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Abstract: In order to improve industrial production efficiency, a hand–eye system based on 3D
vision is proposed and the proposed system is applied to the assembly task of workpieces. First,
a hand–eye calibration optimization algorithm based on data filtering is proposed in this paper.
This method ensures the accuracy required for hand–eye calibration by filtering out part of the
improper data. Furthermore, the improved U-net is adopted for image segmentation and SAC-IA
coarse registration ICP fine registration method is adopted for point cloud registration. This method
ensures that the 6D pose estimation of the object is more accurate. Through the hand–eye calibration
method based on data filtering, the average error of hand–eye calibration is reduced by 0.42 mm
to 0.08 mm. Compared with other models, the improved U-net proposed in this paper has higher
accuracy for depth image segmentation, and the Acc coefficient and Dice coefficient achieve 0.961 and
0.876, respectively. The average translation error, average rotation error and average time-consuming
of the object recognition and pose estimation methods proposed in this paper are 1.19 mm, 1.27◦,
and 7.5 s, respectively. The experimental results show that the proposed system in this paper can
complete high-precision assembly tasks.

Keywords: hand–eye calibration; U-net; point cloud registration

1. Introduction

The field of automatic robotic assembly has attracted much attention. In recent years,
automatic robotic assembly technology has been gradually applied to various fields such
as automobiles, aerospace, and electronics manufacturing. The application of automatic
robotic assembly technology has greatly improved the production efficiency of enterprises.
In automatic robotic assembly tasks, the robot is guided by vision sensors or force/torque
(F/T) sensors to complete the assembly work.

The automatic robotic assembly system based on force/torque sensors senses the force
of the workpiece in the assembly process, and guides the robot to complete the assembly
task by analyzing the force model and adjusting feedback system. Peng et al. [1] designed
a novel three-layer pose adjustment mechanism consisting of two parallel mechanisms as a
force sensor to assist robots in completing automatic assembly tasks. Wang et al. used an
elastic displacement device to sense errors in the assembly process and assist the robot in
automatic assembly through closed-loop feedback [2]. Zeng et al. proposed an external
force/torque calculation algorithm based on dynamic model identification to realize the
flexible assembly of robots [3]. Gai et al. proposed a compliance control method to solve
the insertion assembly problem [4]. Park et al. proposed a compliant nail hole assembly
method based on blind search using spiral force trajectory (SFT) [5].

Though the automatic assembly problem can be solved with the assistance of a
force/torque sensor, it still does not appear to be “flexible.” Therefore, researchers usually
equip the system with vision sensors to assist the robot in more flexible automatic assembly.
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Ma et al. built an assembly system consisting of a robot, three cameras, a micro-force
sensor and a specific gripper [6]. Li et al. proposed a three-dimensional visual method for
object pose estimation coupled with admittance control to promote robotic shaft-in-hole
assembly [7]. Liu et al. solved the peg-in-hole precise assembly problem by combining
microscopic vision and force information. [8]. Qin et al. proposed a precision assembly
method based on multi-camera micro-vision and three-dimensional force feedback [9].
Song et al. proposed robotic assembly skill learning with deep Q-learning using visual
perspectives and force sensing to learn an assembly policy [10]. Wang et al. developed a
high-precision assembly system combining robotic vision servo technology and robot force
feedback control technology [11].

While the combination of a force/torque sensor and a vision sensor can solve the
problem of automatic assembly by a robot, the force/torque sensor is expensive, which
will increase the cost of the entire system. In order to improve assembly efficiency and
reduce system cost, researchers are committed to the research of automatic robotic assembly
system using only a visual sensor as the auxiliary. For example, an automatic assembly
system based on stereo vision was researched by Chang et al. [12], which completes the
precise assembly of mobile phone cases. Jiang et al. proposed a calibration method for the
large-scale cabin assembly system (LCSS) with visual guidance [13]. Dong et al. realized
robot assembly pose estimation through point cloud registration [14]. Yan et al. used a
structured light 3D camera to build a high-precision robot assembly system to achieve
high-precision assembly of two workpieces [15]. Litvak et al. proposed a high-precision
two-stage attitude estimation method based on deep learning to realize automated assembly
of workpieces [16]. Li et al. proposed an automatic vision positioning for precise grasping
of workpieces in the assembly process [17].

For robot flexible automatic assembly tasks, this paper designs a hand–eye system
based on the 3D vision, which includes two modules: hand–eye calibration and automatic
assembly. The working flow chart of the system designed in this paper is shown in Figure 1.
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Figure 1. Workflow of automatic robotic assembly system. The transformation relationship between
the robot and the camera is obtained through hand–eye calibration. Through point cloud segmenta-
tion and point cloud registration, the pose of the target in the camera coordinate system is calculated.
The hand–eye transformation matrix is multiplied by the pose of the target in the camera coordinate
system to obtain the pose of the target in the robot coordinate system, which realizes automatic
assembly guidance of the robot.
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The main contributions of this paper are as follows:

1. A hand–eye calibration optimization method based on hand–eye data filtering is
proposed to improve the accuracy of hand–eye calibration;

2. An improved U-net segmentation method is proposed to accurately segment the
depth image and achieve fast and accurate segmentation of point cloud;

3. The point cloud registration strategy of “SAC-IA coarse registration-ICP fine registra-
tion” is adopted to achieve the target pose acquisition.

The rest of the paper is arranged as the following: the Section 2 introduces the principle
of hand–eye calibration and the method flow based on hand–eye calibration data filtering;
the Section 3 describes point cloud segmentation and object 6D pose estimation based on
deep learning; the Section 4 verifies the advantages and feasibility of the system; finally,
the Section 5 summarizes the work of the paper and prospects future research issues.

2. Optimization of Hand–Eye Calibration Based on Data Filtering
2.1. Mathematical Model and Error Analysis of Hand–Eye Calibration

The hand–eye calibration problem is usually defined as the problem of solving the
equation AX = XB. The Figure 2 shows the schematic diagram of hand–eye calibration. The
hand–eye calibration matrix solution satisfies Formula (1).

A1XB1 = A2XB2
A2
−1 A1X = XB2B1

−1

AX = XB
(1)
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Figure 2. Schematic diagram of hand–eye calibration: (i = 1, 2) represents the transformation matrix
from the robot base coordinate system to the robot end coordinate system; (i = 1, 2) represents
the transformation matrix from the camera coordinate system to the calibration object coordinate
system; X represents the transformation matrix from the robot base coordinate system to the camera
coordinate system, that is, the matrix to be solved.

In the case of eye-to-hand, the positional relationship between the calibration object
and the robot end remains unchanged. Therefore, according to multiple sets of hand–eye
calibration data and the obtained X matrix, the transformation matrix Pb from the point p in
the calibration object coordinate system to the robot terminal coordinate system is estimated
multiple times. The accuracy of matrix X is judged by calculating the standard deviation
of multiple sets of transformation matrices Pb. The smaller the standard deviation, the
more accurate the matrix obtained. This error evaluation method is called the reprojection
error analysis method. Formulas (2) and (3) respectively represent the solution formulas
for matrix Pb and reprojection error E.[

Pb

1

]
= Ai

−1 · X · Bi (2)
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where Pb represents the transformation matrix from point p on the calibration object to the
coordinate system of the robot end, Ai represents the transformation matrix of the i-th robot
base coordinate system to the robot end coordinate system, Bi represents the transformation
matrix from the i-th camera coordinate system to the calibration object coordinate system,
X represents the hand–eye calibration matrix.

E =

√
∑n

i=1 (pi − p)2

n
(3)

where, pi represents the estimated value of the pose of the point p on the end of the robot
on the i-th set of hand–eye calibration data, p represents the average of the pose estimation
values of point p on the end of the robot on the n sets of calibration objects.

2.2. Hand–Eye Calibration Optimization Based on Data Filtering

Researchers have proposed various theories to solve the problem of hand–eye cali-
bration AX = XB [18–20]. Due to the calibration error of the camera’s external parameters
and the robot’s own motion error, there will be errors in the hand–eye calibration solution,
which is inevitable. The basic process of hand–eye calibration is shown in the Figure 3.
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Figure 3. Hand–eye calibration process. During hand–eye calibration, M sets of Ai (i = 1, 2, . . . , M)
and its response to Bi (i = 1, 2, . . . , M) is used to solve for X.

In the practical application of hand–eye calibration, improper selection of one or
several sets of data will seriously affect the final calibration results. Aiming at the problem
of excessive hand–eye calibration error caused by “bad” data, this paper proposes an
optimization method. The method flow proposed in this paper is shown in Figure 4. Firstly,
calculate the hand–eye calibration matrix X and its corresponding reprojection error E
according to the M sets of initial data. Then, remove one set of data in turn and calculate the
corresponding M sets of hand–eye calibration matrix Xi and the corresponding reprojection
error Ei (i = 1, 2, . . . , M). Hand–eye calibration matrix Xi and corresponding reprojection
error Ei are stored in array X[ ] and E[ ]. The smallest element Emin in E[ ] is compared
with E. If Emin ≤ E, then E = Emin and X is equal to the hand–eye calibration matrix
X[Emin] corresponding to Emin. This process only realizes the filtering of a single set of data.
If you wish to realize the filtering of multiple sets of data, you can carry out this process
several times. (Note: Data and matrix need to be updated.)
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3. Object Recognition and Pose Estimation
3.1. Object Segmentation and Recognition Based on Improved U-Net

Point cloud segmentation refers to the segmentation of data points with the same
attributes and different attributes according to the relevant functional definition of the
original point cloud data to obtain the classification of each point. In automatic assembly
tasks based on 3D vision, accurate segmentation of point cloud is helpful to improve
the efficiency and accuracy of high point cloud registration. Traditional methods use the
shape, color, curvature and other features of a point cloud to classify them, but these
methods are slightly inadequate in accuracy and robustness. Aiming at the difficulty of
segmentation of 3D point cloud data, an improved U-net [21] is proposed to segment a
2D depth image to achieve segmentation of a target 3D point cloud. Compared with the
existing 3D point cloud segmentation algorithm, this method performs segmentation on a
2D image without the complex preprocessing of point clouds and has a higher segmentation
efficiency. As a classical deep learning model, U-net has the advantages of fewer training
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samples, high segmentation accuracy, and being a lightweight model. In order to improve
the segmentation accuracy of U-net, an attention module [22] is introduced in this paper to
achieve accurate segmentation of object depth image.

The improved U-net structure in this paper is shown in Figure 5. The network is
divided into two parts: a contracting path and an expansive path. The first layer uses a
standard convolution module composed of two sets of 3 × 3 convolutions (string 1 and
padding 1), batch normalization (BN), and ReLU activation to extract features. After down-
sampling using max pooling, the second layer performs the aforementioned standard
convolution operation. On the third and fifth layers of the network, in order to strengthen
the feature extraction ability of the network, two sets of standard convolution operations
are used after down-sampling. In the contracting path, the size of feature map is halved and
the number of channels is doubled with each additional layer (the number of channels in
the fifth layer remains unchanged). In the expansion path, in order to prevent over-fitting,
the fifth layer is put into Dropout operation with a probability of 0.5. After up-sampling by
bilinear interpolation, the feature maps from the fourth layer in the down-sampling stage
are sent into the attention module together with the feature maps from the fourth layer
in the down-sampling stage to output feature maps that enhance semantic information.
The above operations are used on the sixth to the ninth layer of the network. With each
additional floor, the size of the feature map is doubled and the number of channels is
halved. For the feature map of the ninth layer, 1 × 1 convolution is used to reduce the
channel number of the feature map to 1, and then sigmoid operation is performed to obtain
the prediction probability map. In the prediction, the output probability map of layer nine
is used to generate a binarized segmentation image with 0.5 as the threshold.
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As shown in Figure 6, the attention feature fusion module (AFFM) constructed in this
paper consists of two branches, which are the shallow feature map L from the contracting
path and the deep feature map H from the expanding path. Shallow feature map L and
deep feature map H focus and retain key features and spatial information through channel
attention module (CAM) and spatial attention module (SAM). After completing residual
calculation, the shallow feature map L is sent into the CAM. After deep feature map H is
multiplied by shallow feature map L, residual calculation is completed and output feature
map O is obtained.
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AFFM mainly includes CAM and SAM, whose structures are shown in Figures 7 and 8
respectively.
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Figure 7. Channel attention module (CAM). In the CAM, firstly conduct Global Average Pooling
(GAP) operation on input feature map X to obtain the Global information feature value of each
channel feature map, and then conduct 1 × 1 convolution. Finally, the feature is transformed by
ReLU activation, 1 × 1 convolution and Sigmoid operation to generate attention weight. The weight
is multiplied by the input feature map X to obtain the output feature map Y, so as to achieve feature
recalibration along the channel direction.
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Figure 8. Spatial attention module (SAM). In the SAM, a maximum pooling and average pooling of
the channel dimension are performed on the input feature map X to obtain two obtained channel
descriptions. Splice these two descriptions together according to the channel. Then the features are
nonlinearly transformed through 7 × 7 convolution and Sigmoid operation to generate attention
weights. Finally, the attention weight is multiplied by the input feature map X to obtain the output
feature map Y.
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The image segmentation of assembly work is essentially a pixel-level binary classifica-
tion task, and its loss function usually adopts the binary cross entropy loss (binary cross
entropy loss, BCE Loss). In depth images, the number of target pixels is far less than the
number of non-target pixels. If BCE is used as the loss function, the predicted results will
be dominated by non-target pixels and the recognition ability will decrease. In addition,
the target area in the image is often more difficult to identify than the non-target area.
Therefore, in order to overcome these problems, this paper adopts the focus loss function,
and its calculation formula is as follows:

FL(pt) = −αt(1− pt)
γ log(pt)

pt =

{
p

1− p
y = 1
y = 0

(4)

where p (p ∈ [0, 1]) is the class probability output by the model, αt is the loss weight of
the t-th class sample, the sum of the loss weights of all classes is 1, and γ (γ ≥ 0) controls
the size of the loss of the difficult and easy samples. When γ increases, the model will
pay more attention to samples that are difficult to distinguish; when γ = 0, the focus loss
function degenerates into a normal cross entropy function with αt.

3.2. Object Pose Estimation Based on “SAC-IA Coarse Registration–ICP Precise Registration”

Common point cloud registration algorithms include normal distribution transforma-
tion (NDT) [23], singular value decomposition (SVD) [24], iterative closest point (ICP) [25],
and many improved algorithms. Among them, the principle of ICP algorithm is simple and
easy to understand, and the registration effect is remarkable. But the ICP algorithm is very
sensitive to the object’s initial pose; a bad initial pose may lead ICP to converge in a wrong
pose. To solve the problems of ICP, the point cloud registration strategy of “SAC-IA coarse
registration–ICP precise registration” is adopted in this paper. As shown in Figure 9, it is the
flow chart of the point cloud registration strategy used in this paper. Firstly, the Fast Point
Feature Histogram Description (FPFH) [26] is used as the point cloud feature description,
and the sampling consistent initial algorithm (SAC-IA) is used to coarsely register the point
cloud. Through SAC-IA coarse registration, the ICP point cloud registration can obtain a
good initial value and avoid falling into the local optimum. The k-d tree data structure is
used to improve the query speed of the nearest neighbors of the ICP algorithm.

In the preprocessing phase, it is necessary to use a filtering algorithm to remove
outliers and down-sample the point cloud. The statistical outlier removal method was used
to remove the noise and outliers. The point cloud P∗q after removing outliers and noise can
be represented by Formula (5).

P∗q =
{

P∗q ∈ P
∣∣∣(µk − σk) ≤ d ≤ (µk + σk)

}
(5)

where d represents the mean distance from a point pq in the point cloud P to the k near-
est neighbors, µk and σk represents the mean and standard deviation of the Gaussian
distribution of the average distance of the point cloud, respectively.

After the removal of outliers and noises, we used Voxel-Grid algorithm to down-
sample the point cloud. The Voxel-Grid down-sampling algorithm builds multiple voxels
based on the input size (each voxel is a set containing a different number of points). Then,
the centroid of each voxel is calculated. Finally, the other points of the corresponding
voxels are represented by the centroids. The calculation formula of the centroid is shown in
Formula (6).

µp =
1
m

m

∑
i=1

pi (6)

where pi represents the points contained in a voxel, and m represents the number of points
in the voxel.
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The FPFH feature was first proposed in [26], which reduces the computational com-
plexity of the algorithm to O(nk) while still retaining most of the discriminative power of
PFH. The FPFH feature diagram is shown in Figure 10. The expression of the FPFH feature
is as follows:

FPFH(p) = SPF(p) +
1
k

k

∑
i=1

1
wk
· SPF(pk) (7)

where the weight wk represents the distance between query point p and a neighbor point
pk in a given metric space.

RANSAC is a common method to find the best match in cases where outliers are in-
cluded. SAC-IA is a RANSAC-based algorithm for finding the best 3D rigid transformation
matrix for 3D model registration. The algorithm flow is shown in Figure 11.
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The ICP algorithm minimizes the distance between the point on the source point cloud
and the corresponding point on the target point cloud through parameter update iteration.
For the points in the source point cloud P, the corresponding closest point in the target point
cloud Q is calculated by Euclidean distance. According to its corresponding relationship,
solve the optimal transformation matrix (transition matrix R and displacement vector T). A
new source point cloud P is obtained according to the transformation matrix, and the above
process is iteratively executed until the convergence condition is satisfied. The objective
function expression of the optimal transformation matrix is shown in Formula (8).

f (R, T) =
1
k

k

∑
i=1
‖qi − (Rpi + T)‖2 (8)

where the source cloud collection is P = {pi|i = 1, 2, 3, ...}, Q = {qi|i = 1, 2, 3, ...}.

4. Experiment and Discussion

The automatic robotic assembly system is shown in Figure 12. When the hand–eye
calibration matrix is correct, the error of the rotation matrix has a negligible effect on the
assembly, so the error is not discussed during the experiment.
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Figure 12. Robotic assembly system. In order to obtain high-quality point cloud data, we used a
binocular structured light 3D camera with a point cloud resolution of up to 0.02 mm. Pneumatic
grippers were installed at the end of the ABB IRB 2600-20 robot. The clamping state of the pneumatic
gripper could be controlled by I/O programming. The robot was controlled by the robot controller.
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4.1. Hand–Eye Calibration Experiment

In order to quantitatively evaluate the feasibility of the hand–eye calibration data
filtering algorithm, we conducted 10 sets of repetitive experiments. The experimental
platform is shown in Figure 13. In each experiment, 20 sets of hand–eye calibration data
were collected and filtered out for 5 iterations. The error was calculated by Formula (3),
and the result is shown in Figure 14. It can be seen from the experimental results that the
hand–eye data filtering algorithm proposed in this paper reduces the reprojection error of
the hand–eye calibration by 0.42 mm to 0.08 mm compared to the original data.
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As shown in Figure 15, in order to further verify the feasibility of the proposed hand–
eye calibration optimization algorithm, a point-to-point verification experiment was carried
out. The error analysis between the transformation matrix and the actual thimble arrival
pose was also carried out. The results of the hand–eye calibration error are shown in
Figure 16. From the experimental results, the actual hand–eye calibration error was larger
than the reprojection error. Through the hand–eye calibration optimization algorithm
proposed in this paper, the hand–eye calibration error was reduced by 0.65 mm to 0.06 mm
compared with the original data.

From the two verification experiments, the hand–eye calibration optimization method
based on hand–eye data filtering proposed in this paper can improve the accuracy of
hand–eye result. The method in this paper ensures the reliability of hand–eye calibration
accuracy when non-professionals perform hand–eye calibration, which is very meaningful
for industrial applications.
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Figure 15. Point-to-point experiment. A thimble was installed at the end of the robot, and the
transformation matrix from the point on the calibration board to the tip of the thimble was obtained
according to the extracted pose of the calibration board relative to the camera coordinate system and
the calculated hand–eye calibration matrix.
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4.2. Pose Estimation and Assembly Experiment

In this paper, the Neutrik plug was used as the experimental object, and the binocular
structured light 3D camera mentioned in this paper was used for data collection. During
the data collection process, we set the aperture and exposure time of the camera and the
projection light intensity of the projector to ensure that the collected data were under the
same lighting environment (the experimental environment was indoors, so the influence of
ambient light can be ignored). We collected 500 sets of Neutrik plug point cloud data with
different poses and converted them into depth images. The image and depth image of the
Neutrik plug are shown in Figure 17. After finishing the labeling of all image data, the data
set was divided into a training set (400 sheets), a validation set (50 sheets), and a test set
(50 sheets).
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All models were trained and tested in the environment of Windows10 + Python3.6 +
Pytorch1.1, and are accelerated by an RTX 2060 graphics card with 16 GB memory. In this
paper, an adaptive moment estimation optimizer (Adam) was used to update the network
parameters iteratively. The batch size was 4 and the training was 50 epochs. The initial
value of the learning rate was set to 0.001, and the ReduceLROnPlateau dynamic learning
rate adjustment strategy was used to complete the automatic decay of the learning rate.

In order to quantitatively evaluate the performance of the improved U-net image
segmentation in this paper, accuracy (Acc) and Dice coefficient (Dice) were used as evaluation
indicators. The calculation formula is as follows:

Acc =
TP + TN

TP + TN + FN + FP
(9)

Dice =
2TP

2TP + FP + FN
(10)

where TP is the number of pixels that are actually the target area and accurately recognized
as the target area. FN is the number of pixels that are actually the target area but are
recognized as non-target areas. TN is the actual non-target area and accurately recognized
as non-target areas. FP is the number of pixels that are actually not the target area but are
recognized as the target areas. The value range of the above indicators is between 0 and 1.
The larger the value, the better the model performance.

As shown in Table 1,comparing the improved U-net in this paper with U-net, Attention
U-net [27], R2U-net [28] and DeepLab V3+ [29], the results show that the Acc coefficient
and Dice coefficient of the method in this paper reached 0.961 and 0.876, respectively, which
is better than the other four methods.

Table 1. Performance comparison of image segmentation of different deep learning models.

Methods Acc Dice

U-net 0.921 0.813
Attention U-Net [27] 0.933 0.825

R2U-Net [28] 0.937 0.831
DeepLab V3+ [29] 0.944 0.843

Our Method 0.961 0.876



Electronics 2022, 11, 354 14 of 17

As shown in Figure 18, it is the Neutrik plug depth image and the segmented image
using the method in this paper. From the segmentation results, the improved U-net
proposed in this paper can achieve point cloud segmentation for specific regions.
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tween 0 and 1. The larger the value, the better the model performance. 

As shown in Table 1,comparing the improved U-net in this paper with U-net, Atten-
tion U-net [27], R2U-net [28] and DeepLab V3+ [29], the results show that the Acc coefficient 
and Dice coefficient of the method in this paper reached 0.961 and 0.876, respectively, 
which is better than the other four methods. 

Table 1. Performance comparison of image segmentation of different deep learning models. 

Methods Acc Dice 
U-net 0.921 0.813 

Attention U-Net [27] 0.933 0.825 
R2U-Net [28] 0.937 0.831 

DeepLab V3+ [29] 0.944 0.843 
Our Method 0.961 0.876 

As shown in Figure 18, it is the Neutrik plug depth image and the segmented image 
using the method in this paper. From the segmentation results, the improved U-net pro-
posed in this paper can achieve point cloud segmentation for specific regions. 
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We used the point cloud registration method proposed in this paper to perform point
cloud registration on the segmented point cloud data, and compare the registration results
with other methods. The comparison results are shown in Table 2. It can be seen from
the table that although the method proposed in this paper takes more time overall than
Seget-ICP [30] and BiLuNetICP [31], the registration accuracy is improved. For assembly
tasks, the increase in registration accuracy is conducive to the stability of the assembly
process, so the method in this paper is valuable and meaningful.

Table 2. 6D Pose Estimation Results.

Methods Rotation Mean Error (◦) Translation Mean Error (mm) Runtime (s)

Seget-ICP [30] 1.55 1.27 6.5
BiLuNetICP [31] 1.32 1.25 6.8

PoseCNN + ICP [32] 1.29 1.21 11.5
GO-ICP [33] 1.35 1.33 16.7
Our Method 1.27 1.19 7.5

The effect of point cloud registration using the method proposed in this paper is
shown in Figure 19. As shown in the Figure 20, in order to verify the feasibility of the
automatic assembly system proposed in this paper, a verification platform is built. The
female Neutrik plug (Workpiece B) was fixed under the 3D camera, and the male Neutrik
plug (Workpiece A) was clamped by the robot in a designated posture.
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Figure 20. Automatic assembly system experiment.

We compared the posture calculated by the automatic assembly system with the real
posture and analyzed the error. The error of the experiments is shown in Figure 21. The
experimental results show that the assembly error of the automatic assembly system in this
paper is between 0.7~1.5 mm, which meets the requirements of Neutrik plug assembly.
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5. Conclusions

The experiment results show that the general automatic assembly system based on 3D
vision proposed in this paper is feasible. Through the hand–eye calibration method based
on data filtering, the coordinates of the vision sensor and the coordinates of the robot are
more accurately correlated. The improved U-net is used for image segmentation, which
solves the issue of separating the target point cloud from the background. Compared with
the traditional point cloud segmentation method, this method is more efficient. “SAC-IA
coarse registration–ICP fine registration” is adopted to ensure the accuracy and efficiency
of point cloud registration.

Of course, for the research of automatic assembly technology, the research in this paper
still has some shortcomings. In the hand–eye calibration work, we directly obtained the
motion parameters of the robot without compensating for the error disturbance of the robot
motion parameters. Using inertial measurement units (IMU) to obtain the position of the
robot is a common and effective means [34,35]. In future work, we will try to use IMU to
obtain the motion parameters of the robot, which may help to further improve the accuracy
of hand–eye calibration. In this paper, we used a deep-learning algorithm to improve the
efficiency and accuracy of point cloud registration, but it needs to collect a large number
of data samples and perform sample processing in advance. We need to further study the
method of training deep learning based on small data samples to reduce the time cost.
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