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Abstract: Model predictive current control (MPCC) has recently become a powerful advanced control
technology in industrial drives. However, current prediction in MPCC requires a high number
of voltage vectors (VVs) synthesizable by the converter, thus being computationally demanding.
Accordingly, in this paper, a computationally efficient MPCC of synchronous reluctance motors
(SynRMs) that reduces the number of VVs used for prediction is proposed. By making the most of
the simplicity of hysteresis current control (HCC) and integrating it with the MPCC scheme, only
four out of eight predictions are needed to determine the best VV, dramatically reducing algorithm
computations. The experimental results show that the execution time can be shortened by 20% while
maintaining the highest control efficiency.

Keywords: model predictive control; hysteresis current control; execution time; synchronous
reluctance motors

1. Introduction

Synchronous reluctance motors (SynRMs) have, in recent years, attracted much atten-
tion due to their high-efficiency output and nature of their construction denoted by the
lack of expensive magnetic materials, thus cheapening the overall cost whilst increasing
in robustness. These benefits have made the SynRM a strong contender against other
established electric motors in the market, namely, permanent magnet synchronous motors
(PMSMs) and induction motors (IMs) [1–4].

In order to achieve high control performance and efficiency from the SynRM drive, a
suitable control technique is required. The finite-control-set model predictive control (MPC)
has recently gained attention and notoriety [5–18]. It has distinguished itself from conven-
tional control techniques, such as vector and direct control strategies, due to its ability to
deal straightforwardly and intuitively with multi-objective control and integrate nonlin-
earities and constraints into a predefined cost function while providing a fast dynamic
response and superior performance.

Although advantageous, MPC demands a high computational burden due to all the
voltage vectors (VVs) combinations of the power converter being used for prediction and
evaluation [15]. For example, 8 VVs are used to predict and evaluate the cost function of a
two-level voltage source inverter (2L-VSI). Furthermore, 16 VVs are used in a two-level
back-to-back converter (2L-BTB). In addition, 32 and 64 VVs are needed for 5- and 6-leg
converters, respectively. On the other hand, 27 and 125 VVs are required for MPC of
3L-VSI/matrix converter and 5L-VSI, respectively.

The sampling time for MPC algorithms has been reported in the literature to be 50 µs
for the 2L-VSI and 2L-BTB [16] and 100 µs for the 5-leg converter [17]. A sampling time of
65 µs is required for matrix converters [19]. In turn, sampling times of 52 µs and 93 µs are
needed for 3L-VSI and 5L-VSI, respectively [20].
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Accordingly, with the increase in the complexity of the converter, the quantity of
feasible VVs increases; therefore, the computation effort rises. Thus, high sampling times
are required, producing large current ripples and reducing the overall drive efficiency.
Consequently, costly digital processors are needed to keep up with the computational
demand, thereby affecting the cost-effectiveness of MPC and subsequently slowing its
widespread acceptance in the industry.

To deal with the issues previously mentioned, some predictive control strategies have
recently been proposed. MPC is combined with a graphical approach to reduce the com-
putation effort [21]. In [22], a control scheme based on a predefined voltage reference is
implemented to predict only one VV in a 2L-VSI. In [23,24], deadbeat control is paired
with MPC to select three out of the eight predictions in 2L-VSI- and 2L-BTB-fed PMSMs,
respectively. Furthermore, the same approach can be seen in [25], resulting in less compu-
tational power being used. However, the graphical approach used in [21] is not intuitive
and straightforward and the deadbeat control algorithms used in [23–25] are complex and
highly dependent on system parameters, being sensitive to parameter uncertainty.

Alternatively to complex MPC schemes, hysteresis-based control techniques are sim-
ple in both concept and implementation. For instance, in [26], direct torque control (DTC)
and direct power control (DPC) were applied to permanent magnet synchronous generator
(PMSG) drives, with results showing that the execution time is considerably lower than
that of direct MPC. Consequently, given its straightforwardness, fast dynamic response
and low parameter dependency, direct control techniques could present themselves as a
solution, conferring significant advantages when paired with MPC techniques. In [27–29],
a reduction in the candidate VVs and computation was achieved by reformulating new
DTC switching tables and combining them with direct MPC. In [30], new DTC and DPC
switching tables were combined with direct the MPC of a 2L-BTB-fed PMSG, significantly
reducing the number of candidates from 16 to 6 VVs and requiring less computation.
DTC-based MPC has also been proposed in [19,31] for matrix-converter-fed PMSMs. Fur-
thermore, regarding the multilevel converters, a decrease in execution time was obtained
by minimizing the number of VVs in 3L-VSI through the estimation of the position and
deviation of the stator flux relative to its reference [32], an analysis of the voltage reference
vector [33] or, a branch-and-bound approach [34]. For the 3L-BTB-fed PMSG, again, the
deadbeat based on system parameters is employed to reduce the candidate VVs, success-
fully decreasing the algorithm execution time [35].

Unfortunately, the solutions presented so far, although promising, still show some
significant disadvantages, with most of the computationally efficient MPC methods be-
ing based on either a DTC switching table or deadbeat concept that, due to their need
for system parameters, add further parameter dependency on the already heavily de-
pendent predictive algorithm schemes, amplifying the adverse effects of a model-based
predictive approach.

MPC solutions require sophisticated algorithms to achieve superior efficiency at the
expense of computational effort. The literature survey shows a substantial shortage of
research into a practical and easy MPC scheme that offers attractive characteristics such
as simplicity, high control performance and low computational effort. On the other hand,
hysteresis current control (HCC) bears a far more straightforward approach, both practically
and conceptually, displaying a zero-parameter dependency on the system’s model and less
significant computational cost requirements.

However, to the authors’ knowledge, a less computationally demanding MPCC based
on HCC, which aims to obtain superior control performance, has not yet been reported in
the literature. Accordingly, this paper intends to solve the issues mentioned earlier, thus
proposing a combination of HCC–MPCC for SynRM drives with enhanced control perfor-
mance and robustness in the form of less parameter dependence in the HCC while being
low in both complexity and computational burden. As a result, the number of required VVs
was effectively reduced from eight to four VVs; consequently, a low computational time



Electronics 2022, 11, 379 3 of 14

was achieved, requiring less sampling time and enhancing the control performance. The
proposed control algorithm was tested and validated by intensive experimental results.

2. Proposed HCC–MPCC of the VSI

The proposed control scheme HCC–MPCC intends to reduce the computational bur-
den of the classical predictive scheme whilst maintaining an excellent control performance
by combining the benefits of HCC with MPCC, thus also equipping the proposed control
scheme with the robustness and simplicity derived from the HCC and superior control
performance derived from MPCC. Ultimately, a lower execution time was achieved us-
ing 4 VVs for prediction and evaluation instead of all 8 available VVs of the VSI whilst
maintaining good control performance with minor current ripples.

2.1. VV Selection from HCC

HCCs, also known as bang–bang controllers, are among the most straightforward
and intuitive control types. They work by directly controlling the motor phase currents
whilst displaying their already mentioned benefits, such as robustness, simplicity, excellent
dynamic response limited merely by the switching speed and the load time constant and
independence of system parameters, making it attractive for this paper’s intended purposes.
The following expression summarizes the operation principle of an HCC:

Sx =

{
1 i f i∗x > ix +

Bhys
2

0 i f i∗x < ix −
Bhys

2

x ∈ {a, b, c} (1)

where Sx denotes the switching state of the upper semiconductor in the inverter arm of
each phase, while the lower semiconductor takes the state complementary to the upper
semiconductor; ix and i∗x are the actual current and the reference, respectively, where the
subscript “x” denotes the phase and Bhys denotes a defined hysteresis band.

The HCC control strategy is focused on the utilization of three hysteresis comparators
to generate the converter gate signals, where each comparator has, as an input, the error
between the measured current and its reference in the corresponding phase. The controllers
then use the error in each phase to maintain their values within a defined hysteresis band
Bhys, such that, if the error crosses the upper band limit, the upper semiconductor is turned
ON and the lower semiconductor is turned OFF. Conversely, if the error crosses the lower
band limit, the upper semiconductor is turned OFF and the lower one is turned ON,
thus maintaining the current within the hysteresis band limits. Therefore, the hysteresis
bandwidth sets the standard for the current tracking performance of the HCC.

Initially, the proportional-integral (PI) controller generates the torque-producing com-
ponent (iq), while the id componentis obtained as a function of iq according to the maximum
torque per ampere (MTPA) detailed in the following section. Furthermore, the hysteresis
bandwidth value is fixed for better control performance. Then, the reference VV is calcu-
lated by using three hysteresis comparators for each phase with the operation principle
summarized by (1) and further detailed above, in which each hysteresis comparator takes,
as an input, the stator current and its respective reference obtained from the transforma-
tion of the reference current components in the rotor reference frame to the abc reference
frame, thus generating the initial reference VV. Subsequently, the VVs neighbor near to
the initial reference VV are selected according to Table 1. For instance, if HCC computes
the vector V1 (green) as the reference VV, then the neighbor vectors V0, V2 and V6 (red)
are also selected. Figure 1 depicts the aforementioned scenario, where the reference and
near neighbor VVs selection process are shown in green and red, respectively. Moreover, a
diagram and a flowchart comprising the VV selection process from the HCC can be seen
in Figures 2 and 3, respectively.
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Table 1. VV selection used in HCC–MPCC.

VHCC|i NVHCC{x0, x1, x2, x3}
V1 V0, V1, V2, V6
V2 V0, V1, V2, V3
V3 V0, V2, V3, V4
V4 V0, V3, V4, V5
V5 V0, V4, V5, V6
V6 V0, V1, V5, V6

V0 or V7 V0, V0, V0, V0
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It is important to emphasize that the inverter allows only eight switching states to
exist, resulting in six active VVs and two identical zero VVs at the origin of the coordinates,
namely, V0 or V7. However, given the difficulty of differentiating between the two output
voltages for the zeroVVs, choosing either switching states can significantly reduce the
difficulty in implementation [36]. In terms of the scope of this work, only V0 is defined
as the zero VV for the sake of simplicity and further reduction in the employed VV, to be
used in conjunction with the active VVs, thus ensuring more ripple reduction [30]. Table 1
presents the relation of the near neighbor VV (NVHCC ) selection based on the HCC reference
VV (VHCC) calculation, where VHCC|i(i = 0, . . . , 7) .

The 4selected 4 VVs are then used in the proposed HCC–MPCC to predict the stator
currents and determine the cost function. Subsequently, the optimal VV is chosen by
minimizing the cost function presented in the next section.

2.2. HCC–MPCC

Since the main focus of this paper is to reduce the number of VVs for MPC, thereby
reducing the computational burden, the saturation effect of the SynRM is neglected for the
sake of simplicity. Therefore, the stator voltage and current equations of the SynRM in a
synchronous rotating frame can be expressed as follows:

vd = Rsid −ωeLqiqm + Ld
didm

dt
vq = Rsiq + ωeLdidm + Lq

diqm
dt

id = idm − 1
Rc
(ωeLqiqm)

iq = iqm − 1
Rc
(ωeLdidm)

(2)
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where Ld and Lq are the direct and quadrature inductances, vd and vq are the direct and
quadrature axis terminal voltages, id and iq are the direct and quadrature axis terminal
currents, idm and iqm are the direct and quadrature axis torque-producing currents, Rs and
Rc are the stator resistance and iron loss resistance per phase and ωe is the rotor’s electrical
angular speed. This is defined as a model without saturation. Since this model does not
consider magnetic saturation, the inductances are assumed to be constant [37,38].

Given that the resistance Rc typically approaches very high values [39,40] and the
motor used in this analysis is of high efficiency, the iron losses are dismissed [41]. Conse-
quently, the torque producing currents idm and iqm are made equal to the stator currents
id and iq, respectively. Therefore, given (2), the equivalent stator voltage equations can be
expressed as {

vd = Rsid −ωeLqiq + Ld
did
dt

vq = Rsiq + ωeLdid + Lq
diq
dt

(3)

Considering the discrete-time version equations corresponding to (3), the predicted
stator currents in the (k + 1)th sampling period can be stated as id

k+1 =
(

1− RsTs
Ld

)
id

k + ωeTs
Lq
Ld

iq
k + Ts

Ld
vd

k

iqk+1 =
(

1− RsTs
Lq

)
iq

k −ωeTs
Ld
Lq

id
k + Ts

Lq
vq

k
(4)

where Ts is the sampling interval, idk and iqk are the direct and quadrature axis terminal
measured currents at the (k)th instant and vd

k and vq
k are the direct and quadrature axis

voltages obtained from the optimal VV applied to the VSI at the instant (k)th. Using the
MPCC with delay compensation from [42] and according to (4), the predicted currents in
the (k + 2)th sampling period can be written as id

k+2 =
(

1− RsTs
Ld

)
id

k+1 + ωeTs
Lq
Ld

iq
k+1 + Ts

Ld
vd

k+1

iqk+2 =
(

1− RsTs
Lq

)
iq

k+1 −ωeTs
Ld
Lq

id
k+1 + Ts

Lq
vq

k+1
(5)

In the proposed HCC–MPCC, vd
k+1 and vq

k+1 are the direct and quadrature axis
voltages computed from four VVs obtained from HCC according to Table 1. However, in
classic MPCC, vd

k+1 and vq
k+1 are reconstructed from the 8 VVs of the hexagon voltage

that the converter can synthesize, turning (5) into a computationally demanding task.
Then, the cost function is defined with an emphasis on the desired behavior of the

SynRM. Therefore, considering that the implemented algorithm focuses on predictive
currents, the cost function is then defined to evaluate the error between the predicted
currents and their respective references. Hence, the cost function is given by

g(k)|xl =
[
i∗d − id

k+2
]2

+
[
i∗q − iq

k+2
]2

; l = 0, . . . , 3 (6)

In the SynRM control, the reference current i∗q is generated by the speed controller,
while i∗d is derived from considering the MTPA strategy in [39], given by

i∗d = −0.0589i∗2q + 1.0515i∗q − 0.2374 (7)

Regarding Table 1, it can be further observed that each reference VV previously
computed by the HCC VHCC corresponds to a combination of 4 selected VVs NVHCC , thus
yielding predicted current values through (5). Therefore, by optimizing (6), the optimal VV
can be determined as follows:

VVSI(k) = arg min
{xo ,x1, x2,x3}

g(k)|xl ; l = 0, . . . , 3 (8)
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where the optimal VV satisfying the criteria defined by (8) by which the chosen (minimal)
value of the defined cost function g(k), which is dependent on the 4-element VV, is then
adopted to control the six insulated gate bipolar transistors (IGBTs) of the VSI in the
(k + 2)th sampling period, according to Table 2, where the relationship between the output
voltages VVSI and the conducing modes of the VSI is presented, with VVSI

∣∣j(j = 0, . . . , 7) .

Table 2. Converter VVs.

VVSI

∣∣∣j(sa, sb, sc) va vb vc

V1 2/3Vdc −1/3Vdc −1/3Vdc
V2 1/3Vdc 1/3Vdc −2/3Vdc
V3 −1/3Vdc 2/3Vdc −1/3Vdc
V4 −2/3Vdc 1/3Vdc 1/3Vdc
V5 −1/3Vdc −1/3Vdc 2/3Vdc
V6 1/3Vdc −2/3Vdc 1/3Vdc

V0 or V7 0 0 0

In (5)–(8) of the proposed HCC–MPCC control scheme, only 4 out of the 8 available
VVs of the VSI, previously calculated by HCC, are used to perform the prediction of
the current and evaluation of the cost function within every sampling interval Ts, thus,
computing the optimal VV, which is then applied to the converter. However, it is essential
to distinguish that, in classical MPCC, all 8 VVs are used to predict the current and to
evaluate the cost function.

3. Results and Discussion

The considered configuration of the drive system consists of a three-phase 2L-VSI
linked to the SynRM, where the control system outputs the optimal VV through a com-
bination of the switching signals sa, sb and sc. In addition, a closed-loop scheme with
feedback sensors, where rotor location, stator currents and dc-link voltage are measured, is
considered for high drive efficiency. Figure 2 shows the block diagram configuration for
the proposed HCC–MPCC strategy in detail. Furthermore, the flowchart for the proposed
algorithm can be seen in Figure 3. In addition, the algorithm for the proposed control
strategy comprises the following steps:

1. Measurement of speed ωe, stator currents iabc
k and reconstruction of voltages vdq

k

and currents idq
∗.

2. Apply the optimal VV VVSI(k).
3. Computation of the initial reference VV VHCC by the HCC through (1) and the neigh-

bor VVs according to Table 1.
4. First-step prediction of the currents idq

k+1 given the optimal VV VVSI(k) by using (4).
5. Second-step prediction of the currents idq

k+2 given the selected VV in Table 1 by
using (5).

6. Evaluation of the predicted currents in the cost function through (6) and selecting the
optimal VV using (8).

The experimental test rig comprised a 2.2 kW SynRM coupled to an AC electric ma-
chine used as a load due to its similar power characteristics and speed range as the SynRM
used for the proposed method. The AC electric machine in question was a 2.2 kW PMSG
with a nominal speed of 1750 rpm. A Powerex POW-R-PAK VSI, a diode bridge rectifier
and a dSPACE DS1103 digital controller were also part of the experimental configuration,
as shown in Figure 4. The SynRM parameters are given in Table 3.
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Table 3. Parameters of the used SynRM.

Power P = 2.2 kW Voltage V = 366 V

Speed N= 1500 rpm Current I = 5.7 A
No. of pole pairs p = 2 Torque TL= 14 N.m
d-axis inductance Ld= 0.24 H q-axis inductance Lq= 0.057 H

The classical MPCC and the proposed HCC–MPCC algorithms were applied to the
VSI. The same PI speed controller for closed-loop speed control was used for both con-
trol schemes. For the proposed HCC–MPCC, the hysteresis band was imposed at 0.2 A,
approximately 3.5% of the rated current, for better control performance.

3.1. Computational Effort

The classical MPCC and the proposed HCC–MPCC algorithms were separately imple-
mented, under the MATLAB/Simulink environment, into the dSPACE digital controller
board. The computational prerequisites of a given algorithm are determined by the com-
plexity and demands of the applied programming language. One way to estimate such
prerequisites is to calculate the computational effort placed on the controller in order to ex-
ecute all the algorithmic calculations. Considering the procedure described in [43], Table 4
presents the average execution times taken by each algorithm in the dSPACE DS1103 con-
troller and the real-time implementation details. The computation effort of the proposed
HCC–MPCC algorithm took only 18.82 µs to complete the code, which is significantly lower
than the classical MPCC’s execution time of 24.26 µs. Therefore, given that the sampling
time Ts must be greater than the execution time and that the control variable ripples are
heavily dependent on the Ts, the Ts for the classical MPCC cannot be considerably less than
35 µs due to the high algorithmic computation time. However, by using four VVs in the
proposed HCC–MPCC, the Ts could be effectively reduced to 28 µs, thereby improving the
overall performance of the control process.
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Table 4. VV number and execution time of HCC–MPCC and classical MPCC.

Control Algorithm Number
of VVs

Execution
Time (µs)

Sampling
Time (µs)

MPCC 8 24.26 35
HCC–MPCC 4 18.82 28

3.2. Control Performance

For an adequate assessment of the proposed algorithm’s control efficiency and perfor-
mance analysis, the total harmonic distortion (THD) expression was employed to quantify
the distortion of the currents [30], further in compliance with the IEEE guidelines specified
in [44]. Similarly, the total waveform oscillation (TWO) factor was employed to quantify the
ripple/oscillation content of said quantity, where a high ripple content is undesirable [30,45].
The THD can be expressed as

THD =

√
THD2

A + THD2
B + THD2

C
3

× 100% (9)

Furthermore, the TWO can be given by

TWO =

√
X2

eRMS − X2
eDC

|XeDC|
× 100% (10)

where XeRMS and XeDC stand for the RMS values and average values of a given quan-
tity, respectively.

Extensive experimental tests were conducted to validate the proposed HCC–MPCC
strategy, feasibility and control performance. Furthermore, the classic MPCC was applied
alongside the proposed algorithm for comparative purposes, but with different sampling
times. Both control schemes were tuned in order to give the best possible performance and
they were tested under the same conditions. The performance evaluation considered the
analysis of the system’s dynamic response to a set of operating conditions as well as the
THD of the phase stator currents and the TWO values of the d-q axis currents.

Figure 5 shows a comparison between the classical MPCC at 35 us (Figure 5a), the pro-
posed HCC–MPCC at 35 us (Figure 5b) and the proposed HCC–MPCC at 28 µs (Figure 5c)
under a step-torque torque. The speed reference was set to 1000 rpm, whereas the load
step-torque was applied at t = 0.5 s, ranging from 0 to 5 Nm. It can be observed that all
control strategies exhibited a similar rapid dynamic response for the considered operation
conditions, showcasing good and precise speed tracking capability, thus exhibiting their
strength in withstanding rapid and load torque variations. Consequently, the d–q-axis
currents presented an expected behavior as they varied according to the demanded load
torque, displaying a good torque response. Moreover, it can also be observed that the stator
current waveforms were effectively sinusoidal.

Nonetheless, unlike classical MPCC, the proposed HCC–MPCC did not test all the
eight possible VVs of the VSI for evaluation and prediction; therefore, classical MPCC
displayed a slightly better performance than the proposed HCC–MPCC for the same
sampling time of Ts = 35 µs, evidenced by the fact that, for the same sampling time of
Ts = 35 µs, classical MPCC (Figure 5a) had an overall slightly better performance indicated
by the lower TWO values and THD in d–q-axis currents and the stator current waveform,
respectively, in comparison with HCC–MPCC (Figure 5b), given the slightly higher TWO
values and THD of the latter. However, in contrast with classical MPCC, as previously
mentioned, the proposed HCC–MPCC reduced the VVs used for prediction and evaluation
of the cost function, thus inherently requiring a shorter execution time, which translates
itself to a shorter sampling time. Therefore, as indicated in Table 4, the sampling time
of the proposed HCC–MPCC (Figure 5c) was set to Ts = 28 µs, consequently displaying
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superior control performance evidenced by the decrease in the overall TWO values in the d–
q-axis currents and, subsequently, a lower ripple content in the stator current waveforms in
comparison with the previously mentioned control configurations, evidenced in the zoomed
stator currents. Furthermore, it is important to highlight that a smaller sampling time of
Ts = 28 µs was not available for classical MPCC, thus this was set to Ts = 35 µs. In addition,
it is also necessary to emphasize that, given the MPCC’s high parameter dependency on
the SynRM model, slight deviations between the q-axis current and its respective reference
can be observed in Figure 5 for the employed control strategies. Moreover, the nonlinear
nature of the operation conditions inherent to the experimental procedure and several other
reasons are also contributing factors for the SynRM modeling accuracy.
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Figure 6 shows the control scheme performance under a speed progression from
500 to 1000 rpm, with a load torque of 2 Nm imposed to the SynRM. The change in the
speed reference was given at t = 0.5 s with an acceleration rate of 1000 rpm/s. It can
be observed that, for both MPCC and HCC–MPCC control strategies, the new speed
reference value was tracked accurately and without any noticeable overshoot, evidenced
by the waveform smoothness under the employed speed progression (see Figure 6a–c).
Similarly, the d–q-axis currents tracked their reference well, changing along with the speed
progression, displaying a great dynamic response in the transient state. However, similarly
to the previous operating condition, for the same sampling time of Ts = 35 µs, given its
higher resolution, classical MPCC (Figure 6a) exhibited lower TWO values and ripple
content in the d–q-axis currents and the stator current waveforms, respectively, in contrast
with the proposed HCC–MPCC (Figure 6b). Nonetheless, for the employed control strategy
in Figure 6c with a lower sampling time of Ts = 28 µs, it can be observed that the d–q-axis
currents presented lower TWO values than the other control scheme configurations with a
higher sampling time, consequently leading to sinusoidal stator currents with less harmonic
distortion, showcasing the proposed HCC–MPCC’s superior control performance.
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In summary, it deserves restating that, for the same sampling time of Ts = 35 us,
Figures 5b and 6b showcase slightly higher TWO values and THD in the d–q-axis currents
and the stator current waveform, respectively, under both step-load torque and speed
variations, in comparison with the classical MPCC’s results in Figures 5a and 6a, that is,
due to a lower resolution of the proposed control scheme at a sampling time of Ts = 35 us,
with such occurrence lying in two main reasons. Firstly, the predicted vectors were selected
based on the hysteresis current controller (HCC) reference VV, which is solely dependent
on the HCC bandwidth. Secondly, not all feasible voltage vectors (VV) were used for
prediction and evaluation of the cost function. Nonetheless, it is essential to note that the
computational running time for each algorithm’s execution varied. Table 4 presents and
compares the average execution times of the algorithms. In comparison to conventional
MPCC, the proposed HCC–MPCC eliminates the need for excessive calculations. As a
result, the execution time was significantly reduced. In particular, the proposed HCC–
MPCC dispensed with evaluating all feasible VVs of the VSI, reducing the number of
candidate voltage vectors (VV) for prediction and evaluation in the cost function from eight
to four VVs. This ultimately reduced the algorithm’s execution time.

Therefore, to reap the benefits of the related decrease in execution time, the sampling
time could also be reduced. Thus, the sampling time could be set to 28 µs for the proposed
HCC–MPCC, given that only four VV were evaluated, where a sampling time lower than
35 µs is not available for classical MPCC. The implementation details in Table 4 reveal a 20%
reduction in the excessive computational burden inherent to classical MPCC, further con-
ceiving additional benefits to the proposed HCC–MPCC, thereby excelling and showcasing
the best control performance by exhibiting lower TWO values and THD in the d–q-axis
currents and the stator current waveforms, respectively, as shown in Figures 5c and 6c
compared to the classical strategy and further widening its applicability to cheap and less
power-demanding microprocessors.

4. Conclusions

This paper presents a computationally efficient HCC–MPCC control scheme of SynRM
drives. The reduction in the computational cost was achieved by a merger between MPCC
and HCC, thus defining only four VVs used to predict the current and evaluate the cost
function. Compared with classical MPCC, the adoption of the proposed HCC–MPCC
represents a reduction of20% in the computational effort while simultaneously maintaining
and exhibiting the best control performance, making it an attractive, cost-effective solution.

Moreover, the proposed HCC–MPCC scheme further proved to improve on the in-
herent drawbacks of both HCC and MPCC, with the conducted experimental results also
showing an overall reduction in the TWO values and harmonic distortion content as well as
the ability to withstand parameters variability, yielding overall excellent results compared
with HCC and MPCC alone.
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