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Abstract: With the rapid advances in mobile app technologies, new activities using smartphones
emerge every day including social network and location-based services. However, smartphones ex-
perience problems in handling high priority tasks, and often close apps without the user’s agreement
when there is no available memory space. To cope with this situation, supporting swap with fast
NVM storage has been suggested. Although swap in smartphones incurs serious slowing-down
problems in I/O operations during saving and restoring the context of apps, NVM has been shown
to resolve this problem due to its fast I/O features. Unlike previous studies that only focused on
the management of NVM swap itself, this article discusses how the memory management system
of smartphones can be further improved with NVM swap. Specifically, we design a new page
reclamation algorithm for smartphone memory systems, which considers the following: (1) storage
types of each partition (i.e., file system for flash storage and swap for NVM), and (2) access hotness of
each partition including operation types and workload characteristics. By considering asymmetric
I/O cost and access density for each partition, our algorithm improves the I/O performance of
smartphones significantly. Specifically, it improves the I/O time by 15.0% on average and by up to
35.1% compared to the well-known CLOCK algorithm.

Keywords: smartphone; page reclamation; memory swap; storage; NVM

1. Introduction

Due to the recent advances in mobile platform and application technologies, smart-
phones have become one of the essential consumer devices in our daily life [1]. Activities
with smartphones are performed every day and people are increasingly connected to vari-
ous social media and location-based services through their smartphones [2–4]. In fact, the
hardware resources of contemporary smartphones are sufficient to support the concurrent
executions of various apps, which was not possible in feature phones or early models of
smartphones [1]. Specifically, the most recent Android reference phone, Google Pixel 6 Pro,
consists of 1.8 to 2.8 GHz 8-core CPU, 20-core Mali-G78 MP20 GPU, 12 GB DRAM, and
512 GB UFS 3.1 storage, which is sufficient to perform multitasking [5].

A smartphone is not just a personal entertainment device, but facilitates some pro-
fessional work such as video editing, personal broadcasting, and software development.
Additionally, office resources such as word processing and spreadsheet, which have been
main tasks performed using desktops, are increasingly compatible with smartphones by
connecting external screen and keyboard. Nevertheless, smartphones still experience prob-
lems when handling high priority work, as it does not support the memory swap function.
Specifically, the current smartphone platforms such as Android close apps without the
user’s agreement when there is no available memory space [6,7]. This was not a significant
matter when smartphones were primarily an entertainment consumer device, but now it
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is critical as smartphones are needed for official work. For example, terminating a music
player is not a significant issue but killing a stock-trading app while ordering a stock selling
may cause serious problems.

To handle this situation, smartphones should maintain the context of an app unless
users explicitly terminate the app. This can be realized by memory swap, which makes
use of secondary storage as an extension of the main memory to save the context of an
app when free memory space is not sufficient [8]. Even if swap has been widely adopted
in existing computer systems, it is not easy to support swap in smartphones [7,9]. In
particular, a serious slowing-down problem during launching an app is observable with
a smartphone that activates the swap function [7]. To cope with this situation, studies
on smartphone swap suggested NVM (Non-Volatile Memory) as a fast swap device to
accelerate the I/O performance of apps [7,8]. However, previous studies focused only on
the swap architecture and the management of NVM itself rather than considering memory
management issues with NVM swap.

In this article, we discuss how the memory management system of smartphones can
be further improved when NVM is used as a swap device. Specifically, we design a new
page-reclamation algorithm for smartphone memory systems, which considers heteroge-
neous storage media and data access characteristics in each partition. Page reclamation
algorithms decide pages to be evicted from memory when there is no free memory space
to accommodate new page requests. Unlike existing page reclamation algorithms, the
proposed approach considers the following distinct characteristics of NVM swap.

First, by adopting NVM swap, the two storage partitions, i.e., file system and swap
partitions, are located in different storage media, i.e., flash storage and NVM, respectively.
Thus, the cost of accessing a page is not uniform depending on its storage location and
the operation type for the page. When a page that resides in the file system partition
is requested, data should be retrieved from flash storage. We call these type of pages
file-mapped pages. In contrast, a page fetched from the NVM swap partition is called an
anonymous page. As we use different storage media, retrieving a file-mapped page from
the file system partition takes more time than retrieving an anonymous page from the swap
partition. Thus, it is reasonable for page reclamation algorithms to give higher priorities
to pages from the file system partition that is located at slow flash storage. Additionally,
the I/O cost of read and write operations is asymmetric in these storage media. When a
page that has been modified while resident in memory is selected as a reclamation target, it
should be swapped out to NVM or flushed to flash storage before removal, which results in
write I/O 2–8 times slower than read I/O [10,11]. Hence, an efficient reclamation algorithm
should take into account these asymmetric I/O costs.

Another important issue to consider in the design of a page-reclamation algorithm
is that access patterns for I/O partitions vary depending on workload characteristics.
Specifically, our previous analysis showed that a storage partition that incurs the heaviest
I/O traffic is not the same for all apps, but it is varied significantly for the categories of
apps [12]. For example, swap I/O accounts for a large portion of I/O in memory-intensive
workloads such as graph visualization as such apps have a large footprint for computation
and visualization. As the memory capacity is not sufficient to accommodate the working-set
of these apps, swap frequently occurs. In contrast, in case of file-intensive workloads such
as a web browser and multimedia player, file system partitions account for a large portion
of I/O. This is because such types of apps consistently access data files from the file system
partition, and thus making a dominant portion of I/Os from this partition. Web browsers
usually read data from web sites and stores them on the local file system, which incurs file
I/O [13]. Multimedia player apps read video frames from the file system, decode them, and
display on the screen, which also require consistent access to the file system partition [14].

Based on these observations, we propose a new page-reclamation algorithm for swap-
supported smartphones that consider different operation cost of each page and access den-
sity for each partition. Our algorithm takes into account the cost of a page retrieved from
the file system partition and the swap partition as well as nonuniform cost of read/write
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operations. Specifically, the algorithm classifies page access into file-mapped/read, file-
mapped/write, anonymous/read, and anonymous/write, relying on their operation costs.
Then, the algorithm divides the memory space into four regions, namely read/file region,
write/file region, read/anon region, and write/anon region. Each region is then resized ac-
cording to the access densities and contribution of the region to performance improvement.
In this process, shadow regions are added for each region to monitor the workload charac-
teristics. For each region, the recency of page access is separately monitored by making use
of a circular list widely used in the CLOCK algorithm. Simulations performed by replaying
real memory access traces show that the proposed algorithm, namely SPO-CLOCK (Storage
type, Partition hotness, and Operation cost aware CLOCK), improves the I/O performance
of smartphones significantly. Specifically, it improves the I/O time by 15.0% on average
and up to 35.1% compared to the widely acknowledged CLOCK algorithm.

The remainder of this article is organized as follows. Section 2 describes the workings
of the proposed page reclamation algorithm called SPO-CLOCK in detail. In Section 3, we
discuss performance evaluation results obtained through simulations. Section 4 briefly
summarizes related works. Finally, we conclude this article in Section 5.

2. Storage Type and Hot Partition Aware Page Reclamation

This section describes an efficient page reclamation algorithm for smartphone’s swap
with NVM, which is called SPO-CLOCK. We first explain system architecture by adopting
NVM as swap storage and discuss how such architecture can be managed efficiently in
page reclamation.

2.1. System Architecture

Figure 1 shows the system architecture for the proposed page reclamation algorithm
in smartphone memory. In our architecture, NVM is used as storage in addition to flash
storage to support virtual memory swap. Note that NVM here means the 3rd genera-
tion byte-addressable NVM such as PCM (Phase-Change Memory) or STT-MRAM (Spin-
Transfer Torque Magnetic RAM) differentiated from flash storage. As NVM will not replace
traditional storage such as HDD or flash due to cost per capacity, it is considered only as an
add-on component to enhance performances such as our swap in smartphones [15,16]. In
this architecture, the file system partition is maintained in NAND flash, whereas the swap
partition is created on NVM. Due to the performance gap between NVM and flash storage,
fetching a page from the file system partition takes more time than retrieving a page from
the swap partition. Therefore, removing a page fetched from file system and re-fetching
it is not a good choice. For this reason, an efficient reclamation algorithm should grant
higher priorities to pages from the file system partition if all other situations are the same.
In addition, pages that incur storage reading and writing have different I/O costs, which
should also be considered in the design of a reclamation algorithm.

2.2. Allocation and Adjustment of Each Region

Our algorithm manages memory spaces by logically separating them into four regions,
namely, the read/file region, write/file region, read/anon region, and write/anon region.
Each region maintains pages with the attribute of file-mapped/read, file-mapped/write,
anonymous/read, and anonymous/write, respectively. All regions initially have the same
size. Then, the size of each region is adjusted according to the change of access densities
and the contribution of the region to memory performance. In this process, a small size of
history buffer, which is called the shadow region, is adopted for each region to monitor the
workload characteristics. A shadow region maintains the history of a page recently evicted
from the real memory region without storing the contents of a page, and thus it is known
to be lightweight [17,18].

In our algorithm, read/file and write/file regions manage recently read and written
pages, respectively, retrieved from the file system partition. Similarly, read/anon and
write/anon regions manage recently read and written pages, respectively, from the swap
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partition. All the pages in write/file and write/anon regions are modified after entering
memory, which need to be flushed to flash storage and swapped out to NVM, respectively,
before their eviction from memory. Note that writing is 2–8 times slower than reading in
flash and NVM storage, implying that discarding a page from write/anon (or write/file)
region incurs more I/O cost than evicting a page from read/anon (or read/file) region.
Additionally, retrieving a page from flash storage takes more time than retrieving a page
from NVM. Thus, SPO-CLOCK gives higher priorities to write-accessed pages and file-
mapped pages in proportion to their costs; but it also maintains read-accessed pages and
anonymous pages if they are frequently accessed and hence their contribution to improving
the memory performance is considerable. 
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Figure 1. The system architecture that supports NVM-swap in Android.

As previously mentioned, SPO-CLOCK adopts shadow regions to monitor and adjust
the size of the four memory regions as shown in Figure 2. Shadow regions maintain the
descriptor of recently discarded pages without their real contents. By tracking accessed
page in the shadow regions, SPO-CLOCK estimates the effect that extending each region
would have on performance. If there are frequent accesses to pages in the read/anon
shadow region, SPO-CLOCK extends the read/anon region to reduce the number of I/Os
incurred by the pages in this region. Similarly, the size of other regions is also enlarged if
there are frequent page accesses in the corresponding shadow regions. In addition to page
accesses in shadow regions, different operation costs are considered in adjusting the size
of each region. That is, SPO-CLOCK extends write regions more aggressively than read
regions if all the other conditions are the same by considering asymmetric I/O cost in flash
storage and NVM. Suppose that the I/O cost of a page in a write region is twice that of
a read region. Then, whenever the number of hits in a shadow region reaches a certain
threshold, SPO-CLOCK increases the size of the corresponding real memory region by 1.
In this process, we set the threshold for a read region to twice that for a write region to
account for cost differences.
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Figure 2. Memory regions and their shadow regions in SPO-CLOCK.

The optimal size of a shadow region varies depending on the system and workload
characteristics, and thus it can be seen as a control parameter to be tuned. In this article, we
set the number of page entries in a shadow region such that the total number of pages in a
real memory region and its shadow region is equal to the memory capacity of the system.
This is reasonable because an evicted page itself is not stored but its history is maintained
to see whether it will be used again in case the size of a region is as large as the full memory
capacity of the system. For example, if the size of the read/anon region is increased by 1,
SPO-CLOCK decreases the size of the read/anon shadow region by 1. By doing so, the
total number of hits with the entire memory capacity can be estimated as if shadow regions
also maintain actual pages.

Figure 2 shows the size of regions and their corresponding shadow regions. Specifically,
there are four regions, the read/anon region RA-R, the write/anon region WA-R, the
read/file region RF-R, the write/file region WF-R, and their corresponding shadow regions,
the read/anon shadow region RA-S, the write/anon shadow region WA-S, the read/file
shadow region RF-S, and the write/file shadow region WF-S, respectively. In reality, it
is possible that a page is read and then written, so a page descriptor can be linked to
both read and write regions simultaneously. This allows for the accurate estimation of
access characteristics in each region. In contrast, it is not possible that a page descriptor
is linked to both file and anon regions as a page can be one of an anonymous page or
a file-mapped page. Additionally, a real memory region and its shadow region do not
overlap as real regions manage pages resident in the memory, whereas shadow regions
maintain descriptors of pages evicted from memory. Since SPO-CLOCK allows pages to be
linked to multiple regions at the same time, evicting the contents of a page from physical
memory is performed when the page descriptor is not linked to any of real regions, RA-R,
WA-R, RF-R, or WF-R.

2.3. Page Reclamation

When there is not enough free memory in the system, the reclamation algorithm
selects a certain number of pages, and evicts them from memory. Of all pages in memory,
the reclamation algorithm usually selects pages not accessed recently as the target of
eviction. Note that memory management systems cannot be aware of the exact time of
every page access but recognize only the binary information of whether they have been
recently accessed or not by making use of an access bit. Thus, page reclamation algorithms
in memory systems typically adopt a circular list with a clock hand pointer for selecting



Electronics 2022, 11, 386 6 of 13

a victim by checking the access bit of pages to see whether a page is recently accessed or
not [19].

Figure 3 depicts the circular list structure of SPO-CLOCK. Pages in main memory are
managed by four memory regions, RA-R, WA-R, RF-R, and WF-R. For each region, the
recency of page accesses is monitored by making use of separate circular lists. When a
page is discarded from a real memory region, its descriptor is inserted to the corresponding
shadow region, RA-S, WA-S, RF-S, or WF-S. Page reclamation for each region is also
performed independently by using a circular list of the region. When SPO-CLOCK needs
to select a page for eviction from read regions RA-R or RF-R, it traverses the circular list
of that region by checking the read access bit of the page the clock hand pointer currently
points to. If the bit is 1, it is cleared; otherwise, the page is discarded from that region.
If SPO-CLOCK fails to find the page for eviction, the clock hand pointer moves to the
next page of the circular list until identifying a page with its read access bit of 0. When
SPO-CLOCK needs to evict a page from write regions, WA-R or WF-R, the write access bit
is investigated instead of the read access bit.

Figure 3. CLOCK lists used in SPO-CLOCK.

During the scanning of the circular list to find a victim page from a read region, if
a page not in the write region is found with its write access bit of 1, SPO-CLOCK clears
the write access bit and adds that page to the write region. Similarly, during the scanning
of a write region, if a page not in the read region is found with its read access bit of 1,
SPO-CLOCK clears the read access bit and adds the page to the read region. This process
is necessary as list insertion is possible only when a page is being retrieved from storage.
That is, if a read operation is performed on a page, which has been already retrieved from
storage due to a write operation, it is not in the read region, but the read access bit has been
set to 1 by the paging system hardware. The same may occur for a write operation.

When a reclamation is necessary in a shadow region, the oldest page is discarded first.
As depicted in Figure 3, a newly added page is linked to the newest location in the shadow
region, and the page in the oldest location is discarded.

Now, we will describe further details of our reclamation algorithm for different mem-
ory access scenarios. If a page already stored in the memory is accessed, the paging system
hardware sets the access bit of the page to 1. The read access bit of a page is set upon a read
operation while the write access bit is set upon a write. When a page not in the memory
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is requested, SPO-CLOCK retrieves that page from the source partition it resides in (i.e.,
file system partition for a file-mapped page and swap partition for an anonymous page),
and stores it in memory. If there is no free memory space to store the currently retrieved
page, SPO-CLOCK evicts a page from the region corresponding to its source partition and
the operation type to make free space. Then, SPO-CLOCK adds the page descriptor to that
region. For example, if a page is retrieved from the file system partition by a read system
call, it is inserted to the read/file region RF-R, and thus the victim page is also selected
from RF-R.

If the history of the page exists in the corresponding shadow region, it is deleted from
the shadow region and the hit count for this region increases. Note that each region has its
corresponding hit count to monitor whether the size of that region needs to be increased.
If the hit count reaches the threshold for the region, the size of the real memory region
is increased. To increase the size of a region, however, the size of other regions should
be decreased as the total memory capacity is fixed. In our algorithm, the victim region is
selected by monitoring the appropriate size of each region evaluated through hits from
shadow regions and the I/O cost involved in each region. Once the sizes of real memory
regions are adjusted, the sizes of the shadow regions are then adjusted accordingly to
preserve the balance between real and shadow regions. Algorithm 1 lists the pseudo-code
upon a page fault of a page in SPO-CLOCK.

Algorithm 1. Workings of SPO-CLOCK.

procedure PAGE-FAULT (page Pg, operation Op, partition Pt)
Reg← target region of Pg based on Op and Pt;
Reg’← shadow region of Reg;
if no free space in Reg then

RECLAIM (Reg);
end if
if no free space in Reg’ then

remove the oldest page from Reg’;
end if
if Pg∈Reg’ then

Remove Pg from Reg’;
Reg.hit++;
if Reg.hit = Reg.threshold then

increase the size of Reg by 1;
decrease the size of Reg’ by 1;
adjust the size of other regions;
Reg.hit← 0;

end if
end if
add Pg to Reg;

end procedure
procedure RECLAIM (region Reg)

Pg← page pointed by clock-hand of Reg;
Regop ← region with the opposite operation of Reg;
while access-bit (Pg, Reg) = 1 do

access-bit (Pg, Reg)← 0;
if access-bit (Pg, Regop) = 1 & Pg
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2.4. Overhead of SPO-CLOCK

Although monitoring and maintaining history information in the proposed algorithm
seems to incur a large overhead, that is not the case in reality when compared to traditional
memory management or caching algorithms. Specifically, the space overhead of maintain-
ing our shadow regions is only 16 bytes per page as the page descriptor with a pointer link
per page is needed. Thus, the total space required to manage 1 GB memory capacity, which
consists of 262,144 4 KB pages, is only 1 page.

Additionally, the time overhead of SPO-CLOCK is relatively short compared to tradi-
tional caching algorithms such as LRU (Least Recently Used). In particular, upon every
memory access, LRU requires the list manipulation of moving the currently accessed page
to the end of the list to maintain all pages in the access time order. On the contrary, SPO-
CLOCK is activated only when the requested page does not reside in memory. That is,
SPO-CLOCK does not perform anything when a page already in the memory is accessed,
but only the access bit is set by the paging system hardware. SPO-CLOCK performs list
manipulations only when the page fault handler is invoked to access storage. As storage
access is very slow, the software overhead of SPO-CLOCK while page fault handling is not
large. Resizing of areas is also considered only when a page fault occurs, and it does not
happen frequently as shown in Algorithm 1.

The time complexity of SPO-CLOCK is identical to that of the original CLOCK algo-
rithm, in which the only non-constant part is involved in the clock-hand scanning process
to find a victim page. Though the worst case time complexity may be O(n), where n is the
number of pages, the scanning requires only a few movements of the clock-hand, implying
that it has the constant time complexity in practical terms. In fact, a worst case analysis
such as a time complexity analysis does not consider the practical situations of real system
environments but just uses unrealistic conditions for worst cases to the algorithm. For
example, LRU has the time complexity of O(1) even though its overhead is much larger
than that of CLOCK in real systems.

3. Experimental Results

In this section, we discuss the performance evaluation results of the SPO-CLOCK
algorithm based on simulation experiments. For our simulation, memory access traces were
collected during the execution of apps, and then trace-driven simulations were performed
by replaying them. For collecting traces, we made use of the Cachegrind utility in the
Valgrind toolset [20]. We collected memory access traces from five Android apps, namely
the Angrybirds game, Youtube, which is a video streaming service, Chrome, which is a
web browser, Facebook, which is a social network service, and Farmstory, which is a video
game. The characteristics of memory access traces collected from these apps are listed in
Table 1. Note that we opened our memory access traces on our GitHub page for other
researchers to reproduce the results (https://github.com/oslab-ewha/mem-trace; accessed
on 30 December 2021).

Table 1. Brief characteristics of memory access traces collected in Android apps.

App Workload
Footprint (KB)

Ratio of Operations
(Read: Write)

Memory Access Counts

Data Read Data Write Instruction Read Total

Angrybirds 78,782 3.50:1 13,387,756 3,822,479 980,312 18,201,717

Youtube 70,287 4.44:1 14,040,959 3,162,229 993,316 18,196,504

Chrome 266,092 4.11:1 15,272,935 4,104,436 1,622,628 20,999,999

Facebook 203,431 5.67:1 11,121,174 2,045,716 486,165 13,653,055

Farmstory 55,030 6.24:1 12,675,555 2,101,818 447,297 15,224,670

We developed a functional simulator that has the ability to evaluate the effectiveness
of page reclamation algorithms with the exact I/O parameters of modern NVM and flash

https://github.com/oslab-ewha/mem-trace
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storage. Specifically, the simulator replays memory access traces consisting of a series of
logical page numbers and the access types. The access type is one of “instruction read,”
“data read,” and “data write,” which is the memory reference operation performed by CPU.
While simulating the memory system with a given algorithm and the memory capacity, if
the requested page is not in the memory, we simulated storage I/O activities based on the
performance characteristics of each storage type. For NAND flash, we used the parameters
of Samsung UFS 3.1, of which the read and write performances are 100,000 IOPS and
70,000 IOPS for 4 KB, respectively. For NVM, we used the parameters of Intel Optane
M10, of which the read and write performances are 190,000 IOPS and 35,000 IOPS for 4 KB,
respectively. The size of a page is set to 4 KB as is typically used in Android and Linux.

As we are interested in the memory management issue of smartphones, we did not
simulate the detailed activities in internal storage layers. The size of swap is usually set to
twice the size of physical memory in typical swap-capable systems such as Linux. In our
case, as we allocate each application’s memory size relative to its footprint, we set the swap
size to the entire footprint size to accommodate the full memory image in the swap area.

We compared SPO-CLOCK with CLOCK [19], ARC [21,22], and LRU algorithms. The
performance of these reclamation algorithms was compared by the overall I/O time while
replaying the memory access traces for each app. Note that write I/Os caused by the
write/file region were not measured in this experiment since it is not possible to determine
whether “data write” captured in the Valgrind memory access trace is actually written to
an anonymous page or a file-mapped page. Thus, we assume “data write” in our trace to
be a write to an anonymous page. In reality, when a file-mapped page is written in memory,
it is shortly diverted to storage by the journaling or flush daemon in order to resist a system
crash situation even though the page is not evicted by the reclamation algorithm [15,23].
This is different from a write to an anonymous page, which does not need to be reflected
to storage until it is evicted by the reclamation algorithm. This implies that write I/Os
incurred by file-mapped pages are not related to reclamation algorithms, and thus it is an
issue independent to our performance evaluation.

Figure 4 shows the I/O time of SPO-CLOCK, ARC, LRU, and CLOCK as the memory
size is varied. Note that we plot the I/O time of the algorithms as a relative scale to the
result of the CLOCK algorithm. In this experiment, the memory size varied from 5%
to 25% of the entire workload footprint. That is, the memory size of 100% was able to
accommodate the full workload footprint simultaneously, which is the condition identical
to the infinite memory capacity that does not incur any page reclamation at all. As shown
in the figure, SPO-CLOCK performed better than the other algorithms regardless of the
memory size for all workload cases. The reason behind this improvement is the adaptive
memory management of SPO-CLOCK in accordance with the hotness of each partition,
I/O cost of each storage type, and the workload characteristics. Specifically, SPO-CLOCK
improves the I/O time by 15.0% on average and up to 35.1% compared to CLOCK. When
compared to ARC, the performance improvement of SPO-CLOCK is 12.0% on average and
up to 35.2%. Since the operation of LRU is similar to the CLOCK algorithm, it can be seen
that the performance results of LRU and CLOCK are very similar.

In the figure, we separately plotted the I/O time of swap read, swap write, and file
read, and then accumulated them. As shown in the figure, in most cases, the SPO-CLOCK’s
effectiveness apparently can be observed when the memory size is relatively small. This is
due to the characteristics of SPO-CLOCK that manages the limited memory capacity effi-
ciently. When we quantify the I/O time in detail, SPO-CLOCK improved the performance
by reducing swap writes compared to CLOCK though it slightly increased file reads. This
is because the cost of a swap write is the highest among all I/O types, so SPO-CLOCK took
this into consideration while managing memory space in a cost-effective manner.

Another observable trend in Figure 4 is that swap writes account for the dominant
I/O time compared to swap reads regardless of the memory size, workload types, and
reclamation algorithms. This implies that a large number of pages are evicted to the
swap area in case free memory is exhausted, but only some of hot pages are used again.
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Meanwhile, in Chrome and Facebook workloads, the ratio of swap I/O diminished rapidly
as the memory size increased. The reason is that the locality of memory accesses in these
apps is high, and thus when the memory size is large enough to accommodate some limited
hot pages, swap does not occur any longer. Note that, in this case, the proportion of file
reads increased significantly as the memory size increased, as shown in Figure 4, but this
does not imply the actual increase in I/O time since we plot the I/O time in a relative scale.

Figure 4. I/O time of CLOCK, ARC, LRU, and SPO-CLOCK as the memory size is varied.
(a) Angrybirds, (b) Youtube, (c) Chrome, (d) Facebook, (e) Farmstory.
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4. Related Works

To support swap in smartphones, much research has been conducted. zRAM-swap
is supported in Android smartphones, which utilizes a certain part of DRAM as a swap
partition that stores swapped pages in compressed form [24]. Han et al. suggest a hybrid
swap policy to support storage-swap as well as zRAM-swap [25]. In particular, their policy
first swaps pages of a process in zRAM-swap, and then the oldest pages are swapped to the
storage-swap. Kim et al. suggested a selective swap scheme that limits the number of apps
involved in swap by considering the context-saving characteristics of apps [9]. Specifically,
if an app maintains its context by itself, their scheme does not support swap as is the case
in conventional Android memory management. In contrast, if an app does not have the
function of saving its context, their scheme supports swap, thereby saving the context in
the swap area before removing its memory pages. Chae et al. proposed cloud-swap for
smartphones by making use of cloud or server storage as a swap partition [26].

Some recent studies attempted to adopt NVM as the swap device of smartphones [7,8].
NVM is considered as a memory/storage medium that can accelerate storage system
performance, but write operations on NVM are vulnerable in terms of endurance cycles
and reliability. Thus, studies on NVM-swap have focused on resolving the weaknesses of
NVM media. Liu et al. showed that flash-swap degrades the smartphone performance
significantly, and suggested the adoption of NVM instead of flash as the swap device of
smartphones [8]. Specifically, they focused on the management of NVM-swap such as wear
leveling to distribute writes in NVM evenly to avoid a fast wear out of NVM cells.

Hadizadeh et al. proposed STAIR (STT-MRAM Aware Multi-Level I/O Cache Archi-
tecture) that adopts hierarchical storage architecture consisting of a first-level NVM cache
and a second-level SSD cache [27]. For the NVM cache, they made use of STT-MRAM,
and addressed reliability issues of read disturbance, write failure, and retention failure.
Specifically, STAIR classifies the cached pages into clean and dirty, and distributes them to
the two caches considering their vulnerability. To improve the reliability of storage further,
STAIR dynamically generates additional ECCs (Error-Correction Codes) for dirty pages.
Hadizadeh et al. also presented an NVM journal architecture for DRAM-based buffer in
order to address the vulnerability of volatile DRAM [28]. For NVM, they made use of
STT-MRAM as the persistent journal area, and presented a new buffer management scheme
called CoPA (Cold Page Awakening). In order to reduce the retention failure of pages in
STT-MRAM, CoPA periodically overwrites pages in the persistent journal area.

Our work also adopts NVM as the swap device of smartphones, similar to the afore-
mentioned previous studies, but instead of focusing on NVM management, the main focus
of our work is in the memory management issue of smartphones with NVM-swap. Thus,
our work is orthogonal to previous studies on NVM-swap that focused on the management
of the swap partition consisting of NVM. So, our work can be incorporated into previous
works managing NVM-swap such as wear-leveling and failure resistance techniques.

5. Conclusions

As the domain of smartphone use expands from personal entertainment to various
official tasks, supporting swap to preserve the context of apps is becoming increasingly
important. However, the I/O overhead of swap degrades the performance of smartphones
significantly as the number of apps increases. Previous studies showed that fast NVM
storage can resolve the performance degradation problem of smartphone swap. In line with
previous approaches that use NVM swap, we discussed how the memory management
system of smartphones can be further improved with NVM swap. Specifically, we presented
a new page-reclamation algorithm for smartphone memory that considers heterogeneous
storage partitions of file system and swap, and their access characteristics. Our simulation
experiments with real memory traces of Android apps showed that the proposed page
reclamation algorithm improves the I/O performance of smartphones by 15.0% on average
and by up to 35.1% compared to the CLOCK algorithm.
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