition to angle,
distance is also an important factor in air combat. Denote by Dmin the minimum distance
that a UAV can reach to the target for safety. When DUtTt < Dmin, it means that the target is
in the blind zone of UAV radar detection, and the UAV has the risk of collision [38]. Thus,
the distance situation of UAV in air combat can be defined as

ηDt =
Dmax − DUtTt

Dmax − Dmin
, (6)

where DUtTt is distance which can be as long as 50km in the air combat. The larger the
ηDt is, the closer the distance between the UAV and the enemy is. Outside the Dmin, the
smaller the DUtTt and lag angle are, the greater the probability of success of UAV attack on
the target is. Combining angle situation and distance situation, we define

ηt = w1ηAt + w2ηDt , (7)

to evaluate the real-time comprehensive situation during UAV air combat, where w1 and
w2 are scale factors, which represent the influence of different situation factors on UAV
situation assessment. Moreover, since the value range of ηAt and ηDt is very different, we
have to balance the effects of ηAt and ηDt by using w1 and w2.

Figure 2. Situation assessment model.

Therefore, the air combat maneuver decision making problem of UAV can be regarded
as an optimization problem,

max
[nxt ,nzt ,µt]∈Λ

tn

∑
t=t0

ηt(nxt , nzt , µt). (8)

where Λ denotes a set of UAV maneuver control commands. ηt(nxt , nzt , µt) means ηt is
the function of nxt , nzt , and µt, where [nxt , nzt , µt] has the same meaning as (2). Thus (8)
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means maximize the sum of UAV situation from the beginning to the end of air combat. It
is difficult to get the optimal solution because the objective function is complex high-order
nonlinear. Next, we will use deep reinforcement learning to solve this problem.

3. Maneuver Decision Modeling by Deep Q Network
3.1. Reinforcement Learning

Reinforcement learning is a method for the agent to optimize maneuver strategy. The
air combat maneuver decision making problem discussed in this paper belongs to the
model-free reinforcement learning problem. Markov decision process (MDP) is usually
used as the theoretical framework of model-free reinforcement learning, and the final
objective of the reinforcement learning is to solve the MDP by deducing an optimum
policy [39], which is described by quaternion array [S, A, R, γ], where S represents state
space, A represents action space, R represents reward function and γ represents discount
factor. Reinforcement learning uses the state action value function Q to evaluate the value
of action taken in the current state [18], which is defined as

Qπ(s, a) = Eπ [Gt|st = s, at = a]

= Eπ

[
∞
∑

k=0
γkrt+k+1|st = s, at = a

]
, (9)

where s ∈ S, a ∈ A, r ∈ R. In addition, in order to facilitate the calculation, the following
simplified processing is usually implemented [40],

Qπ(s, a) = Eπ [rt+1 + γQ(st+1, at+1)|st = s, at = a]. (10)

Reinforcement learning finds the optimal strategy π∗(s) by finding the optimal action
value function Q∗(a|s), i.e.,

Q∗(s, a)=max
π

Qπ(s, a). (11)

As long as the maximum action value function is found, the corresponding strategy π∗ is
the solution of the reinforcement learning problem. In order to solve the dimension disaster
problem of (11), deep reinforcement learning algorithm [41] is proposed, and transforms
table value learning into parameters fitting of the neural network, i.e.,

Qπ(s, a) = Qπ(s, a, θ), (12)

where θ is the parameters of neural network and Q(s, a; θ) is called online Q network.
Therefore, the solution of reinforcement learning problem can be expressed as

π∗(s) = arg max
π

Qπ(s, a, θ). (13)

3.2. State Space

The state of UAV can quantitatively reflect the current air combat information. We consider
designing the state space of UAV from the following three aspects: The first is the maneuver
characteristics of UAV. The second is the relative situation between the UAV and the target. The
third is target dynamic embedding prediction of the situation in real-time combat.

In this paper, we use the following 13 variables to form the state space, vU, γT, γU,
ϕU, ϕT, vU − vT, ψT, ψU, DUT, zU, zU − zT, ψUT, γUT. γUT represents the angle between
PTt − PUt and the oxy plane, and ψUT represents the angle between projection vector of
PTt − PUt on the oxy plane and ox axis as shown in Figure 2. In order to unify the range of
each state variable and improve the efficiency of network learning, each state variable is
normalized to a range, as shown in Table 1.
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Table 1. The state space for the DQN model.

State Definition State Definition State Definition

s1
vU

vmax
s2

γU
2π

s3
ϕU
2π

s4
vU − vT

vmax − vmin
s5

γT
2π

s6
ϕT
2π

s7
DUT

Dthres
s8

γUT
2π

s9
vU

vmax

s10
ψU
2π

s11
ψU
2π

s12
zU

zmax

s13
zU − zT

zmax − zmin

vmax and vmin represent the maximum and minimum speed of UAV respectively. zmax
and zmin represent the maximum and minimum safe altitude of UAV flight respectively.
Dthres is the distance threshold, and represents the starting distance of close combat.
Therefore, the state space can be defined as s = [s1, s2, ...., s13].

3.3. Action Space

As mentioned above, [nxt , nzt , µt] ∈ Λ constitute the action space of UAV. Different
deep reinforcement learning algorithms such as DDPG and DQN have different design
methods for the action space. Due to the huge state space, using DDPG and other algo-
rithms to train continuous maneuvering strategies will cause difficulty in neural network
convergence, and the maneuver process of UAV can be regarded as a combination of some
basic actions [42], thus this paper adds eight action commands on the basis of the basic air
combat maneuver [43] divided by NASA, and finally discretizes the UAV action space into
15 actions, as shown in Figure 3 and Table 2. This approach reduces the difficulty of UAV
training, and compared with the basic seven actions, this method can make the UAV carry
out constant speed, acceleration and deceleration control in each direction, which is closer
to the real flight mode of the UAV.

Figure 3. UAV maneuver library.
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The UAV selects an action a ∈ A according to the state s and outputs it to the environ-
ment. After format conversion, the UAV is guided to fly according to the command,

A = {a1, a2, ..., am} ⊆ Λ, m = 15, (14)

ai = [nx, nz, µ], i = 1, 2, ..., 15. (15)

Table 2. Maneuver library.

No. Maneuver
Control Values

nx nz µ

a1 forward maintain 0 1 0
a2 forward accelerate 2 1 0
a3 forward decelerate –1 1 0
a4 left turn maintain 0 8 − arccos(1/8)
a5 left turn accelerate 2 8 − arccos(1/8)
a6 left turn decelerate –1 8 − arccos(1/8)
a7 right turn maintain 0 8 arccos(1/8)
a8 right turn accelerate 2 8 arccos(1/8)
a9 right turn decelerate –1 8 arccos(1/8)
a10 upward maintain 0 8 0
a11 upward accelerate 2 8 0
a12 upward decelerate –1 8 0
a13 downward maintain 0 8 π
a14 downward accelerate 2 8 π
a15 downward decelerate –1 8 π

3.4. Reward Function

Reward function [44–47] is the feedback signal obtained by the agent in the process of
interaction with the environment, which is used to evaluate the effect of the agent executing
a certain action strategy. Therefore, reasonable design of reward function can effectively
improve the convergence speed of the system [45]. The reward rt in this paper consists of
two parts, which is defined as follow.

rt = Rt + Rηt . (16)

In (16), Rt is the evaluation of the final result of air combat, which defines as (17).

Rt =


C, if UAV wins,
−C, if Target wins,
0, otherwise.

(17)

C is a constant and greater than 0. When the UAV meets the following conditions, it
is considered that “UAV wins” is established and a success reward C is given. First,
an optimal shooting distance threshold Dattack based on expert experience is defined,
and there is Dattack ≤ Dmax. Then if the distance between UAV and the target meets
Dmin < DUtTt < Dattack and the angle meets ϕUt ≤ ϕm and ϕTt ≥ π − ϕm at the same time,
it is considered that the UAV has the best shooting conditions against the target, and the
“UAV wins” condition is established. Similarly, if the distance between UAV and the target
satisfies Dmin < DUtTt < Dattack and the angle satisfies ϕTt ≤ ϕm and ϕUt ≥ π − ϕm at the
same time, the condition “Target wins” is established and we give the failure penalty −C.

Rηt in (16) is used for the real-time evaluation of maneuver decision making, which is
defined as

Rηt = ηt − ηt−1 = w1
(
ηAt − ηAt−1

)
+ w2

(
ηDt − ηDt−1

)
. (18)
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(18) indicates the change of situation of UAV during air combat. If Rηt > 0, the situation at
time t is better than that at time t− 1. The maneuver strategy at−1 adopted by UAV from
st−1 to st is reasonable, and we give a positive reward. On the contrary, if Rηt < 0, we give
a negative penalty. w1 and w2 indirectly affect the maneuver decision making of UAV by
influencing rt. Considering the different importance of ηAt and ηDt under different st, an
evaluation method of maneuver decision making based on w1 piecewise adjustment is
proposed. In this paper, w1 is set as a piecewise function,

w1 =


0, if DUtTt > Dmax,
W1 if Dattack ≤ DUtTt ≤ Dmax,
W2 otherwise.

(19)

where W1 and W2 are constants, and 0 < W1 < W2. When DUtTt > Dmax holds, UAV
should give priority to adjust DUtTt to quickly approach the target. When DUtTt ≤ Dmax
holds, UAV should consider adjusting ϕUt and DUtTt at the same time, and the smaller
the DUtTt is, the larger the w1 is. w2 is a constant and there is no need to set a piecewise
function for w2 because the relative importance of w2 will change with w1.

Remark 1. If we change one of w1 and w2, the influence of angle advantage and distance advantage
on UAV maneuver decision will change relatively. Therefore, this paper discusses the design of w1.
The setting method of w1 can consider the following three types: Fixed value, piecewise function as
(17), or continuous function as w1 ∝ DUtTt . The fixed value represents that the influence of ηAt

and ηDt on UAV maneuver decision is fixed. The piecewise function represents the influence of ηAt

and ηDt on UAV maneuver decision, which is changed in a limited number of different cases. The
continuous function represents the influence of ηAt and ηDt on UAV maneuver decision, which
changes in real-time according to the current state of UAV. In this paper, we set w1 as a piecewise
function with the following considerations. rt is a comprehensive evaluation of UAV at time t on
ηAt , ηDt and Rt and these three contents are independent of each other. If w1 ∝ DUtTt , DUtTt and
ϕUt are coupled with each other. Then with the change of DUtTt , the change of w1 represents the
synchronous change of the importance of ηAt and ηDt to UAV maneuver decision making, which
cannot reflect the different importance of the two advantage functions in different stages of air
combat. In addition to the above theoretical analysis, this paper also gives the comparison results
in the experimental stage. That is, w1 is set as a fixed value, piecewise function and continuous
function proportional to distance respectively, and analyzes the changes of the loss function in three
cases, and further explains the rationality of w1 as a piecewise function.

3.5. Priority Sampling and Network Training

In this paper, the DQN algorithm is used to realize the self-learning of UAV maneuver
control strategy [41,48], and an improved priority sampling strategy is proposed to accel-
erate the training and learning process. Experience replay mainly includes two key steps
of “experience storage” and “sampling replay”. Here, it is mainly to improve “sampling
replay”. The basic idea is to assign a priority to each sample in the experience pool. When
selecting experience, we prefer to choose the experience with high priority. First, the data
in the experience pool is marked according to importance, that is, the greater the value
of data to network training is, the more important it is, and the higher the corresponding
priority is. Then sample the labeled data, that is, the higher the priority is, the greater the
probability that the sample is extracted is. Finally, the extracted samples are used for the
weighted training of the network. Next, we will introduce priority sampling in detail from
three aspects: Sample labeling, sampling and network training.

pi is used to indicate the importance of the ith sample (si, ai, ri, si+1). A reasonable
approach is to use the following TD error δi to assign pi [49],

yi = ri + γmax
a′

Q
(
si+1, a′; θ′

)
, (20)
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δi = yi −Q(si, ai; θ). (21)

where yi is called the target Q value, and δi represents TD error. Since |δi| ≥ 0, and the
larger the |δi| is, the more important the sample i is [49], and the higher the probability
of being sampled should be. In order to avoid accidental factors that cause |δi| of some
samples to be too large and the sampling probability of some samples with lower priority
to be close to 0 resulting in the decrease of sampling diversity, |δi| is limited in [0− 1] by
using tanh function, i.e.,

pi = tanh(|δi|+ σ), (22)

where σ is a positive number, so that pi = σ > 0 at δi = 0. Then the sampling probability
of sample i is expressed as

P(i) =
pα

i
∑k pα

k
, (23)

where α is the priority factor, which is used to adjust the priority of the sample. The larger
the α is, the larger the P(i) will be. When α = 0, the above equation will degenerate into
uniform sampling, and k is the number of samples.

Remark 2. The definition of P(i) is not unique. Two variants are proposed in the [49]. The second
variant is pi =

1
rank(i) . rank(i) represents the rank of sample i sorted according to |δi|. Considering

the simplicity of code implementation, we use pi = |δi|+ σ.

Prioritized replay introduces bias because it changes distribution of sampled data in
an uncontrolled fashion, and therefore changes the solution that the Q(s, a; θ) will converge
to. Generally, the important sampling (IS) weights λi can be used to correct this error,

λi =

(
1
N
· 1

P(i)

)β

, (24)

where N represents the experience pool capacity and β represents the compensation degree.
If β = 1, the non-uniform probability is fully compensated. Then update the network
parameters by using λiδi instead of δi. For stability reasons [50], we will standardize λi
as follow,

λi =
(N · P(i))−β

maxjλj
. (25)

After obtaining the sample data needed for network training through priority sampling, we
input it into Q(s, a, θ′) and Q(s, a, θ) to update θ. DQN adjusts θ through gradient descent
method during training, and the loss function after adding importance sampling weight
λi is

L(θ) = δiλi, (26)

and its gradient is
∂L(θ)

∂θ
= λi

∂Q(si, ai; θ)

∂θ
. (27)

Finally, in order to collect enough samples for network training, DQN algorithm uses
ε− greedy strategy [41,48] to select actions, i,e.,

at = π(s) =

{
arg maxa∈A Q(st, a; θ), if num > ε;
randomA, otherwise,

(28)

where num is a random number of 0–1.
The above UAV BVR autonomous maneuver decision algorithm is summarized in the

form of pseudo code as shown in Algorithm 1.
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Algorithm 1 DQN with proportional prioritization

1: Initialize online network Q with random parameters θ Initialize target network Q′ with
random parameters θ′ Initialize replay buffer M, Initialize hyper-parameters Dmax,
Dmin, Vmax, γ, ϕm, w2, W1, W2, β, zmin, zmax, σ, DBVR, Vmin, DWVR, α, a, b, C, k, K,
Dattack.

2: for episode = 1 to N do
3: Initialize the initial state of air combat
4: Receive initial observation state s1
5: for t = 1 to T do
6: With probability ε select a random action at
7: Otherwise select at = maxaQ(st, a; θ)
8: UAV executes action at, and target executes action according to its policy
9: Receive reward rt and observe new state st+1

10: Store transition (st, at, rt, st+1) in M
11: Sample a mini batch of N transition (st+1, at, rt, st+1) from M with priority

P(i) = pα
i / ∑k pα

k
12: Compute importance-sampling weight λi = (N · P(i))−β/maxjλj
13: Set yi = ri + γmaxa′Q(si+1, a′; θ′)
14: Compute TD-error δi = yi −Q(si, ai; θ)
15: Update transition priority pi ← |δi|
16: Perform a gradient descent step on λi(yi −Q(si, ai; θ))2 with respect to the net-

work parameters θ
17: Every K steps reset θ′ = θ
18: end for
19: end for

The current state of the UAV is st. The online Q network selects and executes the
action at based on ε − greedy to transfer the UAV to the next state st+1, and obtain the
reward rt. Save (st, at, rt, st+1) to the experience pool, and repeat the above steps until the
number of samples in the experience pool meets the requirements. Select samples from the
experience pool according to the priority P(i) to train the neural network, and calculate
the importance sampling weight λi of the selected samples. Use these samples to train
the network parameters. That is, first, input st into the online Q network, and input st+1
into the target Q network. Second, calculate the weighted mean square error according to
(25), and use (27) to update the online Q network’s parameters. At the same time, TD error
δi = yi −Q(si, ai; θ′) is obtained. According to δi, the priority of the selected samples in the
experience pool is updated, and the target network parameters are updated after a certain
number of times or rounds of training. In the training process, the ε should be increased
slowly, so that the UAV can choose the optimal action according to the value function with
greater probability. When the error is close to 0 or there is no obvious change, the training
is stopped, and the trained neural network is saved to obtain the air combat maneuver
strategy of dual-aircraft formation

π(a|s)U = arg max
a∈A

Q(s, a, θ). (29)

4. Olive Formation Air Combat as an Example
4.1. Task Description

This paper takes a typical two UAVs olive formation combat scene as an example. As
shown in Figure 4, two UAVs perform tracking, defense and attacking tasks.
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Figure 4. Task description.

UAV air combat can be divided into three stages: Take-off stage, BVR tracking stage and
WVR attack stage. During the take-off stage, the two UAVs took the enemy aircraft as the target
and continuously accelerated to the target direction. In the BVR tracking stage, the nose of one
UAV faces the target and the nose of the other UAV backs the target. Two UAVs fly in olive
formation to maintain the continuity of attack and defense. In this stage, the trajectory formed
by the UAV from flying towards the target to flying back to the target and then flying towards
the target is a circle or ellipse, so it is called olive formation. The process of WVR combat is
also called dog fight. The two UAVs find the best angle and distance to attack the enemy and
avoid entering the attack range of the target at the same time. We assume that the UAVs can
accurately obtain any information they want, and then control the speed, yaw and roll through
autonomous maneuver decision making, so as to track, defend and attack the target.

There are three problems to be considered for dual-aircraft autonomous maneuver
control decisions: First, how to conduct inter aircraft collision avoidance? Second, how
to make the two UAVs form an olive formation to maintain the continuity of attack and
defense? Third, how to make the two UAVs maneuver independently to realize BVR
tracking and short range attack? Next, we solve the above three problems by designing a
hybrid autonomous maneuver strategy of obstacle avoidance, formation and confrontation.

4.2. Collision Avoidance and Formation Strategy

As described in Section 4.1, A = {U1, U2} is used to represent our UAV set. We use U
to represent any UAV in A, and use Ũ to represent U’s friendly aircraft. Denote by DUtŨt

the distance between U and Ũ at time t. First, if DUtŨt
< Dmin, no matter whether the

UAV meets the firing conditions or not, it must avoid collision between UAVs. When
DUtŨt

< Dmin, the fast and effective obstacle avoidance method between UAVs is to change
the flight altitude between itself and friendly aircraft. Therefore, the collision avoidance
strategy is as follows,

O(a|s)U =

{
a11, if DUtŨt

< Dmin, Uz ≥ Ũz,
a14, if DUtŨt

< Dmin, Uz<Ũz;
(30)

Uz and Ũz represent the heights of U and Ũ respectively. The UAV with a higher altitude
adopts the accelerated ascent strategy, and the UAV with a lower altitude adopts the
accelerated descent strategy. Second, in order to ensure that the UAVs can realize olive
formation flight, and considering the flight characteristics and ease of control of the UAV,
we use continuous uniform left turn to realize circling flight,

H(a|s)U = a4. (31)

However, strategy (31) is not enough. We also need to let the two UAVs know when to
start flying in olive formation, who starts first and how to switch. It is assumed that U1
is the leader and U2 is the wingman. In the BVR tracking stage, the leader first uses the
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strategy (31). It can be seen from (2) that the decision making time required by the UAV for
a circle is

Tolive =
2πv cos γ

gnz sin µ
. (32)

Finally, the maneuver control in takeoff stage, BVR tracking stage and WVR attack stage is
realized by π(a|s)U.

Therefore, the maneuver strategy of UAV at time t can be expressed by the
following equation.

Π(a|s)U =



O(a|s)U, if DUtŨt
< Dmin;

H(a|s)U, if DUtŨt
≥ Dmin,

DWVR ≤ DUtTt ≤ DBVR,
Π(a|s)Ũ 6= H(a|s)Ũ;

π(a|s)U, otherwise.

(33)

DBVR represents the distance threshold of BVR air combat, and DWVR represents the
distance threshold of WVR air combat. If DUtTt ≥ DBVR, our UAV belongs to take-off stage.
If DWVR ≤ DUtTt ≤ DBVR, our UAV belongs to BVR tracking stage. If DUtTt < DWVR, our
UAV belongs to the WVR air combat stage.

The autonomous maneuver decision algorithm of the dual-UAV olive formation is
sketched in Algorithm 2.

Algorithm 2 Maneuver strategy of two UAVs olive formation in air combat

1: Load trained neural network Q(s, a, θ).
2: Initialize the state of the leader and wingman (sU1,0, sU2,0, sT,0),
3: Initialize target maneuver strategy π(a|s)T.
4: for step = 1 to maxstep do
5: for U in A do
6: Calculate DUT
7: Calculate DUŨ
8: Execute at = Π(a|s)U
9: [∆v, ∆γ, ∆ψ] is obtained according to (2)

10: [∆x, ∆y, ∆z] is obtained according to (1)
11: Get the next state sU,t+1
12: sU,t = sU,t+1
13: end for
14: The target moves to the next state sT,t+1 according to the strategy π(a|s)T
15: if DUtTt < Dattack, ϕUt ≤ ϕm, ϕTt ≥ π − ϕm then
16: UAVs win
17: break
18: end if
19: if DUtTt < Dattack, ϕTt < ϕm, ϕUt > π − ϕm then
20: target win
21: break
22: end if
23: sT,t = sT,t+1
24: end for

First, the trained neural network Q(s, a, θ) and the maneuver strategy of the target
π(a|s)T are loaded. Initialize the state

(
sU1,0, sU2,0, sT,0

)
of UAVs and target, where sU1,0

and sU2,0 are the initial state of our two UAVs respectively, and sT,0 is the initial state of
target. For each UAV, the distance DUT and the distance DUŨ are calculated, and then the
maneuver strategy at is obtained according to (33). If the distance between UAV and the
enemy is less than Dmin, the collision avoidance strategy (30) is implemented. If the UAV is
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in the takeoff stage, the UAV selects the maneuver strategy according to (29). If both UAVs
enter the BVR tracking state, the leader first executes the strategy (31), and the number
of execution steps is obtained according to (32), while the wingman continues to select at
according to (29). When the leader completes a circle according to (32) and (31), the flight
strategies of the leader and the wingman are exchanged. In the BVR tracking stage, our
two UAVs constantly change their maneuver strategies to maintain the continuity of attack
and defense. In the WVR attack stage, both UAVs use (29) to complete the short-range
combat. If either of the enemy and our UAVs satisfies (17), the air combat ends.

5. Simulation

This paper uses Python language to establish the air combat environment model of
dual-aircraft olive formation tracking and attacking, and establishes the DQN network
model based on the PyTorch module.

5.1. Simulation Setup

The air combat environment parameters are set as shown in Table 3.

Table 3. Design of the simulation parameters.

Variable Value Variable Value Variable Value

Dmax 1000 Dmin 200 Dattack 500
C 10 Vmax 300 b 10
γ 0.9 ϕm 45 w2 20
β 0.4 Vmin 90 zmin 1000

zmax 12,000 Dthreshold 10,000 a 5
W1 30 W2 40 α 0.6
k 5000 K 300 DBVR 20,000
σ 0.01 DWVR 10,000

The parameters in the DQN model are set as follows. According to the definition
of state space and maneuver library, it is obvious that DQN has 13 input states and
15 output Q values. The online Q network and the target Q network are constructed
using a fully connected network. The network has three hidden layers, 512, 1024 and 512
units respectively. The output layer has no activation function, and the other layers are
tanh layers. The learning rate is 0.001 and the discount coefficient is 0.9. The size of the
experience pool is 5000, the number of samples taken in batch during training is 64, and
the target network is updated every 300 steps. In the process of air combat simulation, the
decision cycle T is set to 1s, and one set contains 100 decision steps. If any of the following
conditions are met: The height of UAV is greater than zmax or less than zmin, or any UAV
meets (17). The round of training is completed.

In order to verify the effectiveness of the DQN algorithm based on priority sampling
and dynamic adjustment of scale factor proposed in this paper, we compare the loss values
in the training process of the DQN network under the following four conditions while
ensuring the same initial conditions of the simulation: w1 is set as a fixed value, piecewise
function and continuous function proportional to distance respectively, and introduce the
priority sampling. The loss value represents the difference between the online network
and the target network. The larger the loss value is, the larger the network optimization
space at this stage is. The greater the fluctuation of loss value is, the worse the convergence
performance of the neural network is.

5.2. Simulation Results

Figure 5 shows the results of two UAVs formation air combat. Red and green are our
two UAVs, and blue is the target. The initial positions of the three UAVs are fixed, namely
(0,0,3000), (20,000,20,000,4000), (500,500,3000), and the heading angle and pitch angle are
initialized randomly.
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Figure 5. Combat result.

The target moved in a straight line at a constant speed. Our two UAVs take different
maneuver control decisions in different air combat stages, and the two UAVs cooperate to
complete the tracking, defense and attack tasks of the target. During the takeoff stage, our
two UAVs tracked the target from a distance of about 30,000 m. In the BVR stage, the leader
(red) first executes the strategy H(a|s)U, while the wingman (green) continues to track the
target. When the leader hovers for one circle, its strategy is changed to track the target, and
the wingman switches the flight strategy to H(a|s)U. The two UAVs cooperate to maintain the
continuity of attack and defense. When the distance between UAV and target is less than DBVR,
two UAVs enter the close attack phase. Figure 5 shows that our two UAVs attack the target
from the rear of the target. Figures 6–9 more clearly show the changes of various parameters of
both sides in the process of air combat in Figure 5. The abscissas of Figures 5–9 are the decision
time, and the ordinates are different air combat parameters.

Figure 6. Change of the distance in the process of air combat.
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Figure 7. Change of the lag angle in the process of air combat.

Figure 6 shows the change of the distance between the two sides in the process of air
combat, where red is the change curve of the distance between the leader and the target,
and green is the change curve of the distance between the wingman and the target, and
black is the change of the distance between our two UAVs. The ordinate is the distance in
meters. It can be seen that the distance between the UAV and the target will increase when
flying in circles, and the distance between the UAV and the target will continue to shorten
in the stages of BVR tracking and WVR air combat. Figure 7 shows the change of the lag
angle of the UAVs of our two UAVs, where red is the change of the lag angle between the
leader UAV and the target, and green is the change of the lag angle between the wingman
UAV and the target. The ordinate is the lag angle in radians. It can be seen that the lag
angle of our UAV changes from 0 to π when flying in circles, and the lag angle remains at a
low level during the pursuit and close combat.

Figure 8. Change of the single step reward in the process of air combat.
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Figure 9. Change of the cumulative reward in the process of air combat.

Figure 8 shows the change of the reward function of our two UAVs in the whole
process of air combat, in which red is the leader and green is the wingman. The abscissa is
rt. It can be seen that our UAV is flying in circles rt fluctuated obviously, and the situation
of pursuit and close combat remained positive. When the target enters the attack range of
UAV, the angle advantage function is added, and our situation rises obviously. Figure 9
shows the change of cumulative rt, which also shows an upward trend as a whole. Figure 10
shows the variation diagram of loss values during training when w1 are w1 = −20 and
piecewise function (19), in which red is w1 = −20. Figure 11 shows the variation diagram
of loss values during training when w1 are w1 ∝ DUtTt and piecewise function (19), in
which red is w1 ∝ DUtTt .

Figure 10. Comparison of loss with different forms of scale factors 1.
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Figure 11. Comparison of loss with different forms of scale factors 2.

Figure 12 shows the error comparison diagram of introducing priority sampling and
not introducing priority sampling on the premise that w1 is a piecewise function (19). The
blue curve represents the DQN algorithm considering priority sampling, and the red curve
represents the DQN algorithm without priority sampling. The abscissas of the above
three figures represent training steps, and the ordinates represent loss values, and the
comparison shows the changing trend of loss in the whole training process. In addition,
because the amount of data to be presented is too large, in order to avoid affecting the
clarity of the display results, and on the premise of not affecting the loss change trend,
Figures 10–12 choose to record the loss value every 300 training times. It is not difficult
to see from the above figures that the fluctuation amplitude and range of the red curve
are much larger than that of the blue curve. The network converges better when w1 is a
piecewise function. The priority sampling can effectively improve the learning efficiency of
agents and accelerate the convergence speed of the neural network.

Figure 12. Comparison of convergence results before and after priority sampling.
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In summary, by modeling and simulation, this paper solves the following problems
that exist in the state of the art: (i) Dimension explosion solved by discretizing the air
combat state space to be finite and using neural network to learn the decision making
model; (ii) Sparse and delayed reward solved by designing a real-time reward function
based on situation assessment; (iii) Slow convergence solved by using improved priority
sampling strategy; and (iv) Inadaptation to the real air combat maneuver control solved by
incorporating the real UAV dynamic model and the comprehensive situation assessment
model which is verified in the classical two agents olive formation scenario.

6. Conclusions

Based on reinforcement learning theory, an improved maneuver decision algorithm
for UAV autonomous air combat is proposed in this paper. First, the UAV dynamic model
and situation assessment model are established, and the UAV state space and action space
are improved to solve the dimension explosion problem and make the UAV maneuver
more flexible. Second, aiming at the problems of delayed reward and poor guidance ability,
a reward function design method based on adaptive adjustment of the relative situation
and the scale factor is proposed. Third, an improved priority sampling strategy is proposed
to speed up the learning rate. Fourth, based on the dual-UAV olive formation task, a
hybrid maneuver strategy of collision avoidance, formation and confrontation is proposed
to realize dual-UAV cooperative autonomous air combat decision making. The simulation
results show that the improved method can effectively improve the efficiency of the UAV
learning confrontation maneuver strategy, and the UAV air combat maneuver decision
model based on deep reinforcement learning can realize strategy with self-learning. The
improved deep reinforcement learning method has a faster training speed and a more
stable effect.
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