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Abstract: Homography estimation of infrared and visible images is a highly challenging task in
computer vision. Recently, the deep learning homography estimation methods have focused on
the plane, while ignoring the details in the image, resulting in the degradation of the homography
estimation performance in infrared and visible image scenes. In this work, we propose a detail-aware
deep homography estimation network to preserve more detailed information in images. First, we
design a shallow feature extraction network to obtain meaningful features for homography estimation
from multi-level multi-dimensional features. Second, we propose a Detail Feature Loss (DFL), which
utilizes refined features for computation and retains more detailed information while reducing the
influence of unimportant features, enabling effective unsupervised learning. Finally, considering
that the evaluation indicators of the previous homography estimation tasks are difficult to reflect
severe distortion or the workload of manually labelling feature points is too large, we propose an
Adaptive Feature Registration Rate (AFRR) to adaptive extraction of image pair feature points to
calculate the registration rate. Extensive experiments demonstrate that our method outperforms
existing state-of-the-art methods on synthetic benchmark dataset and real dataset.

Keywords: homography estimation; deep convolutional network; infrared image; visible image

1. Introduction

With the vigorous development of computer vision, single-source images have shown
certain limitations. They are difficult to meet the needs of daily applications. In contrast,
multi-source images can make up for the lack of single-source image expression capabilities
by integrating multi-spectral scene information [1]. Infrared and visible images have been
the most widely used image processing [2–4]. Infrared images focus on highlighting the
overall contour characteristics of the image, and visible images use light to reflect energy
on different objects in an image, which can well present scene detail information. They
have a high degree of complementarity of scene information [5–12]. Image registration
is the process of finding the best alignment between images and plays a very important
role in input image preprocessing [13–15]. The registration task of infrared and visible
images is widely used as an essential part of computer vision applications, such as image
fusion [16–18] and target tracking [19].

The homography model is mainly used to realize the geometric transformation be-
tween two images, including 8 degrees of freedom for scaling, translation, rotation, and
perspective, which can be expressed as an image registration problem [20–24]. Traditional
feature-based homography estimation methods usually need to detect the features of image
pairs [25–35], then establish image correspondences by matching common features, and
use robust estimation algorithms such as RANSAC [36] and MAGSAC [37] to eliminate
feature correspond to outliers in points. Still, such algorithms require higher quality image
pairs. For infrared and visible images, the common features have significant uncertainties,
and it is difficult to obtain better registration performance using such methods.
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Recent deep homography estimation methods utilize convolutional neural networks
to compute the homography matrix between two images [38–44]. However, most deep
learning solutions failed due to the large grayscale and contrast differences inherent in
infrared and visible images. At the same time, partial solutions require homography
ground-truths for supervised network training, which are often inapplicable in practical
applications. In addition, Zhang et al. [40] propose learning deep features and masks to cull
outlier regions simultaneously, but this results in loss of details in the image. In practical
applications, these details are essential for the image registration task of infrared and visible
image, as shown in Figure 1.
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Figure 1. Homography estimation for infrared and visible images. We propose a detail-aware deep
homography estimation method to obtain detailed information in images and reduce matching errors.
(a,b) Input image pairs. (c,d) The results of visualizing attention in the different network using
Grad-CAM [45]. (e,f) The results of fusing the blue and green channels of the warped infrared image
with the red channel of the ground-truth infrared image and computing the corresponding average
corner error (ACE) [41].

In this work, inspired by Zhang et al. [46], we build a feature extraction block by
introducing a residual dense network (RDN) to extract detailed information about image
pairs. Specifically, we utilize a residual dense network to extract features from both global
and local perspectives to generate global perceptual features. In this way, we avoid the
defect that most feature extraction methods and ignore hierarchical features, so the resulting
features also retain more detailed information.

Since the masks produced in previous methods do not well identify features that are
meaningful for homography solving, we construct a feature refinement block. It introduces
channel and spatial attention to refine features and suppress unimportant features, thereby
retaining meaningful features for homography solving. At the same time, we start from a
new direction and generate attention maps directly for the extracted features instead of
directly generating masks from the source image and weighting the features as in previous
methods [40], which is more conducive to retaining details.

At the same time, since the previous method Triplet Loss [40] loses the details in the
image, which are very important for the registration task of infrared and visible images,
we propose a new method named “Detail Feature Loss” (DFL) constraints, which directly
use the sophisticated features to participate in the loss calculation instead of using the
mask [40] in the previous method to normalize the loss. With this improvement, our
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network preserves more detailed information in image pairs. We describe this in detail in
Section 4.6.

In addition, since most of the existing image registration evaluation index func-
tions [47] only use the brightness, contrast, and pixel error of the image to evaluate the
image, it is difficult to reflect the registration of severely distorted wrapped images. The
point matching error [40,42] uses hand-labelled feature points to calculate the error and
is one of the best existing methods to evaluate the registration situation. However, the
workload of manual annotation is too large, which results in great difficulties to our eval-
uation of registration performance, and introduces specific errors. This paper refers to
point matching error as PME for short. Moreover, using average corner errors [41,43] to
evaluate image registration performance is another suitable method. But this approach
only works on synthetic benchmark dataset. This paper refers to the average corner error as
ACE for short. Therefore, because of the above difficulties, we design an Adaptive Feature
Registration Rate (AFRR) to adaptively extract feature points to calculate the registration
performance between image pairs.

Extensive experiments demonstrate that our method outperforms existing state-of-
the-art homography estimation methods on synthetic benchmark dataset and real dataset.
In summary, our contributions are as follows:

• We design a shallow feature extraction network consisting of a feature extraction block,
a feature refinement block, and a feature integration block. The meaningful features
are fed into the subsequent network to obtain a homography matrix by performing
attention mapping on the channel and spatial dimensions of multi-level features.

• We propose a DFL loss that directly utilizes the sophisticated features to participate in
operations to preserve more detailed information in image pairs.

• We propose an image registration evaluation metric, AFRR, to calculate the registration
rate of image pairs by adaptively extracting feature points.

2. Related Works

Traditional homography. Image features and feature descriptors are usually first
extracted, such as SIFT [25], SURF [26], KAZE [30], ORB [27], BRISK [28], AKAZE [29], and
IO-Net [34], and then matched correspondence between common features. Finally, robust
estimation algorithms are used to eliminate outliers and solve the homography matrix
between image pairs, such as RANSAC [36], MAGSAC [37], and MAGSAC++ [48]. This
approach depends heavily on the quality of feature correspondences and tends to fail in
infrared and visible image scenes.

Deep homography. Usually, a convolutional neural network is used to obtain the
correspondence between image pairs to obtain the homography matrix. DeTone et al. [38]
pioneered a VGG-style network for homography estimation that directly learns the pa-
rameters of the homography transformation from two images. Nguyen et al. [39] used a
photometric loss that does not require manual labels to train the network but failed to con-
verge in infrared and visible image scenarios, making it challenging to achieve registration.
Zhang et al. [40] learned a mask to select only reliable regions for homography estimation,
which would lose details. Le et al. [41] learn from image pairs with ground-truth homogra-
phy, which are hard to obtain in practical applications. Shao et al. [43] used a transdoemer
structure to address the cross-resolution problem in homography estimation. Nie et al. [44]
propose to predict multi-grid homography from global to local to address parallax in
images. Inspired by Zhang et al., Ye et al. [42] proposed a homography flow representation
to reduce feature rank and suppress motion noise. However, due to the large grayscale
and contrast differences between the infrared and visible images, the homography flow is
unstable, making it difficult for the network to converge. Similarly, Hong et al. [49] also
used homography flow to obtain homography matrices, which would be difficult to apply
to infrared and visible scenarios.

Evaluation Metrics. Commonly used image registration evaluation indicators are
usually calculated according to the pixels of the image pair, such as SSIM [47], MI [50],
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PSNR [51], etc. Still, it is difficult to reflect the actual image registration. SSIM and PSNR
are also widely used in image denoising tasks and are a general image quality evaluation
metric [52,53]. In addition, some evaluation indicators also use location information for
evaluation. Ye et al. [42] utilized manually annotated feature points for registration per-
formance evaluation. Specifically, the average l2 distance between the warped source and
target points of each pair of test images is considered an error measure. However, this
method brings immense workload when the test set data are significant. Le et al. [41] eval-
uated registration performance by averaging corner errors. Specifically, the method utilizes
estimated homography and ground truth homography to transform corners, respectively,
which are then used for evaluation index computation. But this method only works on
synthetic benchmark dataset.

Discussions. A closely related work to ours is [40], the authors consider using a
feature extractor consisting of three layers of convolutions to learn deep features in images
and utilize masks to select only reliable regions for homography estimation. Additionally,
a Triplet Loss is formulated to enable unsupervised learning. Compared to [40], our work
considers the importance of details in the image and retains more details from three aspects.
First, RDN [46] is introduced to obtain dense features in the image. Second, CBAM [54] is
introduced to refine the features in both channel and space dimensions and transform the
location of the attention. Finally, the proposed DFL directly utilizes the refined features to
participate in the loss computation.

3. Algorithm
3.1. Network Structure

This section proposes a detail-aware depth homography estimation method for in-
frared and visible image scenes. Our network consists of two parts: a shallow feature
extraction network and a homography estimation network. The shallow feature extraction
network consists of a feature extraction block (FEB), a feature refinement block (FRB), and
a feature integration block (FIB). Figure 2 shows the basic framework of our network. First,
two grayscale image patches Ia and Ib of size H ×W × 1 are given as the input of the
neural network, and they are input into the shallow feature extraction network to obtain the
integrated refined feature map Ga and Gb, respectively. Second, connect the two integrated
refined features in the channel dimension to obtain Ga,b, and input it into the homography
estimation network with ResNet-34 [55] as the backbone to get the offset matrix H between
the two image pairs. Finally, for the offset matrix H, we use direct linear transformation
(DLT) [56] to obtain the homography matrix Hab of image pairs, and then calculate the loss
to back-propagate the modified network parameters.

3.1.1. Feature Extraction Block

Previous methods [40] cannot extract enough details from the images for infrared
and visible images. To address this issue, we introduce RDN [46] to extract multi-level
detail information in images to enhance image representation. At the same time, since
we want to keep the output feature map size consistent with the input image size, we do
not need to upsample the image as in RDN [46], our feature extraction block structure is
shown in Figure 3, and Section 4.6 demonstrates in detail the effectiveness. Specifically,
given a grayscale image patch of size H ×W × 1 as input. The shallow image features are
first extracted through two convolutional layers. Then the dense features in the image are
extracted through 3 RDBs. Finally, global fusion is used to preserve the hierarchical features
in the image and output a multi-channel feature map of size H ×W × 1. Meanwhile, for
grayscale image patches Ia and Ib, the network weights are shared to output multi-channel
feature maps Fa and Fb, i.e.,

Fk = F−1 + HGFF([F1, F2, F3]),k∈{a, b} (1)

where F−1 denotes the shallow features. Fd depicts the dense features extracted by the d-th
RDB, d ∈ {1, 2, 3}. HGFF(·) means the fusion operation of three RDBs.
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3.1.2. Feature Refinement Block

In [40], Zhang et al. use the mask predictor to generate masks directly from the source
image, but the network framework of this method is idealization, and the ability to refine
features is insufficient. It is difficult to identify the homography matrix solution in a large
number of detailed meaningful features. To address this problem, we start from a new
direction. Instead of generating attention maps directly for source images, we introduce
CBAM [54] to adaptively refine the features themselves. Specifically, the detailed features
are further refined by sequentially extracting informative features along the two dimensions
of channel and space by mapping multi-channel features Fk to focus on the most critical
features and suppress unimportant features. Similar to the feature extraction block, for
the multi-channel feature maps Fa and Fb, the feature refinement block shares weights and
outputs of size H ×W × C the refined feature map Ma and Mb, i.e.,

M′k = Mck(Fk)⊗ Fk

Mk = Msk
(

M′k
)
⊗M′k

, k ∈ {a, b} (2)

where Mck ∈ RC×1×1 and Msk ∈ R1×H×W denote the channel attention map and the spatial
attention map, respectively.
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3.1.3. Feature Integration Block

Since the number of output channels of the feature extraction block and the feature
refinement block are both C, this increases the time and computational complexity of the
subsequent homography estimation network training. We design a feature integration
block to transform the number of channels of the feature map to 1. Specifically, our
feature integration block consists of two convolutional layers, and each convolutional
layer is followed by batch normalization [57] and ReLu, as shown in Table 1. Similar
to the feature extraction block, the feature integration block takes a feature map of size
H ×W × C as input, and the shared network weight outputs an integrated feature map of
size H ×W × 1, i.e.,

Gk = f (Mk), k ∈ {a, b} (3)

where Gk depicts the integrated refined feature map. f (·) represents the operation of the
feature integration block.

Table 1. Feature integration blocks.

Layer 1 2

Type Conv Conv
Kernel 3 3
Stride 1 1

Channel 32 1

3.2. Triplet Loss with Retaining Details

In the visible image scene, although the Triplet Loss [40] can use the mask as a weight-
ing term to make the network pay more attention to the regions suitable for alignment, for
the homography estimation of infrared and visible images, this method loses the detailed
information in the image degrades the registration performance. This paper starts from
a new perspective by proposing a constraint named “Detail Feature Loss” (DFL), which
uses the integrated refined feature map to participate in the loss calculation. Specifically,
since it is difficult for a single homography to satisfy the transformation between two views
in real scenes, the previous Triplet Loss [40] uses masks for normalization. Based on this
inspiration, we use the integrated refined features to calculate the loss, which can preserve
many details while reducing the influence of unimportant features. We demonstrate this in
Section 4.6.

According to the homography matrix Hab obtained by the network, image Ia can be
wrapped into I′a, and our DFL can be expressed as:

LT
(

I′a, Ib
)
= ||G′a − Gb||1 − ||Ga − Gb ||1 (4)

where G′a is the integrated refined feature produced by the warped image I′a.
In practice, we also swap the order of the network input image pairs Ia and Ib to

produce a homography matrix Hba, resulting in a warped image I′b of Ib. Similar to
Equation (4), another loss LT

(
I′b, Ia

)
is obtained. At the same time, we force Hab and Hba to

be inverses of each other. Therefore, our objective function is as follows:

L = LT
(

I′a, Ib
)
+ LT

(
I′b, Ia

)
+ λ||HabHba − E||22 (5)

where λ denotes the equilibrium hyperparameter, which is set to 0.01 in the experiments. E
is a third-order identity matrix.

3.3. Adaptive Feature Registration Rate

SSIM, MI, and PSNR are currently the most widely used image evaluation metrics.
Image registration tasks are generally sensitive to grayscale changes and suffer from
distorted wrapped images and black edges. At the same time, their evaluation values are
often difficult to reflect accurately under these interferences. They have a large deviation
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from the observation results of human eyes, so these indicators often cannot reflect the
actual registration performance. We perform a detailed experimental proof in Section 4.6.
Meanwhile, another evaluation method has recently been widely used in image registration
tasks, namely, PME [40]. Compared with other methods, this method can better reflect the
registration situation but often requires manual annotation of feature points. For a test
set with a large amount of data, the labor cost of this method is too high. In addition, the
ACE [41] is also widely used in image registration tasks, but this evaluation metric can only
be applied to synthetic benchmark dataset containing ground-truth values.

According to the above observations, we directly use SIFT [25] to adaptively extract
feature points from another perspective and use the ratio of more accurate feature points as
the evaluation value to obtain the Adaptive Feature Registration Rate (AFRR). At the same
time, the use of feature points for evaluation calculation can effectively avoid problems
such as registration performance and manual annotation workload that are difficult to
reflect in other evaluation indicators. Specifically, we first adaptively extract feature points
of image pairs by SIFT [25] and utilize FLANN [58] to match feature corresponding points.
Then, the Euclidean distance di between the feature corresponding points (representing the
i-th feature corresponding point) is used as the judgment amount. Since SIFT [25] itself may
have mismatches, we need to remove the mismatched points corresponding to the feature
points. The specific method is as follows: we select a threshold value ε as the judgment
criterion for mismatching, that is, only di smaller than the threshold value ε is included in
the subsequent judgment range. We denote di that falls within this range as d′i.

In addition, we also set a threshold of µ, if and only if d′i is less than µ, and we record
the corresponding point of the feature as a feature point with more accurate registration.
On the contrary, it is recorded as the feature points whose registration is inaccurate. Finally,
the registration rate is generated by calculating the number of accurately registered feature
points within the judgment range, and this is used as the evaluation value of AFRR.
Therefore, our calculation formula is as follows:

AFRR =
1
N

N

∑
i=1

d′i (6)

where N denotes the corresponding number of feature points that satisfy the threshold ε.
We set the threshold ε to 10 and the threshold µ to 6 respectively in our experiments.

4. Experiment
4.1. Dataset and Implementation Details
4.1.1. Dataset

Synthetic benchmark dataset. We validate our algorithm on synthetic benchmark
dataset and real dataset, respectively. We make our synthetic benchmark dataset from
publicly registered infrared and visible datasets such as OSU Color-Thermal Database [59],
INO [60], and TNO [61]. We selected 115 pairs and 42 pairs of infrared and visible images
for training and test sets, respectively.

Real dataset. The real dataset comes from the KAIST multispectral pedestrian de-
tection dataset [62]. Although it is stated that the infrared and visible images are already
aligned in [62], there is an offset in the case of camera movement. We only select image
pairs with camera movement for the dataset. Finally, we selected 80,189 pairs of infrared
and visible images for the training set, and 49 pairs of infrared and visible images for the
test set.

4.1.2. Implementation Details

The experimental configuration is an Intel i9-10980XE processor, 64G memory, and
NVIDIA GeForce RTX 3090 GPU. The deep learning framework we adopt is Pytorch, and
Adam is used as the network optimizer. The exponential decay learning rate is initialized
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to 1.0 × 10−4, the decay factor is 0.8, and the decay step size is 1 epoch. The batch size is
set to 16, and the epoch is set to 50.

4.2. Experiment Procedure

The experiment procedure is divided into three steps. In step 1, the data are augmented
to construct a dataset for experiments. In step 2, the image data are normalized to obtain
the network input image. In step 3, we visualize the network output results of the feature
extraction block, feature refinement block, and feature integration block in turn according
to the proposed framework, and finally display the distorted image transformed by the
homography matrix.

4.2.1. Data Augmentation

Synthetic benchmark dataset. First, because of the problem of too little data in the
training set, we use data augmentation methods such as rotation, offset, and clipping to
expand. To use the same parameters for augmentation, we uniformly transform the training
set images of different sizes to 320 × 240. A total of 48,736 infrared and visible image pairs
are obtained. Second, we use the dataset generation method in [38] on the training and test
set to generate synthetic benchmark dataset. The synthetic benchmark dataset includes
infrared image Ir, visible image Iv, and infrared ground-truth image IGT of size 150 × 150,
where Ir and Iv are unregistered, and Iv and IGT are registered. In particular, only IGT
is included in the test set, which is intended to be used for evaluation index calculation,
so as to better reflect the registration performance of infrared and visible images. The
specific production method of the synthetic benchmark dataset is shown in Figure 4. The
comparative information of the original dataset and the synthetic benchmark dataset is
shown in Table 2.
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Real dataset. The brightness of the infrared images in the multispectral pedestrian
dataset is too dark, so we also enhanced the contrast of the infrared images by employing
image enhancement as our final dataset, as shown in Figure 5. In particular, the enhanced
real dataset is the size of 200 × 200. The comparison information between the original
dataset and the enhanced real dataset is shown in Table 3.
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Table 2. Comparative information of the original dataset and the synthetic benchmark dataset. The
source image column indicates the number and resolution of images used in different subsets or
categories in the source dataset (OSU Color-Thermal Database, INO, and TNO). The unregistered
image column indicates the number and resolution of images in different subsets or classes in the
synthetic benchmark dataset.

Dataset Subsets/Categories Original Image Unregistered Image

Number Resolution Number Resolution

Training set

OSU Color-Thermal Database Location 1 10 320 × 240 3383 150 × 150

INO

Close person 2 512 × 184 841 150 × 150
Coat deposit 14 512 × 384 6093 150 × 150
Group fight 18 452 × 332 7773 150 × 150
Main entrance 9 328 × 254 3975 150 × 150
Multiple deposit 5 448 × 324 2261 150 × 150
Parking evening 6 328 × 254 2598 150 × 150
Trees and runner 5 328 × 254 2165 150 × 150
Visitor parking 9 328 × 254 3732 150 × 150

TNO

Athena 14 768 × 576,
595 × 328 etc. 5959 150 × 150

DHV 2 280 × 280 780 150 × 150
FEL 2 360 × 270 837 150 × 150
tank 1 472 × 354 455 150 × 150

Triclobs 18 640 × 480,
620 × 458 etc. 7884 150 × 150

Test set

OSU Color-Thermal Database Location 2 9 320 × 240 9 150 × 150

INO
Parking snow 16 448 × 324 16 150 × 150
Backyard runner 4 448 × 324 4 150 × 150

TNO

Athena 2 590 × 426,
768 × 576 2 150 × 150

DHV 1 575 × 475 1 150 × 150

Triclobs 10 472 × 371,
622 × 458 etc. 10 150 × 150
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Table 3. Comparison information of the original dataset and the enhanced real dataset. The source
image column indicates the number and resolution of images used in different subsets or categories in
the source dataset (KAIST multispectral pedestrian detection dataset). The enhanced image column
indicates the number and resolution of images in different subsets or categories in the real dataset
after enhancement.

Dataset Subsets/Categories
Original Image Enhanced Image

Number Resolution Number Resolution

Training set KAIST multispectral pedestrian
detection dataset

Day Campus 28,104 640 × 512 28,104 200 × 200
Day Road 12,509 640 × 512 12,509 200 × 200
Day Downtown 14,212 640 × 512 14,212 200 × 200
Night Campus 6668 640 × 512 6668 200 × 200
Night Road 12,270 640 × 512 12,270 200 × 200
Night Downtown 6426 640 × 512 6426 200 × 200

Test set KAIST multispectral pedestrian
detection dataset

Day Campus 16 640 × 512 16 200 × 200
Night Campus 33 640 × 512 33 200 × 200

4.2.2. Data Normalization

Due to the different image sizes in different datasets, we uniformly transform the
images to 150 × 150 in the network preprocessing. Then, we also get normalized grayscale
images by normalization and gray scale. Finally, an image patch of size 128 × 128 is
randomly generated from the grayscale image as the input image of the subsequent network
to enhance the richness of the dataset. It is worth noting that uniform downsampling or
upsampling of images of different sizes to fixed-size images will blur or introduce noise
into the network input image in the above process.

4.2.3. Network Layer Output

To clearly show the results of data processing in the network layer, we visualized the
network output results of the feature extraction block, feature refinement block, and feature
integration block on the synthetic benchmark dataset, respectively. The results are shown
in Figure 6. In particular, since the outputs of both the feature extraction block and feature
refinement block are multi-channel feature maps, we only visualize their first channel.

First, we perform feature extraction on the input images Ia and Ib using a feature
extraction block, respectively, to generate multi-channel feature maps Fa and Fb, and the
results are shown in column 2 in Figure 6. We can see that the feature extraction block
can obtain richer detailed features. Second, we use the feature refinement block to refine
the input multi-channel feature maps Fa and Fb, respectively, to obtain the refined feature
maps Ma and Mb, and the results are shown in the third column in Figure 6. The road
edge features and pedestrian features in the lower left corner of Ma are significantly less
than those in Fa, and the pedestrian head features in the lower left corner of Mb are
also significantly less than those in Fb, which fully shows that the feature refinement
block is important to refine the feature in Fa and Fb. Finally, we integrate the multi-
channel refined features in Ma and Mb using a feature integration block to produce single-
channel integrated refined feature map Ga and Gb. This reduce the time and computation
for subsequent homography estimation network training, and the results are shown in
column 4 in Figure 6. After integrating the refined features of multiple channels, our
single-channel feature map Ga and Gb are fine and dense.

In addition, we input Ga and Gb into the homography estimation network after channel
concatenation to obtain the final homography matrix. The warped image produced by
transforming the source image by the homography matrix is shown in Figure 7, where IGT
represents the infrared image form corresponding to the visible target image. As shown in
Figure 7, we can see that the warped image is closer to the target image than the source
image, which confirms the accuracy of the homography matrix.
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Figure 6. The network outputs of the feature extraction block, feature refinement block, and feature
integration block are visualized on a synthetic benchmark dataset, respectively. Column 1 represents
the input image to the network. Column 2 represents the multi-channel feature map visualization
results output by the feature extraction block. Column 3 represents the visualization of the refined
feature map output by the feature refinement block. Column 4 represents the visualization result of
the integrated refined feature map output by the feature integration block.
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the warped image.

4.3. Evaluation Metrics

SSIM [47] uses the brightness, contrast, and structure of the image to measure the
image similarity, and its value belongs to [0, 1]. The larger the value of SSIM, the better the
registration effect. The calculation formula can be described as:

SSIM(x, y) =

(
2µxµy + C1

)(
2σxy + C2

)(
µ2

x + µ2
y + C1

)(
σ2

x + σ2
y + C2

) (7)

where x and y denote warped and ground-truth images, respectively. µx and µy represent
the mean of all pixels in x and y, respectively. σx and σy represent the standard deviations of
x and y, respectively. σxy represents the covariance of the two images. C1 and C2 represent
constants to maintain stability.

MI [50] reflects the degree of correlation by calculating the entropy and joint entropy
of both the warped and ground-truth images. The larger the value, the higher the similarity.
The calculation formula of MI can be described as:

MI(x, y) = H(x) + H(y)−H(x, y) (8)



Electronics 2022, 11, 4185 12 of 22

where x and y denote warped and ground-truth images, respectively. H(·) and H(x, y)
denote the calculation functions of entropy and joint entropy, respectively.

PSNR [51] can directly reflect the difference in the grayscale of the two images as a
whole. The larger the PSNR value, the smaller the gray difference between the two images,
that is, the more similar the image pair is. The calculation formula of PSNR is as follows:

PSNR(x, y) = 10log10

MN
(

2k − 1
)2

∑M
i=1 ∑N

j=1(x(i, j)− y(i, j))2 (9)

where x and y denote warped and ground-truth images, respectively. i and j represent
the pixel locations in the image row and column, respectively. k is the number of bits per
sample value.

Average corner error (ACE) [41,43] evaluates the homography performance by trans-
forming the corners with estimated and ground-truth homography, respectively. The
smaller the ACE value, the better the homography estimation performance, that is, the
better the registration performance. The calculation formula of ACE can be expressed as:

ACE =
1
4

4

∑
j=1
||xj − yj ||2 (10)

where xj and yj are the corner j transformed by the estimated homography and the ground-
truth homography, respectively.

Point matching error (PME) [40,42] utilizes manually annotated feature points for
homography estimation performance evaluation, and it regards the average l2 distance
between warped source and target points for each pair of test images as an error metric.
The smaller the PME value, the better the homography estimation performance, that is, the
better the registration performance. The calculation formula of PME is as follows:

PME =
1
N ∑N

j=1 ||xj − yj ||2 (11)

where x denotes the feature points produced by the estimated homography transformation.
y represents the target feature point marked manually. N represents the number of manually
labeled feature point pairs.

4.4. Comparison on Synthetic Benchmark Dataset

We conduct quantitative comparisons with 11 algorithms on synthetic benchmark
dataset, including traditional feature-based methods and deep learning-based methods.
The evaluation results on warped infrared images and infrared ground-truth images are
shown in Table 4. In Table 4, I3×3 indicates that the 3 × 3 identity matrix is used as
the “no-warping” homography matrix, and “-” indicates that the algorithm fails. We
used evaluation metrics such as SSIM, MI, PSNR, ACE [41], and AFRR in the quantitative
comparison. Since MSE is calculated similarly to ACE [41] and PME [40], we do not use it as
our evaluation metric in the future. In particular, partial deep learning-based methods are
difficult to fit on infrared and visible datasets, such as UDHN [39], MBL-UDHEN [42], etc.

As shown in Table 4, our algorithm significantly outperforms feature-based methods
on most of the evaluation metrics, only worse than SIFT [25] + RANSAC [36] on the
evaluation metric AFRR. Although this class of methods achieves the best on AFRR, it is the
algorithm with the highest failure rate except for KAZE [30] + MAGSAC++ [48], as shown
in Figure 8. This shortcoming will greatly limit the practical application, and the rest of the
traditional methods usually suffer from algorithm failures on infrared and visible datasets.
In addition, we can observe that the ACE [41] of the traditional method is generally large,
which is caused by the characteristic of calculating the evaluation value through the corner
position, so the size of the evaluation value reflects the degree of distortion of the image.
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Table 4. Quantitative comparison on synthetic benchmark dataset. We mark the best method in red
and the suboptimal method in blue. The rest of this article uses the same notation method.

(1) SSIM (↑) MI (↑) PSNR (↑) ACE (↓) AFRR (↑)
(2) I3×3 0.54 (+0.00%) 1.09 (+0.00%) 30.66 (−0.16%) 5.79 (+10.29%) 0.73 (−23.96%)

(3) SIFT + RANSAC 0.49 (−9.26%) 0.95 (−12.84%) 30.01 (−2.28%) 50.87 (+868.95%) 0.96 (+0.00%)
(4) SIFT + MAGSAC++ 0.45 (−16.67%) 0.88 (−19.27%) 29.58 (−3.68%) 131.71 (+2408.76%) 0.65 (−32.29%)
(5) ORB + RANSAC 0.36 (−33.34%) 0.59 (−45.87%) 28.17 (−8.27%) 160.89 (+2964.57%) 0.05 (−94.79%)
(6) ORB + MAGSAC++ 0.36 (−33.34%) 0.56 (−48.62%) 28.14 (−8.37%) 109.13 (+1978.67%) 0.06 (−93.75%)
(7) KAZE + RANSAC 0.34 (−37.04%) 0.63 (−42.20%) 28.40 (−7.52%) 144.07 (+2644.19%) 0.09 (−90.63%)
(8) KAZE + MAGSAC++ - - - - -
(9) BRISK + RANSAC 0.36 (−33.34%) 0.57 (−47.71%) 28.21 (−8.14%) 143.20 (+2627.62%) 0.03 (−96.87%)
(10) BRISK + MAGSAC++ 0.36 (−33.34%) 0.58 (−46.79%) 28.18 (−8.24%) 146.62 (+2692.76%) 0 (−100.00%)
(11) AKAZE + RANSAC 0.28 (−48.15%) 0.55 (−49.54%) 28.15 (−8.34%) 159.66 (+2941.14%) 0 (−100.00%)
(12) AKAZE + MAGSAC++ 0.26 (−51.85%) 0.57 (−47.71%) 28.14 (−8.39%) 139.40 (+2555.24%) 0 (−100.00%)

(13) CADHN 0.54 (+0.00%) 1.09 (+0.00%) 30.71 (+0.00%) 5.25 (+0.00%) 0.73 (−23.96%)
(14) Proposed method 0.55 (+1.85%) 1.10 (+0.97%) 30.74 (+0.10%) 5.08 (−3.24%) 0.74 (−22.92%)
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Furthermore, our algorithm slightly outperforms CADHN [40] on every evaluation
metric. In particular, the algorithm performance is significantly improved by 3.24% on
ACE [41].

4.5. Comparison on Real Dataset

Qualitative comparison. We performed qualitative comparisons with 11 contrasting
algorithms on real dataset and fused the blue and green channels of the visible warped
image with the red channel of the infrared target image to evaluate the registration perfor-
mance. The fusion results are shown in Figure 9, where “-” indicates that the algorithm
fails. We can see that the feature-based solutions are severely distorted, and the algo-
rithm is prone to failure. Therefore, it is difficult for the feature-based method to obtain
a more accurate homography matrix in infrared and visible scenarios. In particular, the
KAZE [30] + MAGSAC++ [48] algorithm fails on the test set.

In addition, the deep learning-based solution significantly outperforms the feature-
based solution, resulting in more accurate warped images. Although it is difficult to see
a significant difference between our method and CADHN [40] in qualitative comparison,
according to the PME [40] in the lower right corner of Figure 9, our results in both examples
are significantly better than CADHN [40]. The PME [40] drops significantly from 4.04 and
5.86 to 3.43 and 5.19, respectively, where the red ghost in the fusion result of our method
and CADHN [40] represents the texture in the infrared target image.
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Figure 9. Qualitative comparison with 11 contrasting algorithms for two examples, including
feature-based and deep learning-based solutions. (a,c,e) shows the results of the first example,
and (b,d,f) shows the results of the second example. We also show the PME [40] of different contrast
algorithms in two examples.

Quantitative comparison. We use evaluation metrics such as SSIM, MI, PSNR, PME [40],
and AFRR to quantitatively compare visible warped images with infrared target images
to demonstrate the effectiveness of our method, as shown in Table 5. Infrared and visible
image pairs have large grayscale differences, so evaluation metrics based on the pixel values
are no longer applicable to this task. As shown in Table 5, despite the severe distortion of
the feature-based solutions, their SSIM and PSNR are consistent with the neural network-
based methods, and even the PSNR of most of the feature-based methods is slightly higher
than that of the neural network-based methods, which is obviously unrealistic.
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Table 5. Quantitative comparison on real dataset.

(1) SSIM (↑) MI (↑) PSNR (↑) PME (↓) AFRR (↑)
(2) I3×3 0.17 (−55.26%) 0.90 (+0.00%) 27.90 (+0.00%) 5.01 (+16.24%) 0.08 (−27.27%)
(3) SIFT + RANSAC 0.38 (+0.00%) 0.44 (−51.11%) 27.72 (−0.65%) 226.60 (+5157.54%) 0 (−100.00%)
(4) SIFT + MAGSAC++ 0.16 (−57.90%) 0.53 (−41.11%) 27.63 (−0.97%) 180.05 (+4077.49%) 0 (−100.00%)
(5) ORB + RANSAC 0.15 (−60.53%) 0.61 (−32.22%) 27.96 (−0.22%) 153.46 (+3460.56%) 0 (−100.00%)
(6) ORB + MAGSAC++ 0.15 (−60.53%) 0.58 (35.56%) 27.95 (−0.18%) 128.93 (+2891.42%) 0 (−100.00%)
(7) KAZE + RANSAC 0.14 (−63.16%) 0.52 (−42.22%) 28.00 (−0.36%) 417.28 (+9581.67%) 0 (−100.00%)
(8) KAZE + MAGSAC++ - - - - -
(9) BRISK + RANSAC 0.16 (−57.90%) 0.57 (−36.67%) 27.93 (−0.11%) 163.84 (+3701.39) 0.01 (−90.91%)
(10) BRISK + MAGSAC++ 0.16 (−57.90%) 0.54 (−40.00%) 27.93 (−0.11%) 139.85 (+3144.78%) 0 (−100.00%)
(11) AKAZE + RANSAC 0.14 (−63.16%) 0.62 (−31.11%) 27.98 (−0.29%) 149.33 (+3364.73%) 0 (−100.00%)
(12) AKAZE + MAGSAC++ 0.15 (−60.53%) 0.56 (37.78%) 27.97 (−0.25%) 122.65 (+2745.71%) 0 (−100.00%)
(13) CADHN 0.17 (−55.26%) 0.89 (+1.11%) 27.90 (+0.00%) 4.31 (+0.00%) 0.11 (+0.00%)
(14) Proposed method 0.16 (−57.90%) 0.88 (−2.22%) 27.90 (+0.00%) 4.14 (−3.94%) 0.16 (+45.46%)

In addition, MI measures the correlation between sets, so it can better reflect the
registration performance than SSIM and PSNR. However, MI is also affected by image
pixel values, so it cannot accurately express the image registration performance, nor can it
reflect the registration performance of severely distorted wrapped images. Only a rough
evaluation can be made. As can be seen from Table 5, the deep learning-based solution
significantly outperforms the feature-based solution.

Since the PME [40] is calculated based on the position of the feature points, it is not
affected by the gray level, which can well reflect the accuracy of the predicted homography
matrix. As in column 5 in Table 5, the feature-based solution cannot estimate a more
accurate homography matrix, and the neural network-based solution performs well. In
particular, since our method pays more attention to the details in the image pair, the
performance of PME [40] is improved by 3.94%.

As shown in column 6 in Table 5, the AFRR evaluation value of the feature-based
methods is 0, which is consistent with the severe distortion they appear in the qualitative
comparison. In particular, our method significantly outperforms CADHN [40] with a
significant improvement in AFRR performance from 0.11 to 0.16. Although our evaluation
metric AFRR can distinguish the registration performance of different algorithms to a
certain extent, its accuracy is not high enough. This is because it has the defect of SIFT [25],
that is, it is difficult to extract feature point pairs of better quality in heterologous image
pairs, which affects the calculation of AFRR itself.

4.6. Ablation Studies

Feature extraction block. We conduct ablation experiments on a synthetic benchmark
dataset and verify its effectiveness by replacing the feature extractor in [40] with the feature
extraction block and feature integration block in our model. The main reason for adding a
feature integration block is to keep the number of output channels of the feature extractor
in [40] consistent. In Figure 10, we visualize the feature extraction results of these two
methods. According to the observation, compared with the feature extractor of [40], the
feature extraction block can extract the deep-level features in the image, and the outline
is more precise. As shown in rows 2 and 3 in Table 6, the evaluation metric ACE [41]
drops significantly from 5.25 to 5.19, but the remaining four evaluation metrics are basically
unchanged. The main reason is that the evaluation metric ACE [41] is calculated on the
wrapped source and target points, so it has a high sensitivity to small changes in the image.
However, due to the calculation characteristics of the rest of the evaluation indicators,
the subtle changes in the image cannot be clearly reflected. In the subsequent ablation
experiments of the evaluation metric AFRR, we explain it in more detail.
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Figure 10. Ablation experiments on the effectiveness of our feature extraction block. Column 1 is the
infrared image of our network input. Column 2 is the feature map extracted by [40]. Column 3 is the
feature map after replacing the feature extractor in [40] with our feature extraction block and feature
integration block.

Table 6. Ablation experiments.

(1) SSIM (↑) MI (↑) PSNR (↑) ACE(↓) AFRR (↑)
(2) Feature extractor [40] 0.54 (−1.82%) 1.09 (−0.91%) 30.71 (−0.10%) 5.25 (+3.35%) 0.73 (−1.35%)

(3) Feature extraction block &
Feature integration block 0.54 (−1.82%) 1.09 (−0.91%) 30.72 (−0.07%) 5.19 (+2.17%) 0.73 (−1.35%)

(4) Backshift mask predictor 0.54 (−1.82%) 1.09 (−0.91%) 30.70 (−0.13%) 5.15 (+1.38 %) 0.73 (−1.35%)
(5) Triplet Loss [40] 0.54 (−1.82%) 1.09 (−0.91%) 30.73 (−0.03%) 5.13 (+0.98%) 0.73(−1.35%)
(6) DFL 0.55 1.10 30.74 5.08 0.74

Feature refinement block. We demonstrate its effectiveness from both the location of
the feature refinement block and itself. First, we show that the performance of generating
attention maps directly from features is slightly better than that of generating attention
maps from the images themselves. Specifically, we modified the position of the mask
predictor to the “Feature extraction block & Feature integration block” and then compared
it with the “Feature extraction block & Feature integration block” to prove the importance
of the position. The result is shown in row 4 in Table 6. We can see that ACE [41] drops
significantly from 5.25 to 5.19, and the rest of the evaluation metrics remain unchanged.

Second, we replace the mask predictor in the network framework of the “Backshift
mask predictor” with our feature refinement block and modify its position to be in the
middle of the feature extraction block and feature integration block to demonstrate the
effectiveness of the feature refinement block. The main reason for modifying the position
is that we need to perform attention mapping on the channel and space dimensions, and
the original number of output channels is 1, which obviously cannot meet our needs. The
comparison results are shown in rows 4 and 5 in Table 6. We can see that the ACE [41] drops
significantly from 5.15 to 5.13, and the rest of the evaluation indicators remain unchanged.
This shows that the feature refinement block can improve the network performance to a
certain extent.

In addition, for a more intuitive understanding of the performance of the feature
refinement block, we use Grad-CAM [45] to visualize the attention maps produced in the
feature refinement block. The results are shown in Figure 11. Since the attention map
in “Feature extraction block & Feature integration block” is generated from the original
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grayscale image, the other two comparison algorithms are generated from the feature
map of the image patch, the visual image content of these two algorithms is less than
“Feature extraction block & Feature integration block”. As shown in columns 2 and 3 in
Figure 11, compared to “Feature extraction block & Feature integration block”, “Backshift
mask predictor” focuses more on the image features themselves but cannot identify deep-
level features in the image. But as shown in column 4 in Figure 11, after introducing the
feature refinement block, not only the features can be refined, but also more deep-level
features can be extracted.
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Figure 11. Ablation experiments on the effectiveness of our feature refinement block. Column 1 is the
infrared image of the input to our network. Column 2 is a visualization of the attention maps in the
“Feature extraction block & Feature integration block” framework. Column 3 is a visualization of
the attention map in the “Backshift mask predictor” framework. Column 4 is a visualization of the
attention map in the “Triplet Loss” [40] framework.

DFL. To demonstrate the effectiveness of our proposed DFL, we compare by modify-
ing the DFL in our network to “Triplet Loss” in [40]. The results are shown in Table 6 and
Figure 12. According to the visualization results in Figure 12, we can see that the proposed
loss can retain more detailed information by using the integrated refined features to calcu-
late. According to rows 5 and 6 in Table 6, the proposed loss can effectively improve the
performance of the network, especially for SSIM and AFRR, the performance is improved
by 1.82% and 1.35%, respectively. In summary, the detailed information can help improve
the homography estimation performance between infrared and visible images.

Evaluation indicator AFRR. To demonstrate the effectiveness of the proposed evalua-
tion metrics, we explain them from two perspectives. First, we use ORB [27] and SIFT [25]
as the feature point extraction algorithm in AFRR, respectively, to demonstrate the effective-
ness of the used feature point extraction algorithm. Figure 13 shows the number of feature
corresponding points extracted by ORB [27] and SIFT [25] on 42 pairs of warped images
and ground-truth images, where the proposed algorithm predicts the warped images. As
shown in Figure 13, the overall trend of the number of feature-corresponding points of
ORB [27] and SIFT [25] is consistent, but the number of feature-corresponding points of
SIFT [25] is significantly more than that of ORB [27]. In addition, we can see that ORB [27]
cannot match the feature corresponding points on the three image pairs clearly, but the
warped images in these three image pairs are not severely distorted. Therefore, ORB [27] is
often not applicable in practical evaluation scenarios.
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Figure 12. We conduct ablation experiments on the effectiveness of DFL by replacing DFL with
“Triplet Loss” in [40], and separately visualize the attention maps produced in the feature refinement
block using Grad-CAM [45]. Column 1 is the infrared image of the input to our network. Column 2 is
the attention visualization result using “Triplet Loss”. Column 3 is the result of attention visualization
using DFL.
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Figure 13. Comparison of the number of feature-corresponding points extracted by ORB [27] and
SIFT [25] on 42 pairs of warped images and ground-truth images.

In addition, for infrared and visible images, the homography estimation often produces
severely distorted wrapped images in traditional algorithms, so we randomly selected
the four group results from ORB [27] + RANSAC [36] and the algorithm in this paper.
Four groups of wrapped images and ground-truth images are used to compare different
evaluation metrics, thus proving the effectiveness of AFRR, including severely distorted
and well-performing wrapped images. The results are shown in Figure 14. Table 7 shows
the results of the four groups of images on various evaluation indicators, in which SSIM and
PSNR are easily affected by the black background that does not belong to the original image
content. MI reflects the registration effect to a certain extent, but cannot more accurately
reflect the registration results of severely distorted wrapped images, as shown in (b) in
Figure 14 and in row 3 and column 3 of Table 7. In addition, since ACE [41] is obtained
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from the corners transformed by the estimated homography and ground truth homography,
respectively, the estimated value is higher for images with severe distortion and a large
number of black backgrounds. This method directly calculates the corner coordinates, so
it is more sensitive to image changes, and its accuracy is significantly better than other
evaluation indicators, but it is only suitable for synthetic benchmark dataset with ground
truth. In short, compared with other evaluation indicators, AFRR can more accurately
identify distorted wrapped images and more accurately estimate the registration rate of
images, which is more in line with the feeling of the human eye. In particular, due to the
computational characteristics of AFRR itself, its accuracy is slightly worse than that of
ACE [41].
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Figure 14. Fusion image comparison of ORB [27] + RANSAC [36] and our method. Row 1 is the
infrared warped image. Row 2 is the ground-truth image. Row 3 is the fused image. The fused image
is obtained by fusing the blue and green channels of the infrared warped image with the red channel
of the ground-truth image, and blue and yellow ghosts represent misaligned pixels. (a–c) are from
ORB [27] + RANSAC [36], and (d) is from our method.

Table 7. Comparison of evaluation indicators of four groups of images.

SSIM (↑) MI(↑) PSNR (↑) ACE (↓) AFRR (↑)
(a) 0.10 0.67 27.88 137.70 0
(b) 0.45 0.39 28.37 87.36 0
(c) 0.26 0.52 28.89 34.71 0.57
(d) 0.59 1.02 31.10 4.83 0.92

5. Conclusions

For infrared and visible scenes, we propose a new detail-aware deep homography
solution, which includes two components to improve the performance of previous methods:
a shallow feature extraction network to extract multi-level and multi-dimensional fine
features to improve homography estimation performance and a Detail Feature Loss to
preserve more details. In addition, we also propose an image registration evaluation
method AFRR to calculate the registration rate by adaptively extracting feature points.
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Extensive experiments demonstrate that both our proposed components and evaluation
metrics outperform previous methods. Compared to the suboptimal method CADHN [40]
on the real dataset, the proposed method significantly improves the PME by 3.94%, and
the AFFR is also significantly improved from 0.11 to 0.16. Nevertheless, our proposed
evaluation metric has certain limitations. It can only quickly and accurately calculate the
registration rate in homologous images. Although the registration performance of different
algorithms can be distinguished in multi-source images, the registration rate has a large
deviation from the perception of the human eye. In the future, we will further explore
AFRR to generalize in multi-source images. At the same time, based on this research, the
shallow feature extraction method in multi-source images is further optimized to improve
the homography estimation performance.
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