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Abstract: The past decade has witnessed the rapid development of brain-computer interfaces (BCIs).
The contradiction between communication rates and tedious training processes has become one of
the major barriers restricting the application of steady-state visual-evoked potential (SSVEP)-based
BCIs. A turbo detector was proposed in this study to resolve this issue. The turbo detector uses the
filter bank canonical correlation analysis (FBCCA) as the first-stage detector and then utilizes the soft
information generated by the first-stage detector and the pool of identified data generated during use
to complete the second-stage detection. This strategy allows for rapid performance improvements as
the data pool size increases. A standard benchmark dataset was used to evaluate the performance
of the proposed method. The results show that the turbo detector can achieve an average ITR of
130 bits/min, which is about 8% higher than FBCCA. As the size of the data pool increases, the ITR
of the turbo detector could be further improved.

Keywords: brain-computer interfaces; filter bank canonical correlation analysis; information transfer
rate; steady-state visual-evoked potential

1. Introduction

The brain-computer interface (BCI) is a new human-machine system that allows con-
trol commands to be sent directly to applications without a peripheral nervous system. Over
the past decade, the steady-state visual-evoked potential (SSVEP)-based brain-computer
interface (BCI) has garnered much attention due to its high information transfer rate (ITR)
robustness and non-invasiveness [1–4]. SSVEP is an innate brain response to visual stimuli;
when the eyes stare at a flashing stimulus, the brain’s occipital region will generate a signal
corresponding to the stimulus’s frequency.

With this feature, the BCIs can send commands by identifying the target on which the
subject is gazing. If SSVEP-based BCIs are considered a specific communication system,
the brain and visual pathways can be regarded as a nonlinear channel [5–8]. Thus, SSVEP-
based BCIs offer a potential alternative communication solution for patients suffering
from limited motor capabilities, such as locked-in syndrome amyotrophic lateral sclerosis
(ALS) patients, severe patients and those with physical disabilities [9,10]. Efficiency and
convenience are crucial for SSVEP-based BCIs, especially for disabled-people-oriented
applications. In order to provide better services and alleviate the patient’s suffering, there
has been extensive research on SSVEP-based BCIs. Most recent works can be divided
into two categories, i.e., stimulus paradigm design and signal processing algorithms. The
former focuses mainly on designing an efficient stimulus paradigm according to different
requirements, whereas the latter focuses on developing a high-performance signal detection
algorithm.

The performance of the signal detection algorithm plays a vital role in SSVEP-based
BCIs if the stimulus paradigm is designed. There are two major types of algorithms for
SSVEP signal detection: unsupervised methods and supervised methods. Unsupervised
methods can realize plug-and-play without requiring training data; on the contrary, super-
vised methods require users to collect training data in advance [11].
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Given the convenience and efficiency as such, the unsupervised method has drawn
wider scholarly attention. The power spectral density analysis (PSDA) is widely applied in
early research, but it has low accuracy and cannot fully utilize multi-channel signals. As a
result, PSDA has quickly been replaced by other spatial filter-based algorithms, such as
canonical correlation analysis (CCA) [12–14], minimum energy combination (MEC) [15,16],
and multivariate synchronization index (MSI) [17]. The CCA algorithm is a statistical
method that calculates the maximum correlation coefficient between two multivariate
sets of variables. In the SSVEP-based BCIs system, this method can find a spatial filter
that maximizes the correlation coefficient between the multi-channel EEG signals and the
reference signals. Similarly, MEC also calculates a spatial filter that minimizes the noise
power. Besides these methods, MSI is another algorithm that obtains results most similar
to those in references by optimizing a spatial filter.

Researchers have also worked on studying supervised algorithms. Individual template-
based canonical correlation analysis (IT-CCA) was first proposed by Nakanishi et al. This
method applies averaging multiple training trials to replace the reference signal in a stan-
dard CCA algorithm [6,18,19]. Based on IT-CCA, multi-way canonical correlation analysis
and L1-regularized multi-way canonical correlation analysis (L1-MCCA) are proposed by
subsequent researchers to improve the performance [20,21]. Extended canonical correlation
analysis (eCCA) was proposed in [? ], which combines the standard CCA and IT-CCA to
reduce the interference from the spontaneous background noise. Task-related component
analysis (TRCA) can maximize the reproducibility of SSVEP signals across multiple trials
to reduce the interference of spontaneous electroencephalographic (EEG). Furthermore, the
ensemble version of the TRCA algorithm, i.e., ensemble TRCA (eTRCA), was also proposed.
Due to its high accuracy and information transfer rate (ITR), the eTRCA algorithm has
become the most popular supervised algorithm in the detection of SSVEP. In a recent study,
Wong et al. proposed a multi-stimulus technique, further improving the performance of
eCCA and eTRCA. To the best of our knowledge, the multi-stimulus eCCA+eTRCA has
the highest ITR in existing reports [23].

In general, supervised methods perform better than unsupervised ones. Without the
dynamic window strategy, the filter bank canonical correlation analysis (FBCCA) proposed
in 2015 still achieves the highest ITR [14,16,24]. In contrast, supervised methods have made
rapid progress from IT-CCA to eTRCA and multi-stimulus eCCA + eTRCA algorithms.
However, supervised methods have a major drawback, namely the tedious training process.
To overcome this drawback, a novel turbo detector is proposed in this study.

How to improve the “efficiency” of unsupervised algorithms while maintaining their
high “performance”, or how to improve the “performance” of supervised algorithms while
maintaining their “efficiency” is the problem to be solved in this paper. In other research
fields, there are also contradictions between two important indicators. For example, in
engine design, there are contradictions between engine displacement and power. In order
to reconcile this contradiction, engineers invented the turbo engine, which is used to
enhance engine power through the reuse of exhaust gas. In addition to being applied to
engines, the “Turbo” idea is also widely used in the communication field. For example,
the Turbo equalizer overcomes the fading channel and improves the performance through
information interaction between the first-level equalizer and the second-level decoder.
Turbo coding technology, which is also widely used in 4G network technology, is also
improved in performance through information exchange between two levels of decoders.
Inspired by the “Turbo” idea, we proposed a turbo detector for SSVEP-based BCIs to
enhance the performance. The proposed method contains two stage detectors; the first
stage calculates soft information, and the second stage searches the training data from
the data pool based on the soft information and completes the identification. The turbo
detector can achieve plug-and-play, and its performance is approximate to the supervised
method without the tedious training process. The experimental results show that the ITR
of the proposed method is higher than FBCCA, which is the most extensive unsupervised
algorithm.
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2. Methods and Materials
2.1. Filter Bank Canonical Correlation Analysis and Extend Canonical Correlation Analysis

Standard CCA makes the projection results of two multivariate variables A ∈ Rn×m1 ,
B ∈ Rn×m2 have the largest correlation coefficient by selecting the best projection direc-
tion [12]. CCA maximizes the correlation of Au and Bv by calculating the optimal projection
direction u ∈ Rm1×1 and v ∈ Rm2×1. The optimization problem can be written as follows.

CCA(A,B) = arg max
u,v

E[uTATBv]√
E[uTATAu]E[vTBTBv]

(1)

Let x = Au and y = Bv and the result of Equation (1) make the Pearson’s correlation
ρ(x, y) maximization. Let X and Yk be the multi-channel EEG signals and SSVEP reference
signal; the maximum correlation between EEG signals and reference signals can be calcu-
lated via Equation (1). The reference signal Yk matching with stimulation frequency fk can
be expressed as:

Yk =


sin(2π fkt)
cos(2π fkt)

...
sin(2πNh fkt)
cos(2πNh fkt)

, t =
1
Fs

,
2
Fs

, . . . ,
Ns

Fs
, (2)

where fk denotes the stimulus frequency, Fs is the sampling rate and Nh is the number of
harmonics of the SSVEP component.

Let X̄k denote the average of multiple trials in the training set, the feature of the test
data can be defined as the correlation coefficients among the test data, the training data
and reference signals under several spatial filters calculated by the CCA algorithm. Toward
this end, the feature can be expressed as follows:

rk =


rk(1)
rk(2)
rk(3)
rk(4)

 =


ρ(XTuXY, YT

k vXY)
ρ(XTuXX̄ , X̄T

k vXX̄)
ρ(XTuXY, X̄T

k uXY)
ρ(XTuX̄Y, X̄T

k uX̄Y)

, (3)

where uXY and vXY represent the spatial filter of X and Y, respectively, which can be
calculated by the CCA algorithm, and ρ(X, Y) denote the correlation coefficient of X and
Y. In practice, the following weighted correlation coefficient ρk is usually used as the final
feature of the detection.

ρk = ∑4
q=1 sign(rk(q)) · rk(q)2 (4)

where sign() is used for discriminative information from negative correlation coefficients
between test data X f and training data X̄ f . The detector recognizes the visual stimulus
frequency corresponding to the received data by selecting the largest ρk.

To overcome the effects of non-Gaussian background noise and the SSVEP harmonies,
FBCCA decomposes the EEG into several sub-bands and employs standard CCA to process
the sub-band data. In this paper, the lower and upper cut-off frequencies of the m-th
sub-band are set to m× 8 Hz and 90 Hz, respectively. Both the number of sub-bands and
the harmonic number of the reference signals (Nh) are set as 5. Then, using the weighted
correlation coefficient in (3) and (4), a weighted sum of squares of the correlation coefficients
of all sub-bands can be expressed as:

result = arg max
k

{
∑

N f b
m=1 (m

−1.25 + 0.25) · ρ(m)
k

}
(5)

where ρ
(m)
k is the canonical correlation coefficient between Xn in the m-th sub-band and Yk

calculated by CCA in the m-th sub-band. In this paper, both the FBCCA algorithm and
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the eCCA algorithm use the filter bank design method described above, where both the
number of filter banks and harmonic number are set to 5.

2.2. Turbo Detector

In the existing SSVEP signal detection methods, for both the supervised and the
unsupervised methods, the received data will be abandoned instead of extending the
training dataset. If the detector can fully exploit those received data to extract the subject-
specific information, the performance will be improved. However, if the received data are
set as training data, we note that the detector needs a large amount of data to achieve the
complete training dataset (each stimulus frequency has at least 1 trial data for training) since
the received data are random. Furthermore, the size of the training dataset is determined
by the stimulus frequency with a minimum number of trials. It takes a long time to obtain a
small complete training dataset, and most of the received data are discarded. In this work,
a novel turbo detector is proposed, which recycles the received data to train the detector
through the second-stage detector. The turbo detector is a two-stage detector composed
of a first-stage FBCCA detector and a second-stage supervised detector (e.g., eCCA and
eTRCA).

We assume that the correlation coefficients determined by FBCCA can be expressed as:

ρ = [ρ1, ρ2, ρ3, · · · , ρNt ]. (6)

For the traditional algorithm, the detector identifies the target by the maximum
value of ρ. However, there is a lot of information about the data contained in ρ for the
traditional algorithm, which is expected to reach the maximum value, and it gives up a lot of
information about the data, which is called the hard decision in the field of communication.
In most cases, the hard decision is not the best decision for the detector [25].

By sorting vector ρ from largest to smallest as

ρsqu = sort(ρ) =
[
ρ f ir, ρsec, ρthir, · · · , ρlast

]
, (7)

We can note that the order of the sorts can reflect the probability of the target. Figure 1
illustrates the statistical probability of the correct target’s order under different data lengths
in the SSVEP benchmark dataset. From the figure, it can be easily found that the order
of the correct target is concentrated in the first few places, especially the first and second.
Meanwhile, aggregation degrees increase with data length. If the received data are used
as the training data, the detector only needs the first N data rather than the complete
training dataset to achieve supervision detection. Inspired by the turbo engine boosting
power by exhaust gas, the turbo detector for SSVEP-based BCIs is proposed in this paper.
The flowchart is shown in Figure 2. The main step of the strategy is specified formally in
Algorithm 1. The turbo detector first recognizes the received signal by FBCCA and then
finds the first candidates. Then, if the data pool contains the candidates’ training data, it
reidentifies them by eCCA. Otherwise, the result of FBCCA is considered the final result.
Finally, the received signal is saved into the data pool as training data.
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Figure 1. The statistical probability of the correct label position in the sort under different data
lengths.
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Figure 2. The flowchart of the turbo strategy for SSVEP-based BCIs.
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Algorithm 1 Turbo strategy for SSVEP-based BCIs.

1: initialize χ = null;
2: for n = 1, 2, 3, · · · all trials do
3: ρ = FBCCA(Xn);
4: ρsqu = SORT(ρ); % from largest to smallest
5: if χ contains 2 targets in the training data; then

eCCA(Xn); % reidentifies the top N order
OUTPUT : Results
χ = [χ, Xn]

6: else
FBCCA(Xn)
OUTPUT : Results
χ = [χ, Xn]

7: end if
8: end for

To analyze the performance, two assumptions are proposed.
Assumption 1: The accuracy of the supervision algorithm is higher than that of the

unsupervised algorithm under the same condition [11].
In the turbo detector, it means that the performance of the second-stage detector is

superior to the first-stage detector via assumption 1.
Assumption 2: The order is positively sorted to the probability of the correct target.
Let pcca and pecca denote the accuracy of FBCCA and eCCA, respectively, and Hc

denotes the correct identification. Supposing the probability of the target order in the sort
determined by the FBCCA, it can be expressed as: p(Hc|ρ f ir), p(Hc|ρsec), · · · , p(Hc|ρNt−th).
The essential aspects of assumption 2 can be described as follows{

∑Nt
i=1 p(ρi−th)p(Hc|ρi−th) = 1

p(Hc|ρ f ir) > p(Hc|ρsec) >, · · · >, p(Hc|ρNt)
(8)

The recognition ability of FBCCA can be expressed as pN
cca, and the recognition ability

of eCCA can be expressed as pN
ecca, where N denotes the order of the sort that input the

second-stage detector. Based on assumption 1, we have pN
ecca > pN

cca.
Furthermore, according to Bayes’ theorem, the accuracy of the turbo strategy can be

calculated as follows:

ptur
ecca = pN

ecca ∑N
i=1 p(Hc|ρi−th)

> pN
cca ∑N

i=1 p(Hc|ρi−th)

= pcca (9)

Let pt denote the probability that the training data pool contains the required data.
Along with the user’s continuous input of characters, the training data pool is continuously
expanding [26]. Therefore, the value of pt increases with use time until it reaches one; the
data pool contains at least one experiment of each candidate’s goal and forms a complete
dataset. Before the data pool collects at least one complete training set, the value of N
is another factor affecting pt. When N = Nt, pt = 0 without complete training datasets.
When N = 2 (the minimum value), pt is at its maximum value under the same data pool. In
addition to pt, the value also has a certain influence on the performance of the second-stage
detector. It is not easy to only qualitatively analyze the effect of the value of N on the
performance of the detector. Namely, the value of N is approximately positively correlated
with the second-stage detector’s performance.

Let T denote the number of trials that complete the training data pool, Nt denote the
number of the candidates of the target and each target has equal probabilities and ti denote
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the number of trials that completes the (i− 1)-th target to i-th target. The expectation value
of T is

T =
Nt

∑
i=1

ti (10)

where ti, (i = 1, 2, · · · , Nt) are statistically independent of each other and obey the geomet-
ric distribution ti ∼ Ge(pi), pi =

Nt−i+1
Nt

E(T) =
Nt

∑
i=1

E(ti) =
Nt

∑
i=1

1
pi

=
Nt

Nt
+

Nt

Nt − 1
+ · · ·+ Nt

1
= NtHNt (11)

where HNt is a harmonic series [27]. If the received data are used as training data, the
detector needs to receive an average of NtHNt trials to complete the training dataset. It
is inefficient for the detector, especially when the Nt is large. Similar to the most popular
40 target SSVEP-speller, the detector needs to receive 171 trials to complete the training
dataset. However, there are only 40 trials that can be used to train the detector, and 131
trials are wasted, which means each target has only one trial to train the detector. According
to the flowchart of the turbo strategy and the results from Figure 2, there only needs to be
two largest probability candidates’ training data for the second-stage detector. Here, we set
ta
i (i = 1, 2, · · · , Nt) as the number of trials that can realize the second detection during the
(i− 1)-th target to i-th target, let pa

i denote the average probability that the received data
can be detected by the supervised algorithm through the training data pool. Similarly, we
have pa

i = i−2
Nt−1 and ta

i = (ti − 1)pa
i and

E(Ta) =
Nt

∑
2

E(ta
i )

=
Nt

∑
2

(
1
pi
− 1
)

pa
i (12)

Furthermore, the number of trials can be calculated as follows: pb
i = Nt−i+2

Nt−1 , tb
i =

(ti − 1)pb
i ,

E
(

Tb
)
=

Nt

∑
2

E
(

tb
i

)
=

Nt

∑
2

(
1
pi
− 1
)

pb
i (13)

According to Equations (12) and (13), it can be easily calculated for the 40 target speller
that an average of 111 trials can employ the supervised method, and only 20 trials are
wasted before the data pool collects a complete training dataset.

2.3. Training Data Selection

Different from traditional training datasets, the proposed training data pool is dynamic;
its label may be wrong, the number of each stimulus is not equal and the training data of
some stimuli may be missing. The selected training data directly affects the performance of
the second-stage detector. Let the received data be Xj

f r ∈ RNC×NS , where f r denotes the
identified result (it may be wrong) and j denotes the j-th trial identified as f r stimulus.

Let χ f r = [X1
f r, X2

f r, · · · , X
N f r
f r ] denote the training data pool of f r stimulus, where N f r

denotes the number of trials of the f r stimulus. The data pool can be denoted as χ =
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[χ1, χ2, · · · , χNt ]. Let χt denote the training data selected from χ. In this work, we propose
two strategies for selecting the training data for the second-stage detector. Let χsort =
[χ1−th, χ2−th, · · · , χNt−th] denote the data pool sorted corresponding to Equation (6). The
first strategy (S1) selects the top N candidate targets in the sort, and the latest trial for
each stimulus is treated as training data. The training data selected from χsort is ØS1 =
[X1−th, X2−th, · · ·XN−th], where the latest received data are Xk−th, k denotes the order in
χsort. The second strategy (S2) selects the top N candidate targets in the sort, and the
average of all the trials corresponding to each stimulus are treated as training data. The
training data selected from the data pool are ØS2 = [χ1−th, χ2−th, · · · χN−th], where χk−th is
a third-order tensor that contains all the received data from the k-th stimulus.

The detector selects the training data from the data pool in Algorithm 2.

Algorithm 2 Training data selection method.

1: initialize
χS1 == [χ1

1−th, χ1
2−th · · · , χ1

k−th · · · , χ1
Nt−th]

χS2 = [χ2
1−th, χ2

2−th · · · , χ2
k−th · · · , χ2

Nt−th]

χ1
k−th = null and χ2

k−th = null;
2: for n = 1, 2, 3, · · · do

Identify(Xn) = k
χ1

k−th = Xn

χ2
k−th = [χ2

k−th, Xn]
3: end for

3. Performance and Evaluations

The previous section confirmed factors affecting the performance of the turbo detector,
i.e., the SNR of the SSVEP, data length, the order of the input sequence, the number of trials
for each stimulus in the test dataset and the value of N. This section evaluates their impact
and the according ways to optimize the detector.

3.1. Test Method and datasets

To fully evaluate the turbo strategy, the benchmark dataset was employed to simulate
different scenarios. This dataset, published by Tsinghua University, has been extensively
used in the research of SSVEP-based BCIs.

The benchmark dataset is recorded in the SSVEP speller experiment with 35 subjects.
Each experiment contains 6 blocks. During the block, the subject is shown a matrix (5× 8)
of 40 target characters on the screen flickering at various frequencies (range from 8 to
15.8 Hz with an interval of 0.2 Hz) with at least 0.5π phase difference between adjacent
frequencies. The stimulation is shown in Figure 3. The details of the datasets can be
found in [2]. According to [24], nine electrodes (Oz, O1, O2, Pz, POz, PO3, PO4, PO5, PO6)
worth of data are selected to identify the targets. Considering a latency delay in the visual
pathway, the data epochs are extracted in [0.14s, 0.14 + Tw], where Tw stands for the data
length, and time 0 is the stimulus onset.

The trails are randomly entered into the detector. Since the order of the trials can affect
the result, the experiments are repeated 10 times and each time, the order was random to
avoid overfitting.
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Figure 3. The computer screen for the stimulus presentation in the experiments of the benchmark
datasets.

3.2. Performance Evaluation

The accuracy and information transfer rate (ITR) are the most commonly used in-
dicators of BCI performance. Specifically, accuracy refers to the proportion of correctly
identified test data, which directly reflects the performance of BCIs under certain conditions.
Nevertheless, it is invalid under different conditions, such as under different Nt and Tw.
ITR is another indicator that can better reflect the performance of the BCIs’ accuracy, which
is defined as the following:

ITR = (log2Nt + Plog2P + (1− P)log2(
1− P
Nt − 1

))× 60
T

(14)

where P stands for the average classification accuracy and T is the average data length,
which contains the gaze shifting time (T = Tw + Ts), while Ts is the gaze shifting time.
Moreover, Ts is set as 0.5 s.

Based on the turbo strategy, the FBCCA detector and eCCA detector or TRCA detector
can be combined into a better detector. Given that the eCCA algorithm requires only one
trial for each target to complete the training of the detector, this paper employed the eCCA
algorithm for the second-stage detector for the turbo detector. Furthermore, the turbo
detector can be written as FBCCA + eCCA or FBCCA + eTRCA if the first stage detector is
FBCCA and the second stage detector is eCCA or eTRCA.

3.3. Results

Figure 4 shows the average classification accuracy of all subjects in the benchmark
dataset corresponding to different data lengths (from 0.8 to 1.5 s with an interval of 0.1 s)
and different values of N (from 2 to 6). Figure 4(S1) demonstrates the certain roles of
values of N on the performance when the data length is short. In addition, when the
data length reaches 1 s, the value of N has a minor effect on the performance of the turbo
detector; its performance gradually dips with the increase in the value of N when the data
length is less than 1 s. This is because, with the increase in N, the mislabeled data in the
training data also rises correspondingly, while the performance of the detector increases
less, according to Equation (8). The paired t-test also reveals the significant difference
between the average accuracy of the turbo detector with a different N value when the
data length is less than 1.1 s. As shown in Table 1, when Tw = 0.8 s, there is a significant
difference (p < 0.01) between the accuracy of the turbo detector with different values of N.
Instead, when Tw = 1.1 s, there is a significant difference (p < 0.05) between the accuracy
of the turbo detector with adjacent values of N; that is, only between N = 2 and N = 3.
Figure 4(S2) illustrates the performance of the detector when it has adopted the S2 data
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selection strategy. The results show the negligible role of the value of N on the detector
performance. As shown in Table 1, the paired t-test also indicates that conclusion.

Electronics 2022, 1, 0 10 of 14

selection strategy. The results show the negligible role of the value of N on the detector
performance. As shown in Table 1, the paired t-test also indicates that conclusion.

(S1)

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

Time (s)

30

40

50

60

70

80

90

100

A
c
c
 (

%
)

N=2

N=3

N=4

N=5

N=6

(S2)

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

Time (s)

30

40

50

60

70

80

90

100

A
c
c
 (

%
)

N=2

N=3

N=4

N=5

N=6

Figure 4. The accuracy of the turbo detector when it has adopted the S1 and S2 training data selection
strategies with 0.8–1.5 s data length. The error bars represent the standard error.

Table 1. Paired t-test of turbo detector with different values of N.

S1 S2
Tw(s)

(N1 − N2)
0.8 1.1 1.5 0.8 1.1 1.5

2–3 � ≈ ≈ > ≈ <
3–4 � > ≈ ≈ ≈ ≈
4–5 � ≈ ≈ ≈ ≈ ≈
5–6 � ≈ ≈ ≈ ≈ ≈

1 � (or�): N1 is significantly higher (or lower) than N2 (p < 0.01). 2 > (or >): N1 is significantly higher (or
lower) than N2 (p < 0.05). 3 ≈: N1 and N2 have no significant difference (p > 0.05).

Figure 5 shows the average classification accuracy and simulated ITR for the turbo
detector when it has adopted the S1 and S2 data selection strategies and FBCCA detector.
The N value of the detectors (both detectors adopted the S1 strategy and detectors adopted
the S2 strategy) is set to 2. Actually, the performance of FBCCA is equivalent to that of the
first-stage detector of the turbo detector. The improved gain of the turbo detector comes
from the second-stage detector. A comparison of the three methods indicates that the turbo
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turbo detector than the S1 strategy. The paired t-test reveals the significant differences
between the three methods. The accuracy (and ITR) of the turbo detector equipped with
the S2 strategy is significantly higher than that of FBCCA and the turbo detector with the
S1 strategy. While the accuracy (and ITR) of the turbo detector with the S1 strategy is
significantly higher than that of FBCCA (except Tw = 0.8 s). The highest ITR of the turbo
detector having adopted S1 the turbo detector having adopted S2 and FBCCA are 125.5,
130.0 and 120.6 bits/mins, respectively. The size of the training data pool increases over
use. In order to analyze the impact of the training data size on the performance of the
turbo detector, the accuracy of 1st–40th trial, 41st–80th trial, 81st–12th trial, 121st–160th
trial, 161st–200th trial and 201st–240th trial for each experiment is calculated, respectively.
Figure 6 displays the direct proportion between accuracy and data pool size. The paired
t-tests also indicate that the larger size of the data pool leads to better performance. Table 2
demonstrates the improvement of accuracy compared with FBCCA.

Figure 4. The accuracy of the turbo detector when it has adopted the S1 and S2 training data selection
strategies with 0.8–1.5 s data length. The error bars represent the standard error.

Table 1. Paired t-test of turbo detector with different values of N.

S1 S2
Tw(s)

(N1 − N2)
0.8 1.1 1.5 0.8 1.1 1.5

2–3 � ≈ ≈ > ≈ <
3–4 � > ≈ ≈ ≈ ≈
4–5 � ≈ ≈ ≈ ≈ ≈
5–6 � ≈ ≈ ≈ ≈ ≈

1 � (or�): N1 is significantly higher (or lower) than N2 (p < 0.01). 2 > (or >): N1 is significantly higher (or
lower) than N2 (p < 0.05). 3 ≈: N1 and N2 have no significant difference (p > 0.05).

Figure 5 shows the average classification accuracy and simulated ITR for the turbo
detector when it has adopted the S1 and S2 data selection strategies and FBCCA detector.
The N value of the detectors (both detectors adopted the S1 strategy and detectors adopted
the S2 strategy) is set to 2. Actually, the performance of FBCCA is equivalent to that of the
first-stage detector of the turbo detector. The improved gain of the turbo detector comes
from the second-stage detector. A comparison of the three methods indicates that the turbo
detector outperforms the FBCCA detector, and the S2 strategy is more suitable for the
turbo detector than the S1 strategy. The paired t-test reveals the significant differences
between the three methods. The accuracy (and ITR) of the turbo detector equipped with
the S2 strategy is significantly higher than that of FBCCA and the turbo detector with the
S1 strategy. While the accuracy (and ITR) of the turbo detector with the S1 strategy is
significantly higher than that of FBCCA (except Tw = 0.8 s). The highest ITR of the turbo
detector having adopted S1 the turbo detector having adopted S2 and FBCCA are 125.5,
130.0 and 120.6 bits/mins, respectively. The size of the training data pool increases over
use. In order to analyze the impact of the training data size on the performance of the
turbo detector, the accuracy of 1st–40th trial, 41st–80th trial, 81st–12th trial, 121st–160th
trial, 161st–200th trial and 201st–240th trial for each experiment is calculated, respectively.
Figure 6 displays the direct proportion between accuracy and data pool size. The paired
t-tests also indicate that the larger size of the data pool leads to better performance. Table 2
demonstrates the improvement of accuracy compared with FBCCA.
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Table 2. Accuracy improvement for FBCCA by percentage and paired t-test.

1–40 121–160 201–240
Tw(s) Improvement p-Value Improvement p-Value Improvement p-Value

0.8 0.4 ≈ 4.8 � 6.0 �
1.1 −0.2 ≈ 5.0 � 6.1 �
1.5 0.7 > 3.8 � 4.4 �

1 � : Acc of turbo is significantly higher than that of FBCCA (p < 0.01). 2 >: Acc of turbo is significantly higher
than that of FBCCA (p < 0.05). 3 ≈: Acc of turbo and FBCCA have no significant difference (p > 0.05).
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Figure 5. The average results of 35 subjects in the benchmark datasets. (a) Average classification
accuracy of FBCCA and turbo detector with different data lengths. (b) Average ITR of FBCCA and
turbo detector with different data lengths. The error bars represent the standard error. * indicates
significant difference between two methods by paired t-test (* p < 0.05)
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Figure 6. The accuracy of the turbo detector having adopted the S2 data selection strategy with 0.8
and 1.5 s data length. The error bars represent the standard error.

4. Discussion

The results demonstrate the much better performance of the proposed turbo detector.
Inspired by the turbo engine, this paper integrates FBCCA and eCCA to create a new type
of SSVEP signal detector with better performance and without the tedious training process,
which does not necessarily cover the flaws as follows.
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4.1. The Probability of the Second-Stage Detector

The turbo detector contains two SSVEP detectors, the first-stage unsupervised detec-
tor and the second-stage supervision detector. If the training data pool contains no top
two-order targets needed to train the second-stage detector, the final output identification is
completed by the first-stage detector. Equations (8)–(11) are derived based on the assump-
tion that all the candidates have equal probability, which means all targets have the same
prior probability. Moreover, the experimental results in Section 4 are somewhat different
from the theoretical value because of the limited scale of datasets, which, fortunately, exerts
no effect on the calculation. In reality, the prior probability of each target is not equal, and
some targets seldom appear, which makes it difficult for the data pool to complete the
training datasets, thus undermining the performance of the turbo detector.

In view of the scramble coding or source coding technology in the communication
field, the BCIs can achieve the equal prior probability of each target by scrambling the
mapping between the stimulus frequencies and the symbols.

4.2. Error Propagation

Given that the training data in the second-stage detector are labeled by previous
identification, the error-labeled training data in the data pool will definitely influence the
subsequent target identification. Figure 7 shows the classification accuracy of all subjects
with a data length of 0.8, 1.1 and 1.5 s, which demonstrates the higher average accuracy
of subjects whose performance was improved compared with those that deteriorated.
Table 3 also proves the much higher average accuracy of improved subjects than that of
the deteriorated subjects. Such a phenomenon can be explained by the influence of data
wrongly labeled by the detector among the training data pool on the performance of the
turbo detector. Despite the above, the turbo detector still outperforms the FBCCA detector.
Figure 7 and Table 2 reveal the extremely low accuracy of the deteriorated subjects detected
by FBCCA. Instead, the identification accuracy of the turbo detector for the deteriorated
subjects only dips a bit (e.g., Tw = 0.8 s, the accuracy loss is 1.4%). Furthermore, as the data
length increases, the accuracy of the training data labels decreases the impact of wrong
labels (e.g., Tw = 1.5 s, no subject’s accuracy decreases).
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Figure 7. The accuracy of the turbo detector and FBCCA across all the subjects with 0.8 and 1.5 s data
lengths.
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Table 3. Average accuracy of improved subjects and decreased subjects.

Tw(s) Improved (sub) AVG ACC (%) Decreased (sub) AVG ACC

0.8 29 62.9 6 19.8
1.1 32 80.0 3 24.3
1.5 35 86.1 − −

In practice, the participation of subjects helps to delete the error labeled easily. If the
next input symbol stands for deletion, the previous input training data will be deleted
from the training data pool. To sum up, despite the influence of error propagation on the
performance, the turbo detector is superior to the FBCCA detector.

4.3. Computational Complexity

The flow chart of the turbo detection algorithm divides the computational load into
two parts. The computational load generated by the first-level FBCCA algorithm and
the computational load generated by the second-level eCCA algorithm. According to
Equation (3), the computational complexity of the eCCA algorithm is about three times
that of the FBCCA algorithm. In the secondary detector, the detector only identifies the
received symbols from N candidate targets, unlike the conventional eCCA detector, which
recognizes the received signal symbols from N/N f selected targets. In this paper, 40 target
SSVEP characters are used to input the data collected by the system (N f = 40), and the N
of the turbo algorithm is set to be 2. Therefore, the calculation amount of the algorithm
is about 1 + 3× N ÷ N f ≈ 1.2 times that of the FBCCA algorithm. For the single-trial
processing by turbo detector (S2 data selection strategy, N = 2), the computation time is
less than 50 ms using MATLAB R2018b on Microsoft Windows 10 (with an AMD Ryzen
7 4700 U 2.0 G processor). Target recognition in such a short time satisfies the real-time
requirements for SSVEP-based BCI.

5. Conclusions

A novel turbo detector was proposed to improve the performance of SSVEP-based
BCIs in this study. The detector reuses the received data to train the second-stage detector,
thereby avoiding tedious training processing and enhancing performance. Experimental
results demonstrated that the proposed method outperformed FBCCA in terms of ITR and
classification accuracy under the benchmark dataset. Besides that, the performance of the
turbo detector increases with the data pool, meaning that the performance increases with
the time of use. Since the turbo detector reuses the received data rather than spending
extra time to collect validation data, it enables SSVEP-based BCIs for plug-and-play. This
method is, therefore, an appropriate and efficient candidate for detection algorithms for
SSVEP-based BCIs systems. As the BCI design based on SSVEP can be used for a variety of
applications, this study will promote more real BCI applications in communication and
control. In the future, the dynamic window strategy can be adopted to further improve ITR
and provide more efficient and convenient communication means for ALS patients.
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