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Abstract: Recently, artificial intelligence (AI)-enabled technologies have been widely employed for
complex industrial applications. AI technologies can be utilized to improve efficiency and reduce
human labor in industrial applications. At the same time, fault diagnosis (FD) and detection in
rotating machinery (RM) becomes a hot research field to assure safety and product quality. Numerous
studies based on statistical, machine learning (ML), and mathematical models have been available
in the literature for automated fault diagnosis. From this perspective, this study presents a novel
sandpiper optimization with an artificial-intelligence-enabled fault diagnosis (SPOAI-FD) technique
for intelligent industrial applications. The aim is to detect the existence of faults in machineries. The
proposed model involves the design of a continuous wavelet transform (CWT)-based pre-processing
approach, which transforms the raw vibration signal into a useful format. In addition, a bidirectional
long short-term memory (BLSTM) model is applied as a classifier, and the Faster SqueezeNet model is
applied as a feature extractor. In order to modify the hyperparameter values of the BLSTM model, the
sandpiper optimization algorithm (SPOA) can be utilized, showing the novelty of the work. A wide
range of simulation analyses were conducted on benchmark datasets, and the results highlighted the
supremacy of the SPOAI-FD algorithm over recent approaches.

Keywords: industrial applications; intelligent systems; artificial intelligence; fault diagnosis;
rotating machines

1. Introduction

The deployment of artificial intelligence (AI) is critical for success in the complex
industrial sector. In particular, AI solutions have become increasingly important as they
assist in developing effective smart services, optimizing production process, and forecasting
machinery failure [1]. Using this information, industrial professionals could make more
informed decisions with improved productivity, efficiency, and safety. Consequently,
industries are automated, and people have become increasingly linked, more than ever
before. Because of the extensive benefits of smart industry, several fields have started to
use it. Fields such as agriculture, energy, automobiles, oil, gas, and so on are some of the
typical examples. However, advances in the technology of smart industrial applications
have become critical for meeting the requirements of industry 4.0 [2]. The possibilities of
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using AI in smart industry are relatively diverse and broad. According to the application
requirement, the usage of AI provides trusted recommendations, assists with anticipated
needs, and manages tasks. Adapting AI-driven technology will provide a competitive
benefit through several smart industrial applications [3]. This is due to the fact that
irrespective of industry type and size, AI provides potential solutions to all sectors.

Rotating machinery has become a crucial equipment in industries [4]. Over recent
years, efficient RM has been deployed in the production of accurate machine tool spindles,
the latest supersonic vector aircraft engine, efficient marine propulsion motors, massive
generator sets, among others—all of which are designed to achieve unmanned, automated,
and maximal speeds. For approving the scalability and security of RMs, it is necessary to
design smart and proficient health monitoring and FD systems. Incipient fault diagnosis
provides a minimum of consequences for the consistency of rotating machines, while it
is very easy and simple to handle. However, the features of incipient fault are not highly
reliable, and predicting the micro-fault is more difficult than a typical fault [5].

Several fault diagnoses models were introduced, and they are categorized into three classes:
the data-driven method, quantitative model-based method, and qualitative model-based
method [6]. As the difficulty of the current process increases, it becomes increasingly diffi-
cult to construct mathematical models that efficiently capture system dynamic behavior [7].
Consequently, the data-driven method, which only relies on the data derived from the
process, is receiving considerable interest. The primary stage in the data-driven method is
feature extraction, in which the processed information is converted into a lower dimension,
with more informative data. The artificial neural network (ANN)-based method is an alter-
native way that has gained considerable attention over the last few years [8]. An artificial
neural network is a network of neurons that learn complicated functions over a sequence
of non-linear conversions, and, with the emergence of deep learning (DL) methods, it is
effectively employed for complicated classification tasks, including speech recognition and
image recognition. However, many of the studies used shallow neural networks or neural
networks with hierarchical structures. Therefore, the wider possibility of deep neural
networks being used to address fault diagnoses has yet to be explored [9,10].

This study introduces a novel sandpiper optimization with an artificial intelligence-
enabled fault diagnosis (SPOAI-FD) model for intelligent industrial applications. The
proposed SPOAI-FD technique involves the design of a continuous wavelet transform
(CWT)-based pre-processing approach, which converts the raw vibration signal into a
useful format. Moreover, a bidirectional long short-term memory (BLSTM) model is applied
as a classifier, and the Faster SqueezeNet model is employed as a feature extractor. For
effectively adjusting the hyperparameter values of the BLSTM, the sandpiper optimization
algorithm (SPOA) can be applied. In order to highlight the better performance of the
presented model, a comprehensive investigation was conducted, comparing the results
against benchmark datasets. The major contributions of the study are as follows.

• An intelligent SPOAI-FD technique comprising pre-processing, Faster SqueezeNet
feature extraction, BLSTM classification, and SPOA-based parameter tuning for fault
diagnosis is presented. To the best of our knowledge, the SPOAI-FD technique has
never been presented in the literature.

• Employ the Faster SqueezeNet model for feature extraction and the BLSTM model
for classification.

• Hyperparameter optimization of the BLSTM model using SPOA algorithm using
cross-validation helps to boost the predictive outcome of the proposed model for
unseen data.

2. Literature Review

Wu et al. [11] designed a CNN for direct learning of the features in the novel vibration
signal and Fault Diagnosis (FD). In the study conducted earlier [12], an ensemble transfer
CNN, determined by multi-channel signals, was presented. Primarily, a sequence of the
source CNN was changed with stochastic pooling, whereas the Leaky ReLU (LReLU) was
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pre-trained to utilize the multichannel signals. Secondarily, the learned parameter data of
all the individuals’ source CNN was transmitted to initialize the equivalent target CNN
after fine-tuning with some of the target-trained instances. At last, a novel decision fusion
approach was planned for flexible fusion of all the individuals’ target CNN to obtain the
detailed outcome.

In the literature [13], a new FD approach was proposed based on Max-Relevance Min-
Redundancy (mRMR) and Improved Multiscale Dispersion Entropy (IMDE). The mRMR
technique was employed for automatic selection of the sensitive features from the candidate
multi-scale features without any prior data. At last, the sensitive feature vector was set
after which the normalized treatment was recorded. The ELM technique was used to train
the intelligent analysis method which produced FD outcomes. In the study conducted
earlier [14], an FD technique was presented based on DCNN and SVM techniques. Being a
data-driven DL approach, the DCNN technique was executed in this study to extract the
fault feature automatically. The fault-feature data was removed adaptively based on the
minute variances from the local fault signal.

Chen et al. [15] examined a data-driven intelligent FD technique for RM based on
a novel Continuous Wavelet Transform-Local Binary CNN (CWT-LBCNN) technique.
The presented technique created an end-to-end analysis process without any need for
manual extraction of the features. Using the feed and the input vibration signals, the
features were taken adaptably, and fault states of the RM were analyzed automatically.
Dibaj et al. [16] presented a novel end-to-end FD technique using the fine-tuned VMD
and CNN mechanisms. An essential proposal is that CNN can be trained only using
healthy and single fault data sets, whereas compound faults data from the training phase
cannot be utilized. During the testing phase of CNN technique, the intelligent technique
alarmed an untrained compound faults’ state, when the developed probability of the CNN
outcomes fulfills a group of probabilistic states. In the study conducted earlier [17], a
novel technique was proposed based on RNN to identify the fault types from the RM. In
this study, 1D time-series vibration signal was initially converted into 2D images. Next,
the GRU was established to exploit the temporal data of time-series data and learn the
representative features of the created images. Last, the MLP was utilized to execute the
fault detection.

Although DL-based fault diagnosis methods exist abundantly in the literature, there is
still a need to design an automated fault diagnosis model with an enhanced detection rate.
As the increasing number of DL models can result in model overfitting, optimal hyperpa-
rameter selection becomes essential. Since the trial-and-error method for hyperparameter
tuning is a tedious and erroneous process, metaheuristic algorithms are applied. Therefore,
in this work, SPOA algorithm is deployed for the parameter selection of the BLSTM model.

3. The Proposed Model

In this study, a new SPOAI-FD technique was developed to detect the faults in the rotat-
ing machinery. The proposed method includes a few sub-processes, such as the CWT-based
pre-processing, Faster SqueezeNet feature extraction, BLSTM classifier, and the SPOA-based
hyperparameter optimization. The SPOA method can be applied to modify the hyperpa-
rameter values of the BLSTM, thus producing the improved classification performance.

3.1. Data Pre-Processing

Rotating Machinery is a procedure that involves different types of rotating loads and
speeds. In order to implement the fault detection process in some operational states and to
train the model, the vibration signal of the machine from the entire load and its speed range
are essential [18]. At the beginning, the vibration signal was collected from the rotating
speed dataset. Particularly, the rotating speed from the trained instance was assumed to be
constant, since it is collected when the machinery is at a constant functioning procedure.
The CWT retains and generates the localized design of STFT. The CWT of the signal x(t) is
defined as the convolutional of signal x(t) that makes use of the wavelet function,
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During this method, the CWT was applied to decompose the data in the scale range of 1 to
l in which l generally refers to a higher value or equal to 2q

Ca(k) =
∫

x(t) ·
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(1)

where Ca(a = 1, 2, 3, . . . , l) refers to the wavelet co-efficient of x(t) in ath scale and
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implies the complex conjugate. The CWT produces the co-efficient on several portions of
the signals from the scaling factor. When employing the wavelet co-efficient, a signal from
the time frequency field is directly projected by the 2D images. The graph of the wavelet
co-efficient generates the CWTS.

After obtaining all the wavelet coefficients from a matrix P = [C1, C2, . . . , Cl ], it can
be changed for gray matrix, i.e., Pnew as given below.

Pnew(i, j) =
[

P(i, j)− p min

p max − p min
× 255 +

1
2

]
(2)

where p min and p max denote the lower and the higher elements of P, correspondingly.
The value of the components from Pnew refers to the gray value in the order of 0 to 255.
Therefore, Pnew defines the CWTS of the novel signals.

3.2. Feature Extraction: Faster SqueezeNet Model

In this study, Fast SqueezeNet was presented to improve the performance and accuracy
of electronic element classification. To avoid over-fitting, the authors added residual and
BatchNorm frameworks. Simultaneously, concat was also utilized like DenseNet to connect
distinct layers for the purpose of improving the expressiveness of the initial layer. Fast
SqueezeNet comprises three block layers, such as a BatchNorm layer, a global average
pooling layer, and four convolution layers. Fast SqueezeNet is primarily enhanced as
given below.

(1) The current study imitated the DenseNet architecture and presents a distinct connec-
tion mode for additional improvement of the data flow among the layers [19,20]. This
comprises a fire module and a pooling layer. At last, the two concat layers were also
interconnected to the following convolutional layer.

The existing layer obtains each feature map of the preceding layer and employs
x0, . . . , xl−1 as the input; next xl is demonstrated as given below.

xl = Hl ([x0, x1, . . . , xl−1]), (3)

where [x0, x1, . . . , xl−1] represents the connection of the feature graph created in the layer,
0, 1, . . . , l − 1 and Hl denotes the concatenate of several inputs. Further, x0 denotes the max
pooling layer, x1 signifies the Fire layer and xl represents the concat layer.

In the absence of extreme improvement in the number of network parameters, the
efficiency can be optimized in its earlier stage. Simultaneously, any two-layer networks can
transfer the data directly.

(2) In order to ensure a good network convergence, the ResNet architecture was thor-
oughly learnt, and distinct components were presented with a fire module and a
pooling layer. At last, two layers were added and interconnected to the following con-
volution layer. Generally, the fundamental mapping is represented as H(x). Consider
the stacked non-linear layer to fit other mappings of F(x) := H(x)− x. The original
mapping is reorganized into F(x) + x. F(x) + x is realized as a structure named as
shortcut connection. It utilizes the residual architecture of ResNet to resolve issues,
such as gradient degradation and disappearing without improving the amount of
network variables.
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3.3. Fault Detection and Classification: BLSTM Model

BLSTM is an integration of LSTM and Bidirectional RNN (BRNN) techniques. RNN is
a significant development of ANN and is used for processing the sequence and time-series
data. It has a huge benefit in terms of encrypting the dependency amongst the input values.
However, in the case of long data sequence, RNN creates vanishing and exploding states
besides their gradient [21]. Next, LSTM was generated to overcome the long-term problem
of RNN. LSTM comprises output, input, and forget gates. However, LSTM and RNN can
obtain data from the preceding context, thus it achieved heavy improvement with the
help of BRNN. It can manage two datasets from the front and back. Figure 1 shows the
BLSTM structure.
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The integration of BRNN and LSTM results in the formation of BLSTM. Hence, the
benefits of both LSTM in terms of cell memory storage and BRNN in terms of accessing
the data in context before and after making the BLSTM can be exploited. BLSTM has the
benefit of LSTM with feedback to the following layer. However, BLSTM can manage the
information alternatively with a dependency on longer range. The forwarded function
of the BLSTM with an input of L unit and H as the amount of hidden states is estimated
as follows.

at
h =

L

∑
l=1

xt
l wlh+,

H

∑
h′=1,t>0

bt−1
h′ wh′h (4)

bt
h =

1 
 

 

 

 

 

 

(
at

h
)

(5)

where {xt} represents a sequence input, at
h denotes the input of the network to LSTM of

the unit h at t time.

1 
 

 

 

 

 

 denotes the activation function of the h hidden unit. wlh shows the
weight of the input l towards h. The activation function of h, at time t, is represented by a
bt

h. wh,h indicates the weight of h hidden units toward the h′ hidden units. The backward
estimation of the BLSTM is determined as follows.

δO
δwhk

=
T

∑
t=1

δO
δat

h
bt

h
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δO
δat

h
= Θ′h

(
at

h

K

∑
k=1

δO
δat

h
whk +

H

∑
h′=1,t>0

δO
δat+1

h′
whh,

)
where O represents the objective function with unit K output.

3.4. Hyperparameter Optimization

To select the hyperparameter values of the BLSTM, the SPOA model was utilized.
Sandpipers are seabirds that exist all over the globe. They commonly live in colonies [22]
and possess the highest level of intelligence in finding and attacking prey. The important
characteristics of the sandpiper are its migratory power and attacking behavior. Such
characteristics were utilized to derive the SPOA. The mathematical formulation of these
behaviors is offered herewith.

3.4.1. Exploration Process

The SPOA investigated the collection of the sandpipers that move through different
positions at the time of migration. Here, the sandpipers need to fulfill the three criteria
given below.

Collision evading: An extra parameter CA is applied to compute the newly attained
searching agents and to avoid the collisions among the nearby sandpipers.

→
Csp = CA ×

→
Psp(z) (6)

where
→

Csp designates the location of the searching agents that do not collide with other

searching agents,
→

Psp denotes the existing location of the searching agent, z specifies the
existing round, and CA describes the motion of the searching agents in the searching region.

CA = C f −
(

z×
(

C f /Maxiterations

))
where

z = 0, 1, 2, . . . , Maxiterations (7)

where C f implies a control frequency for CA parameter adjustment that is linearly decreased
from C f to 0. The fitness function can be represented as a process that determines the
population and derives a score. In addition to avoiding the collisions, the searching agent
converges in the direction of its optimal neighbors.

→
Msp = CB ×

( →
Pbst(z)−

→
Psp(z)

)
(8)

where
→

Msp stipulates the location of the searching agent and
→
Psp indicates the optimal

searching agent,
→
Pbst. CB implies an arbitrary parameter that is important for an effective

exploration which can be determined using Equation (9).

CB = 0.5× Rand (9)

where Rand represents an arbitrary integer that exists in the interval of [0, 1]. At last,
the sandpipers or searching agents upgrade their location with respect to the optimum
searching agents.

→
Dsp =

→
Csp +

→
Msp (10)

where
→

Dsp states the gap between the searching agents and the optimally fit searching agents.
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3.4.2. Exploitation Process

At the time of migration, the sandpiper modifies its speed and the angle of attacks
in a seamless fashion. It utilizes its wings to increase its height. The sandpiper follows a
spiral formation at the time of prey attack. These characteristics in the 3D plane are defined
as follows.

x′ = Radius × sin(i) (11)

y′ = Radius × cos(i) (12)

z′ = Radius × i (13)

r = u× ekv (14)

where Radius indicates the radius of every turn of the spiral, i implies a variable that exists
in the interval of [0 ≤ k ≤ 2π]. u and v denote the constant values that describe the spiral
shapes, and e symbolizes the base of the natural logarithm. The values of u and v are
denoted as 1. If the value exceeds 1, then the spiral shape becomes difficult. Consequently,
the location of the search agent is upgraded as follows.

→
Psp(z) =

( →
Dsp ×

(
x′ + y′ + z′

))
×
→

Pbst(z) (15)

where
→

Psp(z) upgrades the position of another searching agent and the store’s best solution.
The SPOA approach develops an FF to accomplish a better classification accuracy.

It describes a positive integer to demonstrate the optimal performance of the candidate
solution. In such cases, the minimized classification error rate is considered to be the FF as
given below. The optimum solution is a lesser error rate, and the worst solution reaches a
maximum error rate.

f itness(xi) = Classi f ier Error Rate(xi)

= number o f misclassi f ied instances
Total number o f instances ∗ 100

(16)

4. Experimental Validation

The proposed SPOAI-FD technique was experimentally validated by means of auto-
motive gearbox and bearing fault datasets [23,24]. The former dataset comprises seven
classes whereas the latter dataset includes a total of 10 classes. The first dataset holds
seven types of health statuses, such as outer race bearing fault, minor-chipped gear fault,
missed tooth gear fault, and three types of compound faults (Normal, Minor-chipped tooth,
Missing tooth (0.2 mm), and the Missing tooth (2 mm)). The second dataset has both normal
as well as fault data. The bearing fault has a few types, such as the Inner race (IF), Outer
race (OF), and Ball faults (BF). Therefore, 10 kinds of bearing health status under varying
loads were studied. The details of the dataset are shown in Table 1.

Table 2 and Figure 2 show the accuracy examination results achieved by the proposed
SPOAI-FD model on gearbox dataset under distinct classes. The results exhibit that the
proposed SPOAI-FD method attained better accuracy values for every run. For exam-
ple, with Class 1, the proposed SPOAI-FD method obtained the accuracy values 0.9941,
0.9936, 0.9937, 0.9945, and 0.9940 correspondingly. Similarly, with Class 2, the presented
SPOAI-FD technique attained the accuracy values 0.9915, 0.9927, 0.9935, 0.9914, and 0.9906,
correspondingly. Likewise, with Class 3, the SPOAI-FD approach produced the following
accuracy values, 0.9920, 0.9932, 0.9926, 0.99145, and 0.9921, correspondingly. Simultane-
ously, with Class 7, the proposed SPOAI-FD method obtained the accuracy values 0.9946,
0.9903, 0.9924, 0.9945, and 0.9921, correspondingly.
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Table 1. Dataset details.

Dataset Class Number Class Label

Dataset-I

Class 1 Outer Race Bearing Fault

Class 2 Minor Chipped Gear Fault

Class 3 Missed Tooth Gear Fault

Class 4 Normal

Class 5 Minor chipped tooth

Class 6 Missing tooth (0.2 mm)

Class 7 Missing tooth (2 mm)

Dataset-II

Class 1 Outer Race Bearing Fault

Class 2 Minor Chipped Gear Fault

Class 3 Missed Tooth Gear Fault

Class 4 Normal

Class 5 Minor chipped tooth

Class 6 Missing tooth (0.2 mm)

Class 7 Missing tooth (2 mm)

Class 8 Inner race (IF)

Class 9 Outer race (OF)

Class 10 Ball faults (BF)

Table 2. Analytical results of the SPOAI-FD technique under Gearbox Dataset.

Class Label Run-1 Run-2 Run-3 Run-4 Run-5 Average

Class-1 0.9941 0.9936 0.9937 0.9945 0.9940 0.9940

Class-2 0.9915 0.9927 0.9935 0.9914 0.9906 0.9919

Class-3 0.9920 0.9932 0.9926 0.9914 0.9921 0.9923

Class-4 0.9945 0.9909 0.9934 0.9946 0.9927 0.9932

Class-5 0.9941 0.9921 0.9925 0.9910 0.9925 0.9924

Class-6 0.9947 0.9908 0.9928 0.9944 0.9910 0.9927

Class-7 0.9946 0.9903 0.9924 0.9945 0.9921 0.9928

Table 3 and Figure 3 show the comparative accuracy analysis results attained by the
proposed SPOAI-FD and other recent approaches [25,26] on gearbox datasets. The result
demonstrate that the proposed SPOAI-FD method achieved better accuracy values than
the rest of the methods under all the classes. For example, with Class 1, the SPOAI-FD
model accomplished a high accuracy of 0.9940 whereas the FFTKNN, FFTSVM, FFTDBN,
FFTSAE, CNN, CNN2 and the IIFD-SOIR technique obtained the least accuracy values,
such as 0.8364, 0.9886, 0.9746, 0.9855, 0.9885, 0.9881, and 0.9876, correspondingly. Simul-
taneously, with Class 2, the proposed SPOAI-FD model gained an increased accuracy of
0.9919 although the existing models, such as FFTKNN, FFTSVM, FFTDBN, FFTSAE, CNN,
CNN2, and IIFD-SOIR techniques resulted in low accuracy values, such as 0.9195, 0.9801,
0.9693, 0.9836, 0.9821, 0.9797, and 0.9852, correspondingly. Concurrently, with Class 3, the
presented SPOAI-FD model accomplished a high accuracy of 0.9923 whereas the other
models, such as FFTKNN, FFTSVM, FFTDBN, FFTSAE, CNN, CNN2, and IIFD-SOIR
techniques, obtained the least accuracy values, such as 0.9811, 0.9837, 0.9777, 0.9802, 0.9684,
0.9676, and 0.9811, correspondingly.
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Table 3. Analytical results of Each Fault Class of different methods on gearbox dataset.

Methods
Gearbox Dataset

1 2 3 4 5 6 7 Average

FFTKNN 0.8364 0.9195 0.9811 0.9869 0.8678 0.6768 0.6697 0.8483

FFTSVM 0.9886 0.9801 0.9837 0.9850 0.9801 0.9609 0.8685 0.9638

FFTDBN 0.9746 0.9693 0.9777 0.9755 0.9792 0.9468 0.9385 0.9659

FFTSAE 0.9855 0.9836 0.9802 0.9877 0.9854 0.9677 0.9558 0.9780

CNN 0.9885 0.9821 0.9684 0.9827 0.9876 0.9815 0.8857 0.9681

CNN2 0.9881 0.9797 0.9676 0.9861 0.9832 0.9577 0.9063 0.9670

IIFD-SOIR 0.9876 0.9852 0.9811 0.9855 0.9862 0.9823 0.9771 0.9836

SPOAI-FD 0.9940 0.9919 0.9923 0.9932 0.9924 0.9927 0.9928 0.9940

The accuracy investigation outcomes, obtained by the proposed SPOAI-FD approach,
under gearbox dataset, are shown in Figure 4. The result demonstrates that the proposed
SPOAI-FD technique gained an increment in its validation accuracy compared to the
training accuracy. Furthermore, it is obvious that the accuracy value becomes saturated
based on the count of epochs.
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The loss investigation outcomes of the SPOAI-FD system, under gearbox dataset, are
illustrated in Figure 5. The figure reveals that the proposed SPOAI-FD method significantly
reduced the validation loss over training loss. Additionally, it is noted that the loss value
becomes saturated with the count of epochs.
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Table 4 and Figure 6 depict the accuracy investigation outcomes attained by the
proposed SPOAI-FD approach on bearing dataset under diverse classes. The experimental
values demonstrate that the proposed SPOAI-FD approach achieved improved accuracy
values under all the runs. For example, with Class 1, the SPOAI-FD methodology gained
the accuracy values 0.9922, 0.9939, 0.9945, 0.9906, and 0.9906, correspondingly. Likewise,
with Class 2, the SPOAI-FD algorithm yielded the following accuracy values, 0.9946,
0.9940, 0.9920, 0.9910, and 0.9922, correspondingly. Moreover, with Class 3, the SPOAI-
FD approach accomplished the accuracy values 0.9911, 0.9927, 0.9941, 0.9943, and 0.9937,
correspondingly. At last, with class 7, the proposed SPOAI-FD technique reached the
accuracy values 0.9923, 0.9927, 0.9933, 0.9930, and 0.9901, correspondingly.

Table 4. Analytical results of SPOAI-FD technique under Bearing dataset.

Class Label Run-1 Run-2 Run-3 Run-4 Run-5 Average

Class-1 0.9922 0.9939 0.9945 0.9906 0.9906 0.9924

Class-2 0.9946 0.9940 0.9920 0.9910 0.9922 0.9928

Class-3 0.9911 0.9927 0.9941 0.9943 0.9937 0.9932

Class-4 0.9932 0.9945 0.9920 0.9917 0.9903 0.9923

Class-5 0.9926 0.9936 0.9944 0.9940 0.9906 0.9930

Class-6 0.9902 0.9949 0.9934 0.9935 0.9946 0.9933

Class-7 0.9923 0.9927 0.9933 0.9930 0.9901 0.9923

Class-8 0.9946 0.9917 0.9934 0.9946 0.9950 0.9939

Class-9 0.9920 0.9925 0.9924 0.9912 0.9914 0.9919

Class-10 0.9920 0.9908 0.9933 0.9905 0.9911 0.9915
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Table 5 and Figure 7 portray the brief comparison study outcomes accomplished by
the proposed SPOAI-FD and other recent approaches on bearing dataset. The simulation
values depict that the SPOAI-FD system gained enhanced accuracy values over the rest of
the methods under all the classes. For example, with Class 1, the SPOAI-FD model gained
increased accuracy values, such as 0.9924, while FFTKNN, FFTSVM, FFTDBN, FFTSAE,
CNN, CNN2, and IIFD-SOIR techniques achieved the least accuracy values, such as 0.9706,
0.9892, 0.9815, 0.9860, 0.9791, 0.9833, and 0.9870, correspondingly. Simultaneously, with
Class 2, the proposed SPOAI-FD method yielded an enhanced accuracy of 0.9928. However,
the other models, such as FFTKNN, FFTSVM, FFTDBN, FFTSAE, CNN, CNN2, and IIFD-
SOIR techniques, achieved minimal accuracy values, such as 0.9582, 0.9446, 0.9741, 0.9691,
0.9382, 0.9127, and 0.9771, correspondingly. Concurrently, with Class 3, the SPOAI-FD
model accomplished a maximum accuracy of 0.9932. However, the FFTKNN, FFTSVM,
FFTDBN, FFTSAE, CNN, CNN2, and the IIFD-SOIR techniques obtained the least accuracy
values, such as 0.9721, 0.9862, 0.9836, 0.9864, 0.9792, 0.9934, and 0.9867, correspondingly.

The accuracy investigation outcomes of the SPOAI-FD approach under bearing dataset
are depicted in Figure 8. The result exhibits that the proposed SPOAI-FD methodology
gained a better validation accuracy compared to the training accuracy. Additionally, it is
noticeable that the accuracy value becomes saturated with the count of epochs.

The loss investigation results of the SPOAI-FD algorithm under bearing dataset are
depicted in Figure 9. The figure reveals that the proposed SPOAI-FD method achieved a
reduction in the validation loss than the training loss. Additionally, it is to be noted that the
loss value becomes saturated with the count of epochs.
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Table 5. Analytical results of Each Fault Class of different methods on bearing dataset.

Methods
Bearing Dataset

1 2 3 4 5 6 7 8 9 10 Average

FFTKNN 0.9706 0.9582 0.9721 0.9432 0.9563 0.9655 0.9788 0.9423 0.9793 0.9608 0.9627

FFTSVM 0.9892 0.9446 0.9862 0.9839 0.9772 0.9073 0.9869 0.9407 0.9899 0.8602 0.9566

FFTDBN 0.9815 0.9741 0.9836 0.9746 0.9672 0.9573 0.9759 0.9327 0.9768 0.9434 0.9667

FFTSAE 0.9860 0.9691 0.9864 0.9700 0.9716 0.9587 0.9829 0.9312 0.9876 0.9366 0.9680

CNN 0.9791 0.9382 0.9792 0.9765 0.9836 0.9757 0.9887 0.9635 0.9806 0.9829 0.9748

CNN2 0.9833 0.9127 0.9834 0.9786 0.9598 0.9759 0.9833 0.9302 0.9790 0.9849 0.9671

IIFD-SOIR 0.9870 0.9771 0.9867 0.9807 0.9877 0.9846 0.9824 0.9718 0.9814 0.9860 0.9825

SPOAI-FD 0.9924 0.9928 0.9932 0.9923 0.993 0.9933 0.9923 0.9939 0.9919 0.9915 0.9927
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Table 6 provides the overall average analysis results of the SPOAI-FD and other recent
methodologies. Figure 10 offers the comparative average accuracy analysis outcomes
of SPOAI-FD approach and other methods on gearbox dataset. The results show that
the SPOAI-FD technique outperformed all other methods with maximum training and
testing accuracies.
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Table 6. Training and testing accuracies of the proposed SPOAI-FD approach and other
recent methods.

Method
Gearbox Dataset Bearing Dataset

Training Testing Training Testing

FFTKNN 0.8567 0.8483 0.9754 0.9627

FFTSVM 0.9753 0.9638 0.9622 0.9566

FFTDBN 0.9711 0.9659 0.9814 0.9667

FFTSAE 0.9864 0.9780 0.9740 0.9680

CNN 0.9764 0.9681 0.9789 0.9748

CNN2 0.9726 0.9670 0.9768 0.9671

IIFD-SOIR 0.9899 0.9836 0.9890 0.9825

SPOAI-FD 0.9960 0.9940 0.9951 0.9927
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For example, with respect to training accuracy, the SPOAI-FD approach reached a max-
imum training accuracy of 0.9960. However, other methods such as the FFTKNN, FFTSVM,
FFTDBN, FFTSAE, CNN, CNN-2, and IIFD-SOIR algorithms gained lesser training accura-
cies, such as 0.8567, 0.9753, 0.9711, 0.9864, 0.9764, 0.9726, and 0.9899, correspondingly.

Figure 11 illustrates the detailed average accuracy analysis outcomes achieved by
the proposed SPOAI-FD algorithm and other techniques on bearing dataset. The results
obtained showcase that the SPOAI-FD method surpassed all other existing techniques
with maximum training and testing accuracies. For instance, the proposed SPOAI-FD
system reached an increased training accuracy of 0.99510, whereas the other methods
such as FFTKNN, FFTSVM, FFTDBN, FFTSAE, CNN, CNN-2, and IIFD-SOIR techniques
produced the least training accuracy values, such as 0.9754, 0.9622, 0.9814, 0.9740, 0.9789,
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0.9768, and 0.9890, correspondingly. By observing the abovementioned outcomes, it can be
inferred that the proposed SPOAI-FD system has an enhanced fault diagnosis efficiency
over other methods.
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5. Conclusions

In the current study, a new SPOAI-FD technique has been designed to detect the faults
in RMs. The proposed algorithm includes numerous sub-processes, such as the CWT-based
pre-processing, Faster SqueezeNet feature extraction, BLSTM classifier and SPOA-based
hyperparameter optimization. The SPOA has been employed to modify the hyperparameter
values of the BLSTM model, thus producing better classification performance. In order to
highlight the better performance of the presented model, a comprehensive examination was
conducted using automotive gearbox and bearing fault datasets. The extensive comparison
study outcomes highlighted the supremacy of the proposed SPOAI-FD algorithm over
other recent approaches, since the former achieved the maximum accuracy values, such as
0.9960 and 0.9951, on gearbox and bearing datasets, respectively. In the future, hybrid DL
mechanisms can be developed to enhance the classifier outcomes on fault detection process.
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