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Abstract: Defining a passenger’s thermal comfort in a car cabin is difficult because of the narrow
environment and various parameters. Although passenger comfort is predicted using a thermal-
comfort scale in the overall cabin or a local area, the scale’s range of passenger comfort may differ
owing to psychological factors and individual preferences. Among the many factors affecting
such comfort levels, the temperature of the seat is one of the direct and significant environmental
factors. Therefore, it is necessary to predict the cabin environment and seat-related personal thermal
comfort. Accordingly, machine learning is used in this research to predict whether a passenger’s
seat-heating-operation pattern can be predicted in a winter environment. The experiment measures
the ambient factor and collects data on passenger heating-operation patterns using a device in an
actual winter environment. The temperature is set as the input parameter in the measured data
and the operation pattern is used as the output parameter. Based on the parameters, the predictive
accuracy of the heating-operation pattern is investigated using machine learning. The algorithms
used in the machine-learning train are Tree, SVM, and kNN. In addition, the predictive accuracy is
tested using SVM and kNN, which shows a high validation accuracy based on the prediction results
of the algorithm. In this research, the parameters predicting the personal thermal comfort of three
passengers are investigated as a combination of input parameters, according to the passengers. As
a result, the predictive accuracy of the operation pattern according to the tested input parameter
is 0.96, showing the highest accuracy. Considering each passenger, the predictive accuracy has
a maximum deviation of 30%. However, we verify that it indicates the level of accuracy in predicting
a passenger’s heating-operation pattern. Accordingly, the possibility of operating a heating seat
without a switch operation is confirmed through machine learning. The primary-stage research result
reveals whether it is possible to predict objective personal thermal comfort using the passenger seat’s
heating-operation pattern. Based on the results of this research, it is expected to be utilized for system
construction based on the AI prediction of operation patterns according to the passenger through
machine learning.

Keywords: personal thermal comfort; heating seat; heating operation pattern; cabin environment;
classification algorithms

1. Introduction

The heating, ventilation, and air-conditioning (HVAC) system of a vehicle provides
thermal comfort to passengers in various cabin environments. The cabin inside the vehicle
is a highly asymmetrical environment. Thus, factors, such as cabin temperature, air
velocity, and air humidity around the passenger, play an essential role in determining
passenger thermal comfort [1]. Recently, as vehicles have been converted into high-tech
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autonomous vehicles, such as hybrid electric vehicles and electric vehicles (EVs), research
on an efficient method to maintain the balance of energy saving and thermal comfort
has gained importance [2]. In conventional vehicles, heat from the engine is used for
the HVAC of the cabin; however, in the case of EVs, the cabin’s thermal load consumes
approximately 1/3 of the stored electricity. In practice, if there is not enough energy to
satisfy the passenger’s thermal comfort, the use of the HVAC system should be reduced to
reach the final destination or next charging point. In some situations, the speed must be
reduced to satisfy the passenger’s thermal comfort [3].

Research on thermal comfort has mainly been conducted in the field of buildings. Most
approaches involved the design of HVAC systems to provide adequate thermal comfort for
large groups of building occupants. Although the average response of the occupant group
was focused on earlier, the focus recently shifted to predicting individual thermal-comfort
responses [4]. It assumes that considering thermal-comfort sensitivity affects the overall
probability of achieving comfort. A study was conducted using this approach to investigate
the effect of individual thermal-comfort sensitivity (individual response to temperature
change) on collective conditioning [5].

Research on personal comfort for seat HVAC (auxiliary air condition) systems starts
in the main HVAC of the indoor and vehicle environments. The HVAC system focused
on the overall thermal comfort of the passengers in the cabin and the research was mainly
conducted on it. For thermal comfort in the cabin, a study was conducted to estimate
the thermal sensation or sensitivity according to the outdoor climate or cabin climate
using a virtual thermal model and a human subject. The thermal-comfort level of the
occupant was evaluated in a non-uniform thermal environment in the vehicle interior
using a numerical, analytical comfort model [6]. The thermal-comfort model for the cabin
environment was verified using data from human subjects. Sensitivity studies of various
cabin environments were conducted using an analytical method [7], including the discharge
temperature, respiration-level temperature, and wind speed. For the ventilation system,
the overall thermal-comfort and sensation levels applicable were predicted using the
computational fluid dynamics (CFDs) model. The predicted results were compared with
the human-subject test. [8]. Through the CFD model of the virtual thermal model inside the
vehicle, the sensitivity of the thermal sensation equivalent to that of the actual passenger for
various parameters, such as various HVAC systems, was confirmed [9]. Moreover, it was
confirmed that there is a high correlation between the actual test data and model simulation
results [10]. The studies were based on thermal comfort according to cabin air conditions
in the passenger and the surrounding spaces. In addition, based on the comfort index of
the OEM, research was conducted mainly on the verification of human-subject data.

The cabin’s air-conditioning system aims to make the passengers thermally comfort-
able. However, a passenger’s thermal comfort is affected by many environmental variables.
The thermal-comfort preference can vary significantly individual-wise, due to the phys-
iological and behavioral factors. Such variance makes it necessary to predict personal
thermal comfort and the functioning of the seat’s auxiliary HVAC system [11]. Studies were
conducted on thermal comfort using AI in an indoor building environment as well a vehicle
environment. One of them was directed to predict the thermal comfort of occupants in
a building’s daily living environment or an office environment. A study tried to predict the
individual thermal comfort using the Internet of Things (IoT) and machine learning from
data collected from multiple or individual daily environments [12,13]. To accurately predict
the thermal-comfort index, a supervised learning machine, providing output samples in the
learning phase, was applied. SVM machine learning was performed to predict representa-
tive experimental factors: temperature, average radiant temperature, relative humidity, air
velocity metabolism, and clothing values that affected human heat balance [14]. To estimate
the temperature of passenger satisfaction from the sensors in the vehicle’s interior, a study
was conducted using several machine-learning methods. The passenger’s experimental
temperature and indoor data were collected through testing under various environmental
conditions, and a study was conducted to validate the evaluation implemented by the
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machine-learning approach, for data validation [15]. By combining the simulation and
machine-learning algorithms, the thermal comfort of the vehicle passenger was predicted
to combine the flow characteristics for the environmental conditions inside the vehicle and
the HVAC setting. A cabin model validated for experimental measurements was used to
generate the boundary conditions affecting the passenger’s thermal comfort. Another study
was conducted to predict the thermal comfort by applying a machine-learning algorithm to
the simulation, considering the cabin’s environmental conditions and HVAC settings [16].

In this study, the thermal comfort of the occupants and passengers according to the
indoor and vehicle environments is predicted. The main objective of these studies is to
predict the thermal comfort of multiple occupants or passengers for HVAC in general.
Although studies have targeted individuals rather than the overall or local areas, the
research on predicting personal thermal comfort for individual auxiliary air-conditioning
systems is insufficient. The approach to predict personal thermal comfort used a subjective
thermal-comfort vote; however, owing to the complex environment of the cabin, the
prediction of personal thermal comfort may not agree with the comfort scale. Research
predicting thermal comfort based on the passenger’s pattern, or approach, is insufficient.
Accordingly, a novel approach to predict thermal comfort is required. Therefore, it is
necessary to study whether auxiliary air conditions can be operated switch-free, by learning
the operation patterns of each passenger. The gap between this and existing research
is prediction and confirmation of the possibility of personal thermal comfort using the
operation-pattern data measured by direct contact with the passenger (seat temperature) for
an individual seat air-conditioning system. In existing research, it was predicted through
a passenger’s thermal comfort vote; however, in this research, it can be seen that the
difference is in predicting objective thermal comfort with an approach using a thermal
operation pattern.

In this research, various operation patterns of passengers for vehicle heating seats are
predicted using machine learning. The possibility of pattern learning is confirmed. For this,
ambient and passenger data are measured. The temperature data of the outdoor, the cabin,
the seat, and measurement data according to heating operation are set as the input data for
machine learning. The training and test datasets are created through data normalization.
Using the dataset, we derive prediction accuracy (AUC) through the training of three
algorithms, and decide on two algorithms for testing. Subsequently, the predictive accuracy
is confirmed according to the dataset. The high prediction results through machine-learning
algorithms confirm the possibility of operating the heating seat without a switch operation.
This result can be viewed as a basic stage of research on whether it is possible to predict
objective personal thermal comfort using the seat-heating operation pattern measured for
each passenger. Section 2 presents the setup of a recording device, hereafter referred to as
a multifunctional measurement device (MFMSD). It is for measuring ambient variables
and heating-operation patterns through actual vehicle driving in winter. In Section 2, the
train and test datasets are created for use in machine learning. The prediction results
of the passenger heating pattern using the three algorithms are presented. In Section 4,
we discuss the input variables for predicting seat-heating patterns and the possibility of
pattern learning. A summary of the research and future research directions are presented
in Section 5.

2. Experiments
2.1. Multifunctional Measurement Device (MFMSD)

An MFMSD was used to acquire data on the seat temperatures of the driver and
passengers during vehicle operation. The ambient environment data were set to collect
passenger heating-operation-pattern data for a heating seat. The device was designed
so that long-term recording was possible when the vehicle was in an ON/OFF state,
and it could be recharged through vehicle power or operated independently using an
auxiliary battery. Figure 1 presents a schematic of the measurement sensors attached to the
MFMSD. They include a sensor for temperature measurement of the seat (analog devices,
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TMP36), a module for temperature and humidity measurement of the cabin and outdoor
(AOSONG, AM2301), a sensor for current and voltage measurement (FD14L), control, and
chipset module (CH341SER). The experimental device was configured to collect ambient
environment data (outside temperature, cabin temperature, and cabin humidity), passenger
data (face-skin temperature), and seat-heating data (seatback temperature, seat-cushion
temperature, voltage, and current) at all times. It was equipped with a status diagnosis-
and-display function.
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Figure 1. Schematic diagram of equipment setup.

The sensor and storage sets were confirmed by connecting to a PC or tablet through
wired communication during the initial setting (regular inspection) to confirm the oper-
ational status of the MFMSD. Before vehicle driving, a temperature-deviation test of the
temperature sensor was performed using the MFMSD for device operation in a laboratory
environment. A temperature sensor was attached to two types of vehicle seats to which the
device was to be attached, and a test was performed according to the temperature change
of the seat for 15 min. It was confirmed that there was no significant difference within 1 ◦C
deviation of all temperature sensors by laboratory tests.

After the MFMSD was confirmed to be operating normally, an experiment was con-
ducted by mounting it on two real-life vehicles (vehicle 1 and vehicle 2). As shown in
Figure 2, the MFMSD was used to attach temperature sensors to the seats and infrared
thermometers to vehicles 1 and 2. An infrared thermometer was used to measure the
face-skin temperature of the passenger during the vehicle being driven. Vehicle 1 was
equipped with a seat-heating function by default. Hence, a measurement device was
installed to measure the seatback temperature, cushion temperature, ambient temperature,
and humidity. Vehicle 2 was not equipped with a seat-heating function. Thus, a heating seat
was remodeled and installed in the driver’s seat to collect the seat temperature, ambient
temperature, and humidity data. For the overall air condition of the cabin, the heater was
operated at a constant temperature during initial driving, and then maintained without
any other adjustments.
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2.2. Measurement

To confirm the heating-operation patterns of the passengers, measurements were
made for three passengers. An experiment considering real-life vehicle driving in winter
was conducted by driving approximately 310 km with two vehicles, as shown in Figure 3.
Three passengers and two vehicles performed experiments at different times and measured
the driving records for each vehicle, as shown in Table 1. The MFMSD was installed in
the driver’s seat, and data on the seat-heating use were collected when the vehicle moved
for more than 40 min for 28 days. The purpose and method of collecting the seat-heating-
operation pattern data were explained to the passengers. Moreover, they were asked to
switch their seat-heating on or off while the vehicle was being driven. In addition to the
data collected and stored by the MFMSD, the passengers were asked to note any anomalies
that occurred during data recording in an experiment log. It was used as a reference for
the analysis.

Table 1. Information on the vehicles and passengers for actual driving.

Passenger Gender Test Vehicle Distance of Driving

A M Vehicle 1 320.14 km

B M Vehicle 2 311.30 km

C M Vehicle 2 295.81 km
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As shown in Table 2, the data collected in the recording and storage device of the
experimental device include the outdoor temperature, cabin temperature, cabin humidity,
seatback left temperature, seatback right temperature, seat-cushion left temperature, seat-
cushion right temperature, passenger’s face-skin temperature, direct current (DC) voltage,
and (DC) current.

Table 2. Data recorded during actual driving.

Symbol Description

Outdoor Temp The temperature outside the vehicle measured while driving

Cabin Temp The temperature inside the vehicle measured while driving

Cabin Humid Humidity inside car measured while driving

Back Left Temp The temperature on the left side of the seat back measured while driving

Back Right Temp The temperature on the right side of the seat back measured
while driving

Cushion Left Temp The temperature on the left side of the seat cushion measured
while driving

Cushion Right Temp The temperature on the right side of the seat back measured
while driving

Face Temp Face-skin temperature of passenger measured while driving

(DC) Voltage DC voltage while driving

(DC) Current DC while driving

The data presented in Table 2 were processed. The data recorded when the ON/OFF
operation of the heating seat was not operated were excluded. All passenger data during
the experiment were combined into one file. After excluding the part with abnormal signs,
it was converted into a single file by referring to the experimental log.

Although the measurement data of the heating seat differed depending on the pas-
senger, approximately 24 data sets were collected. Among them, it was confirmed that
the recording time corresponding to approximately 4 h was valid. We invalidated the
data similar to operation pattern of the heating seat based on the outdoor temperature,
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cabin temperature, and seat temperature for each passenger. Using these data, the cabin
temperature, face-skin temperature, seat temperature, and current (DC) were confirmed.
The relationship between the temperature and use-pattern was confirmed by assuming
the DC of the ON/OFF. As shown in Figure 4, the cabin temperature according to the
passenger constantly increased regardless of the outdoor temperature and the operation of
the heating seat during driving. There is a section in which the cabin temperature is kept
constant without rising; however, the overall trend rises to approximately 65% of the total
rise temperature, from the initial driving period to approximately 7 min, and then rises
with a small deviation. The face-skin temperature of the passenger increased with the same
temperature deviation as the cabin temperature increased. In addition, the humidity of the
cabin increased up to 45% in the section where the temperature was greatly increased, and
then decreased to a maximum of 50%.
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However, when the heating seat was turned ON/OFF while driving, it was confirmed
that the cabin temperature was related to the overall air-conditioning system. In the case of
the seat temperature, as shown in Figure 5, it was confirmed that the temperature rises and
falls at the exact location according to the seat’s heating ON/OFF pattern, unlike the cabin
temperature. When the heating was operated at the initial driving stage, the temperature
increased rapidly with a significant deviation. In the section where heating was operated,
the temperature of the seat increased and decreased from the point when the operation
was stopped. It was confirmed that the temperature of the seat back was higher than the
seat-cushion temperature. It was also confirmed that the operation pattern of the heating
seat according to the passenger was different at the same measurement time. As shown in
Figure 6, passengers A and C operated the heating seat more frequently than passenger B
during the same period, and, accordingly, it was confirmed that the temperature change of
the heating seat was high.
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3. Machine Learning
3.1. Machine-Learning Algorithm

In this study, multiple classifications were made using a classification learner to create
a personal thermal-comfort pattern model for each passenger. Valid data, measured for
each passenger, was used in the training dataset for classification.

In addition, in the test dataset, the data corresponding to the recording time of approx-
imately 2 h, approximately 1 h, and approximately 40 min (among the measurement data
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excluded from the valid data) were recorded as test dataset 1, test dataset 2, and test dataset
3, respectively. They were used after converting to the input parameter of the personal
thermal-comfort pattern model as the temperature (with outdoor, cabin, seat back, seat
cushion, and face), and the output parameter was the ON/OFF pattern. Since the input
parameter value-range was widely distributed for each passenger, the temperature data
were converted using min–max normalization, except for the ON/OFF pattern for use
in the classification learner. Min–max normalization is a method that linearly transforms
original data and creates a balance between data before and after processing. Furthermore,
it is used for machine learning [17,18]. The training and test datasets were transformed
using min–max normalization. The classification training and testing were performed
using MATLAB 2020a. The selected classification techniques were the support-vector ma-
chine (including linear, quadratic, cubic, and Gaussian kernels) and the k-nearest neighbor
(including fine, medium, coarse, cosine, and cubic). Among the techniques widely used in
public research, Tree, SVM, and kNN were employed, as they are reported to have high
performance levels in classification learners [19,20].

The validation method of the machine-learning algorithm was 5-fold cross-validation.
It divides the data into a fold, to avoid overfitting the dataset and estimate the accuracy of
each fold. In the case of cross-validation, the trained model’s two performance indicators
used the training data. The validation account (VA) is the first metric used to evaluate the
classification model, where 100% accuracy is perfect. The second indicator is the area under
the receiver operating characteristic curve, which shows the probability of the true positive
rate for the trained classification model. The area under the curve (AUC) is a single measure
for estimating the positive acuity of a classification model. The AUC ranges from 0 to 1.
An AUC of 1 indicates perfect accuracy, and an AUC of 0.5 indicates random guesses. With
classification learners, the overall performance of the classification model was calculated by
averaging the AUCs of all classes. In addition, the predictive performance can be confirmed
through the true-positive rate (TPR) and false-positive rate (FPR).

The personal thermal-comfort pattern was predicted using the process shown in
Figure 6. Using the dataset for training, the input parameters were divided into seven
categories and the response was set as an ON/OFF pattern. The training using Tree,
SVM, and kNN algorithms were performed. The algorithm for the test was determined
by comparing the validation accuracy of the trained model with the AUC. Using the
determined SVM and kNN algorithms, three test datasets were set as input parameters to
perform the test. The personal thermal-comfort pattern was predicted using the accuracy
and AUC values predicted from the test results.

3.2. Results Using a Machine-Learning Algorithm

Since the purpose of the training model using machine learning is to predict personal
thermal comfort using the seat-heating operation pattern, the class of the model is well
separated and predicted. As the training result of the predictive model for the data using the
classification learner, the training model was derived after learning the heating ON/OFF
pattern based on passenger action. Moreover, we verified whether personal thermal comfort
is possible without a switch operation. The algorithm for the test was determined based on
the validation accuracy (training accuracy) and AUC (predictive accuracy) according to the
passenger. Table 3 summarizes the training accuracy results obtained from the training data.
In the algorithm-training results for passenger A, kNN shows a higher training accuracy
than Tree and SMV. The Tree and SVM show approximately 78% to 86% training accuracy,
and kNN shows more than 90% training accuracy. For passenger B, Tree, SMV, and kNN,
the training accuracy shows a high accuracy of over 91%. On the other hand, in the result
for passenger C, the training accuracy ranges from a minimum of 63.9% to a maximum of
96% in the SVM. Compared to passengers A and B, the deviation of the training accuracy
is approximately 30–40%. It was confirmed that the deviation of the training accuracy
was up to 30%, even in Tree and kNN. It could be predicted that the heating-operation
pattern, given the temperature of passenger C, was irregular compared to passengers A



Electronics 2022, 11, 340 11 of 20

and B. Through the training of Tree, SVM, and kNN, it was confirmed that the training in
case of passenger B was the highest as a result of the accuracy compared to the passenger.
Among the three algorithms for the passengers, the Tree algorithm had a lower average
training accuracy than the other algorithms. In addition, as shown in Table 4, the AUCs of
the Tree algorithm are 0.83, 0.95, and 0.76, which show a low predictive accuracy compared
to the other algorithms. The average AUC deviation of the Tree algorithm and the SVM
algorithm was similar, at approximately 3%. However, when the AUC of each passenger
was compared, the SVM showed a high predictive accuracy. TPR and FRP also showed
a 2% deviation from the SVM algorithm; however, the AUC difference was confirmed to
be low, with a maximum deviation of 6%. Therefore, the test algorithm to predict each
passenger’s thermal-comfort pattern was determined using SVM and kNN.

Table 3. Training accuracy of all passengers.

Algorithm Passenger A Passenger B Passenger C

Tree

Fine 89.7 98.4 80.3
Medium 82.7 91.7 72.1
Coarse 77.9 86.8 63.9

Average 83.4 92.3 72.1

SVM

Linear 77.3 92.4 72.3
Quadratic 85.9 96.3 76.4

Cubic 87.5 98.6 72.0
Fine Gaussian 95.6 99.0 87.1

Medium Gaussian 82.3 95.4 78.0
Coarse Gaussian 78.2 91.7 72.2

Average 84.5 95.6 76.3

kNN

Fine 97.6 99.7 90.4
Medium 96.2 99.2 88.8
Coarse 80.0 93.8 66.4
Cosine 95.9 99.1 87.6
Cubic 96.0 99.1 87.8

Weight 97.5 99.6 90.4
Average 93.9 98.4 85.2

Table 4. Training AUC of all passengers.

Algorithm Passenger A Passenger B Passenger C

Tree

Fine 0.92 0.98 0.86
Medium 0.83 0.95 0.76
Coarse 0.73 0.92 0.67

Average 0.83 0.95 0.76

SVM

Linear 0.84 0.97 0.76
Quadratic 0.88 0.98 0.72

Cubic 0.82 0.98 0.73
Fine Gaussian 0.98 0.98 0.94

Medium Gaussian 0.90 0.98 0.73
Coarse Gaussian 0.85 0.96 0.73

Average 0.88 0.98 0.77

kNN

Fine 0.97 0.97 0.90
Medium 0.97 0.98 0.96
Coarse 0.91 0.98 0.74
Cosine 0.98 0.97 0.95
Cubic 0.98 0.98 0.95

Weight 0.98 0.98 0.92
Average 0.97 0.98 0.90
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The test accuracy and AUC values were confirmed using the test dataset for the
training models of SVM and kNN. Table 5 shows the test accuracy results for each passenger
according to the test dataset. As shown in Table 5, in the test result of passenger A, the
training-to-training accuracy increases in the two algorithms, SVM and kNN, and increases
to a maximum of 5% in kNN. Both accuracies increase in the test dataset 1, and kNN
(average VA = 96.8%) shows a higher average accuracy than SVM (average VA = 84.5%).
In test dataset 2, the performances of SVM (average VA = 82.2%) and kNN (average
VA = 73.7%), which are opposite to those of dataset 1, are shown to reduce by up to 23%.
Test dataset 3 also shows a performance opposite to SVM (average VA = 80.0%) and kNN
(average VA = 75.0%) to dataset 1, and reduces by up to 25%. The focus was confirmed in
test datasets 2 and 3, and it was reduced by at least 15% to a maximum of 23% compared
to dataset 1. In passenger B, the training-to-training accuracy decreases by up to 27% in
the SVM algorithm, and the kNN algorithm also decreases by approximately 26%. In test
dataset 1, the kNN algorithm decreases by up to 36%, and the average accuracy is higher in
SVM (average VA = 75.4%) compared to kNN (average VA = 66.2%). Test dataset 2 shows
similar SVM (average VA = 83.0%) and kNN (average VA = 76.8%) performance to dataset
1; however, it reduces by up to 27% in the SVM algorithm. In test dataset 3, kNN (average
VA = 58.2%) shows a higher performance than SVM (average VA = 55.9%); however, it
reduces by up to 43%. In test dataset 3, the performance is opposite to that of datasets 1 and
2, and it can be confirmed that it reduces by up to 32%. In addition, it can be confirmed that
the test accuracy is low at 58%, and the learning is not well accomplished. In the case of
passenger C, the accuracy compared to the training decreases because of a similar deviation
to passenger B, and it decreases by up to 42% in the SVM algorithm and by up to 29% in
the kNN algorithm. In test dataset 1, SVM decreases by up to 37%, and kNN (average
VA = 67.1%) shows a higher average accuracy than SVM (average VA = 65.5%). In test
dataset 2, SVM (average VA = 62.5%) and kNN (average VA = 64.5%), similar to those in
dataset 1, are shown, and the SVM decreases by up to 31%. In test dataset 3, kNN (average
VA = 66.5%) shows a high performance compared to SVM (average VA = 60.4%); however,
it decreases by up to 43%. Test dataset 3 also shows a similar performance to dataset 2;
however, it can be confirmed that it reduces by up to 42% in SVM. In addition, the average
test accuracy is 62% in all test datasets, which shows a lower performance compared to
passengers A and B.

Table 5. Test accuracy of all passengers.

Algorithm

Passenger A Passenger B Passenger C

Dataset
1

Dataset
2

Dataset
3

Dataset
1

Dataset
2

Dataset
3

Dataset
1

Dataset
2

Dataset
3

SVM

Linear 81.1 83.8 80.6 74.0 87.8 55.5 77.4 69.0 67.0
Quadratic 84.4 90.9 84.5 82.1 87.6 57.7 53.5 54.1 59.9

Cubic 78.9 75.8 71.3 68.0 78.5 58.4 72.5 59.7 53.3
Fine Gaussian 97.1 77.7 70.8 76.8 72.5 58.3 54.8 60.4 50.8

Medium Gaussian 86.2 74.9 86.0 81.3 82.3 53.3 57.4 64.0 64.5
Coarse Gaussian 79.2 80.3 86.5 79.0 89.2 52.4 76.8 67.7 66.8

Average 84.5 82.2 80.0 75.4 83.0 55.9 65.5 62.5 60.4

kNN

Fine 99.8 72.2 74.5 63.9 74.2 58.9 67.5 62.7 64.3
Medium 98.2 74.4 74.3 66.4 74.9 58.1 70.0 64.8 63.1
Coarse 86.7 71.0 78.1 72.8 81.1 57.3 65.7 67.2 74.5
Cosine 97.9 77.6 75.3 62.5 82.2 58.5 65.6 64.3 65.6
Cubic 98.1 73.6 72.0 66.3 73.7 57.9 67.3 62.1 63.3

Weight 99.8 73.5 75.5 65.5 74.4 58.4 66.6 66.0 62.4
Average 96.8 73.7 75.0 66.2 76.8 58.2 67.1 64.5 65.5
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As shown in Table 6, according to the test data set, the AUC results tend to increase for
passenger A; however, they decrease for passengers B and C. For passenger A, the overall
increase in the SVM algorithm increases by up to 12% compared with the training AUC;
however, there are cases where it decreases by up to 15%. In test dataset 1, AUC increases
up to 9% in SVM (average AUC = 0.9), showing a high predictive accuracy compared
with kNN. In kNN (average AUC = 0.95), AUC tends to decrease; however, with a slight
deviation of approximately 2%. In test dataset 2, there is a 15% decrease in SVM (average
AUC = 0.9); however, it increases overall. In addition, it an be confirmed that the kNN
(average AUC = 0.96) decreases with a slight deviation of approximately 2%. In test dataset
3, the AUC increases from 1% to 2% in both SVM (average AUC = 0.90) and kNN (average
AUC = 0.98), confirming that it is similar to the training AUC. Passenger B confirms that
the AUC decreases, compared to training in both algorithms, and it can confirmed that it
is the lowest in test dataset 3. In test dataset 1, AUC is higher in SVM than in kNN, and
AUC reduces by up to 22% in SVM (average AUC = 0.84). In addition, in kNN (average
AUC = 0.72), it reduces by up to 30%. In test dataset No. 2, SVM (average AUC = 0.86)
and kNN (average AUC = 0.87) show a similar trend, and it can be confirmed that the
decrease is by up to 16%. In test dataset 3, the AUC is the lowest in both SVM (average
AUC = 0.6) and kNN (average AUC = 0.59), and it an be confirmed that the most significant
deviation from training AUC occurs by decreasing up to 40%. In the case of passenger
C, the AUC shows a similar trend according to the test dataset, and the AUC of kNN is
approximately 5% higher than that of SVM. In test dataset 1, AUC decreases by up to 37%,
compared to training AUC in SVM (average AUC = 0.64). The AUC decreases by up to
28% in kNN (average AUC = 0.69). In test dataset 2, similar to dataset 1, the AUC of kNN
(average AUC = 0.66) is high and decreases by up to 28%. In addition, the SVM (average
AUC = 0.59) reduces by up to 29%, and it can be confirmed to be the lowest among the
AUCs. In test dataset 3, kNN (average AUC = 0.64) decreases by up to 32% and SVM
(average AUC = 0.61) decreases by up to 43%—confirming that it decreases with the most
significant deviation.

Table 6. Test AUC of all passengers.

Algorithm

Passenger A Passenger B Passenger C

Dataset
1

Dataset
2

Dataset
3

Dataset
1

Dataset
2

Dataset
3

Dataset
1

Dataset
2

Dataset
3

SVM

Linear 0.85 0.92 0.84 0.85 0.89 0.59 0.67 0.60 0.66
Quadratic 0.91 0.94 0.88 0.89 0.89 0.66 0.62 0.52 0.64

Cubic 0.89 0.85 0.82 0.82 0.82 0.59 0.73 0.60 0.56
Fine Gaussian 0.99 0.83 0.99 0.76 0.86 0.60 0.59 0.72 0.54

Medium Gaussian 0.91 0.97 0.90 0.88 0.88 0.61 0.57 0.52 0.68
Coarse Gaussian 0.86 0.89 0.85 0.86 0.82 0.57 0.64 0.60 0.62

Average 0.90 0.90 0.90 0.84 0.86 0.60 0.64 0.59 0.61

kNN

Fine 0.97 0.98 0.89 0.68 0.89 0.59 0.66 0.36 0.61
Medium 0.96 0.94 0.99 0.73 0.83 0.58 0.70 0.68 0.65
Coarse 0.86 0.91 0.91 0.79 0.86 0.59 0.72 0.64 0.65
Cosine 0.95 0.97 0.99 0.67 0.87 0.57 0.69 0.63 0.68
Cubic 0.96 0.97 0.99 0.73 0.87 0.58 0.68 0.70 0.68

Weight 0.97 0.98 0.99 0.73 0.88 0.59 0.70 0.68 0.72
Average 0.95 0.96 0.98 0.72 0.87 0.59 0.69 0.66 0.64

The test results using the whole dataset confirm that the overall test accuracy and
AUC decrease. The test accuracy generally decreases compared to the training accuracy
according to the passenger; however, show a similar trend in the case of passenger A. As
shown in Figure 7, the valid results for each passenger are confirmed according to the test
dataset. Passenger A shows the highest accuracy when using dataset 1 among the test
datasets. Passenger B shows high accuracy when using dataset 2 but shows the lowest
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accuracy of 58% in the case of dataset 3. Passenger C shows a similar performance in the
kNN algorithm according to the dataset; however, it can be confirmed that the accuracy
is relatively low at 60%. In the case of AUC, as shown in Figure 8, it decreases by at least
8% to a maximum of 43%, compared to the training AUC for each passenger; however, the
AUC increases in the case of passenger A or shows a similar trend. Confirming the valid
results according to the test dataset, passenger A shows similar values for each dataset.
When using datasets 2 and 3, the highest AUC (kNN TPR = 0.98; kNN FPR = 0.07) appears.
Passenger B shows a high AUC (SVM TPR = 0.97; SVM FPR = 0.02) when using dataset
2, and shows a relatively low AUC in the case of dataset 3. Passenger C shows a similar
trend in the dataset, and it can be confirmed that when dataset 1 is used, a relatively high
AUC (kNN TPR = 0.71; kNN FPR = 0.39) emerges. It can be confirmed that passenger
A’s “learning” results show the highest predictive accuracy among the passengers. This
shows that the cycle of passenger A’s ON/OFF pattern data has a high correlation with the
temperature data. Hence, the accuracy and AUC tends to be high, and a slight deviation
from the training result appears.
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4. Discussion

Section 3 estimates the appropriate dataset and algorithm for the prediction result
according to the seat-heating ON/OFF pattern. That was achieved by using machine-
learning training. In the accuracy result of the seat-heating ON/OFF pattern based on
passenger action, passenger A showed a high accuracy in kNN using dataset 1. For
passenger B, the SVM using dataset 2 showed a high accuracy. In addition, passenger C
showed a low accuracy overall; however, SVM using dataset 1 showed a relatively high
accuracy. In the AUC results, passenger A showed a high AUC with kNN using datasets 2
and 3, and passenger B showed a high AUC with SVM using datasets 1 and 2. kNN using
dataset 2 also showed a high performance.

In addition, passenger C ranked lower than other passengers; however, when datasets
1 and 2 were used, kNN showed a relatively high AUC. Accordingly, it was confirmed
that a relatively high prediction was possible using test datasets 1 and 2 with the kNN
algorithm. In the prediction results, the deviation between test datasets 1 and 2 was
small. Accordingly, it was shown that learning was possible, even when using a dataset
corresponding to approximately 30% of the training dataset.

When using the test datasets, as shown in Figure 9, it can be confirmed that the average
predictive accuracy ranges from 60% to 96%. In addition, TPR predicting the true value
shows a minimum of 0.71 and a maximum of 0.98, while FPR predicting a false value shows
a minimum of 0.02 and a maximum of 0.39. Although the predictive accuracy of passenger
C had a large deviation compared to other passengers, it was confirmed that the heating
pattern could be predicted. This can be expected because the passenger is not sensitive to
temperature. Therefore, the heating pattern is not regular.
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It was found that learning-based prediction was possible when the train was “trained”
in a winter environment condition, in addition to the experimental environment. This
was despite a deviation in the heating pattern that satisfied the personal thermal comfort,
depending on the passenger. Accordingly, it was found that the ON/OFF of the heating
seat was possible without the passenger operating the switch.

As a prediction result, we discuss why the approach using the ON/OFF pattern was
tested and how the application of this learning model is reflected. For thermal comfort,
various scales are widely used to evaluate individual experiences with conditions—most
commonly the thermal-sensation scale, also known as the thermal-comfort scale [21]. It is
suitable for describing the one-dimensional relationship between the physical parameters
(of an indoor or cabin environment) and the subjective thermal sensation.

However, the thermal comfort of an occupant or passenger is a complex phenomenon,
depending on the psychological and physiological factors. It is not easy to measure. The
passenger’s thermal comfort may also disagree with the range of comfort scales classified as
comfortable. Cabin environments, such as cars (not indoors), may have different measures
of thermal comfort for each individual caused by various parameters in the “narrow
environment”. Therefore, thermal comfort is mainly predicted using the relationship
between the ambient temperature and skin temperature.

Due to individual differences, personal thermal comfort has to predict individual
needs, not a generalization of people’s needs. If perceived differently on behalf of each pas-
senger, it is possible to improve a satisfactory preference for thermal comfort by reflecting
the individual’s direct feedback.

Conversely, it is possible to reduce the rate of thermal dissatisfaction expressed by
individual passengers in the cabin [22]. The heating seat operation pattern performed in
this study reflects an individual’s direct feedback. It can be said to be a similar approach to
the thermal-comfort vote. This approach applied to the actual winter environment shows
that the passenger directly responds to the outdoor, cabin, and seat temperatures. It helps
to learn and predict the operation pattern of the heating seat to achieve personal thermal
comfort without operating the heating switch.
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In a similar study, a thermal-sensation vote was used to predict the thermal com-
fort through machine learning. In the study, the possibility of its application in other
environments was confirmed by learning patterns.

Machine-learning algorithms and data-pattern approaches provide flexibility for test-
ing different modeling methods and potential input variables affecting thermal comfort. New
input variables related to personal thermal comfort can be introduced through a model based on
pattern data. A heating pattern in another vehicle, a ventilation operation pattern in a summer
environment, or an adjustment pattern of a seat may be considered as a new input variable.

The focus of this study was to use the outdoor temperature, cabin temperature, seat
temperature, and face-skin temperature as the inputs for the heating-operation pattern.
From the perspective of using a heating seat in an actual vehicle environment, the focus
recognizes the passenger and ambient temperature of the front row seat. It predicts it
through machine learning to control the temperature of the seat without operating the
heating switch. Furthermore, it can be applied to ventilation and heating, and the method
of this study can also be applied to the seat air-conditioning system of a passenger in
the rear row. The additional variables to consider here are the overall HVAC system of
the cabin, the clothes of the passenger, or the health of the passenger. In addition, the
machine-learning algorithm used can be a variable, affecting pattern prediction.

5. Conclusions

As each passenger has different comfort requirements in the car-cabin environment,
personal thermal comfort is perceived differently. Therefore, the focus of this study was to
investigate the predictability of personal thermal comfort using machine-learning methods.
We predicted various passenger operation patterns for heating seats in vehicles in a winter
driving environment. The combination of input and output variables was tested using
a classification learner with the operation-pattern data of the heating seat.

For the data, we measured the pattern corresponding to outdoor and cabin tempera-
tures, while the passengers used MFMSD. They drove about 310 km in winter. Train and
test datasets were created by setting the measured data as input and output variables, using
min–max normalization for machine learning.

The AUCs of 0.83, 0.87, and 0.95 were generated by three algorithms, Tree, SVM,
and kNN, respectively, which was a result of training according to the input and output
variables. As a result of the test using SVM and kNN, excluding the Tree with a relatively
low train AUC, passenger A had the highest AUC value of 0.89, and passenger C showed
a low AUC value of 0.62. In addition, the test results based on the test dataset generally
showed an AUC value of 0.75 or more—indicating that the passenger’s pattern prediction
value was high. These results show that the heating-operation pattern for predicting
personal thermal comfort can be recognized.

The results of this study are expected to be used as preliminary research on temperature
control according to the passenger in a winter driving environment. In addition, this
study is expected to be utilized to construct an AI-based HVAC system that controls the
passenger’s car-seat temperature through machine learning.
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