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Abstract: Dual-stage cascaded dc systems are some of the most widely applied power interfaces in dc
distributed power systems. However, in some practical situations, these systems might be unstable,
especially if they incorporate tightly regulated load converters that operate as constant power loads
(CPLs), whose power fluctuations could exert a cascading impact on the operation of the systems.
Existing studies tend to describe the instability phenomena using bifurcation diagram analysis and
the loci of eigenvalue analysis. However, it is usually difficult to derive the explicit expressions of the
stability criterion. This paper addresses the large-signal stability issue of the dual-stage cascaded dc
systems from a standpoint of load power and obtains the explicit form large-signal stability boundary
in terms of load power by using Lyapunov-type mixed potential theory. Moreover, the prototype
dual-stage cascaded dc system, in which the control strategies for the feeder converter and the load
converter are different, is used as an example in this study. According to the results, the system
remains stable when the load power is in [5.8, 23.2] W. When load power is less than 5.8 W or
increased to [23.2, 32.8] W, the system is in a period-2 subharmonic oscillation state. Moreover, when
the load power exceeds 32.8 W, the system falls into a chaotic state. The deduced boundary is highly
consistent with the analysis results of both a bifurcation diagram and Jacobian matrix based analysis.
Finally, both circuit-level simulation and experimental results validate the effectiveness of the load
power stability boundary.

Keywords: dual-stage cascaded dc-dc systems; constant power loads (CPLs); large-signal stability
analysis; discrete-mapping model; mixed potential theory

1. Introduction

With the rapid growth of dc microgrids and distribution worldwide, dc distribu-
tion technology has become more popular than ever, and many innovations have been
presented [1,2]. Among various power interfaces in dc distributed power systems, the
cascaded dc system is one of the main application forms in practice [3,4]. However, this
kind of system, such as two cascading dc–dc converters—as presented in Figure 1—may
lose stability due to the load converter, which behaves as a CPL and presents itself as the
negative impedance to the feeder converter. In order to address this problem, scholars have
conducted numerous theoretical studies and practical investigations [5–8].

In this field, Middlebrook’s impedance criterion and its improvements may be one
of three current state-of-the-art analytical methods. The other two great methods are the
state-space average model (SSA) and the discrete-mapping model (DMM) [8,9]. At the same
time, each of these methods has its scope of applications and limitations. For instance, the
impedance-based criteria have a wide range of applications but with limited accuracy [10].
Although the SSA-based approach can be applied to explore the slow-scale instability (Hopf
bifurcation) of the systems, it cannot capture the fast-scale instability (period-doubling
bifurcation). The DMM-based approach can be exploited to analyze both of the instability
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situations, but it has a bit complicated modeling process, which cannot obtain the explicit
criterion in some occasions [4,7]. Based on these modeling methods, Nyquist plot, limit
cycle analysis, bifurcation diagram analysis, Jacobian matrix, and the loci of eigenvalue
analysis can be performed for the stability analysis of cascaded dc systems [4,5,7–15].

(a)

(b)

(c)

Figure 1. Some typical dual-stage cascaded dc systems [7,8]: (a) Data center dc power supply system.
(b) Plug-in hybrid vehicle power supply system. (c) PV-storage integrated grid connected power
supply system [7,8].

It is worth mentioning that in cascaded dc systems, both the control strategies and the
switching frequencies of the dc-dc converters might be significantly different. Under this
situation, modeling and analytical processes become more challenging [4]. Therefore, it is
possible to model and analyze dual-stage cascaded dc systems in the form of feeder dc-dc
converters with CPLs, which can simplify the complexity of the model to a certain extent.

From the above equivalent perspective, some research works have been carried out
successively. For example, in [9], the authors describe function and Floquet theory in
combination to model and quantify dc-dc converters with CPLs. In [10], low frequency
oscillation phenomena were observed in such converters by the loci of eigenvalue and
bifurcation diagram based techniques, even though the design of the converter satisfied
Middlebrook’s impedance criterion. In [11], a fast-scale stability boundary was derived
for such converters. In [12], the fast-scale instability phenomena were observed in such
converters and captured by 3-D bifurcation diagrams, to name but a few.

According to the existing achievements, it can be perceived that, in most modeling
and stability analysis works of cascaded dc systems, the different switching frequencies
of the feeder converter and the load converter are considered, but current studies tend



Electronics 2022, 11, 4181 3 of 15

to focus on the cases where the feeder converter and the load converter adopt the same
control strategy possibly for the reason of simplicity. Moreover, it is usually difficult
to derive the explicit expressions of the stability criterion based on the aforementioned
analysis methods, especially when a bifurcation diagram and Jacobian matrix analyses are
employed. Therefore, this work takes a dual-stage cascaded dc-dc converter as an example.
The control strategies of the feeder and the load converters are different, where a current
mode constant on-time controller (CMCOTC) is adopted for the feeder Buck converter and
a peak-current mode controller (PCMC) is employed for the load Buck converter. Figure 2
shows the structure of the prototype system.

Overall, the main contributions of this paper can be summarized as follows:

(1) A large-signal model is constructed for a dual-stage cascaded dc system, in which
two different control strategies are adopted for the feeder and the load stage.

(2) A large-signal stability analysis is performed for the prototype system from the
perspective of load power.

(3) Lyapunov-type mixed potential theory is applied to obtain the explicit expression of
the large-signal stability criterion of the system.

(4) Circuit level simulation and an experimental prototype verify the correctness of the
theoretical analysis.

The rest of the work can be organized as follows: In Section 2, the model of the proto-
type system is established based on the discrete-mapping model. In Section 3, large-signal
stability analysis is performed by using the Lyapunov-type mixed potential theory, and a
load power oriented explicit criterion is deduced. Moreover, a bifurcation diagram analysis
and Jacobian matrix based analysis are conducted for comparison. The effectiveness of
this work is validated by both simulation and experiments in Section 4. In Section 5, the
conclusion is drawn.

Figure 2. The prototype dual-stage cascaded dc system.

2. Modeling of the Prototype Dual-Stage Cascaded dc System

As depicted in Figure 2, one can find that the prototype system can be deemed as
a CMCOTC dc-dc buck converter with CPL, where Vin is the input voltage, D1 is the
freewheeling diode, and L1 and C1 are the inductor and filtering capacitor, respectively.
The power switching MOSFET S1 is adopted to control the duty cycle according to the
output of the R-S flip-flop, which is determined by the outputs of the comparator and
the on timer. Two closed loops, the output voltage loop and the inductor current loop,
appear as the inputs of the comparator, in which the output voltage loop employs the
simple proportional compensation network by using an operational amplifier EA with
two resistors RFB1 and RFB2. The inductor current loop adopts a sensing resistor Ri, the
output of which is exploited to compare with the output of the operational amplifier EA.
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Consequently, when RiiL1, the current signal acquired, is less than Vc, the output of the
voltage compensation network, the Q port of the RS flip-flop gives a turn-on instruction to
the switch S1. After a predetermined time, Ton, of the on timer, the switch, S1, is forced off.

2.1. CPL Modeling

As discussed in Section 1, a tightly regulated load converter may behave as a CPL.
The V-I characteristics of this kind of load presents an inverse proportional function of
nonlinear relationship as Figure 3 shows. Therefore, many existing techniques for linear
resistive loads are not able to be applied in such situations. To address this concern, this
section tries to provide solutions from the perspective of mathematical operation.

Figure 3. V-I characteristics of CPL and conventional resistive load [7].

It is known that the current drawn by a CPL increases/decreases with decrease/increase
with the input voltage. Based on [11], a CPL can be described by

iload =
PCPL
Vo1

(1)

where iload is the current drawn by the CPL and Vo1 is the input voltage of CPL. The
variation of the current in Equation (1) can be governed by the following equation at the
given operating point:

∂iload
∂Vo1

= − Po

V2
o

(2)

where Po and Vo are the power and voltage of the given operating point, respectively. As a
result, a CPL can be linearized around its operating point, and the V-I curve of a CPL can be
approximated by its tangent line in a small range, as depicted in Figure 2 and Equation (3):

iload = − Po

V2
o

Vo1 + 2
Po

Vo
(3)

According to the above transformation, a CPL can be regarded as a current source Io
in parallel with a dynamic negative resistance Ro [7]:

iload = −Vo1

Ro
+ Io (4)
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where Ro and Io are

Ro = −
V2

o
Po

, Io = 2
Po

Vo
, (5)

respectively.

2.2. Modeling of the Prototype System

According to [4], the system in Figure 2 can be deemed a a piecewise nonlinear system,
the state equations of the system can be expressed in the matrix form as

ẋ = Aix + BiE(i = 1, 2) (6)

where x = [Vo1,iL1]T. Ai and Bi are the state matrices in operation state i. E is the vector
of the external inputs. Based on Figure 2, the corresponding state matrices and the input
vector are written as follows

A1 = A2 =

 PCPL+PCPLRESRC1
V2

re f C1

1
C1

+ RESR

− 1
L1

0


B1 =

(
0 − 1

C1
− RESR

1
L1

0

)
(7)

B2 =

(
0 − 1

C1
− RESR

0 0

)
, E =

(
Vin

2PCPL
Vre f

)

The switching boundary in different operation states is

iL1nRi = Vc (8)

where iL1n is the inductor current of the nth switching cycle. Vc is the output of output
voltage compensation network, which is given by

Vc =
1
F

Vre f −
1− F

F
Vo1n (9)

where F is the feedback coefficient, which is expressed as

F =
RFB1

RFB1 + RFB2
(10)

Basically, the inductor current is assumed to rise and fall linearly. Thus, the duty cycle
of the system d1 can be obtained by

d1 =
TonVo1n

(TonVo1n + (iL1(ton) − Vc
Ri
)L1)

(11)

where iL1(ton) is the inductor current at the time instant that the switching keeps on for
Ton. Assume that the duration of each operation state is ti, thus in one switching cycle,
T = ∑ ti. If the system operates in continuous conduction mode (CCM), i = 2. Hence, the
discrete-mapping function of each state can be described as

fi,ti(x) = eAiti x + (eAiti − I)A−1
i BiE(i = 1, 2) (12)

where I is an 2× 2 identity matrix, and the time interval depends on the time transient when
Equation (8) holds. Let xn and xn+1 be the first state and second state of each switching
period, respectively, the discrete-mapping model can be obtained by
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xn+1 = f2,t2( f1,t1(xn)) (13)

3. Load Power Oriented Large-Signal Stability Analysis
3.1. Derivation of Load Power Oriented Stability Boundary

Section 1 mentioned that bifurcation diagrams and eigenvalues of the Jacobian matrix
are mainly utilized in existing studies to analyze the large signal stability. However,
it is difficult to obtain explicit expressions for the stability boundary, in particular, the
CPL of the discrete-mapping model exists as a non-linear form. Therefore, an analytical
approach based on Brayton–Moser ′s mixed potential function is introduced. First proposed
in [16,17] and generalized in [18], Brayton–Moser′s mixed potential theory is the most used
methodology in the stability of nonlinear RLC networks. In [19], the large-signal stability
analysis of the dc distribution network with constant power loads via Brayton–Moser′s
mixed potential theory is carried out, and a certain condition that the equilibrium is a
local minimum is derived. In this part of the analysis, the analytical approach is based on
developing a Lyapunov-type mixed potential function using the elements and topology of
the studied circuit. This circuit may contain nonlinear resistances, inductances, or capacitors.
Brayton and Moser propose five theorems for analyzing the circuit stability for large
disturbances. To determine the explicit stability boundary, we have to construct a mixed
potential function that satisfies one of Brayton–Moser′s theorems under certain conditions.

According to the third stability theorem of the mixed potential function, the algebraic
expressions of the discrete-mapping model Equation (12) can be equivalently substituted by
the constant voltage [20,21] source, controlled sources and resistances. Hence, the current
potential function of non-energy storage elements in the circuit can be expressed by∫

∑ vµdiµ =
∫ iL1

0
d1VindiL1 +

∫ iL1

0
kVo1diL1

−
∫ iL1

0
Vo1diL1 −

∫ iload

0
kVo1diload (14)

where k = 1 + RESRC1. The power stored in output filtering capacitor of the system is

∑ iδuδ = −(iL1 −
PCPL
Vo1

)Vo1 = −iL1Vo1 + PCPL (15)

Summing and simplifying Equations (14) and (15), the mixed potential function of the
system can be written as

P(v, i) =
∫

∑ vµdiµ + ∑ iδuδ = (1− k)PCPL − iL1Vo1

+
∫ iL1

0
[d1Vin + (k− 1)Vo1]diL1 +

∫ Vo1

0
k

PCPL
Vo1

dVo1 (16)

In terms of Equation (16) and the unified form of the mixed potential function, the
current potential function matrix of the system can be obtained by

A(i) =
∫ iL1

0
[d1Vin + (k− 1)Vo1]diL1

+(1− k)PCPL −Vo1iL1 (17)

The voltage potential function matrix of the system is

B(v) =
∫ Vo1

0
k

PCPL
Vo1

dVo1 (18)
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The second-order partial derivative of the current potential function matrix with
respect to the current is

Aii(i) =
∂2A(i)

∂i2L1
= k

RiTonVo1 +
√

ΦPCPL

2C1
1−F

F Vo1
(19)

where Φ = k2 − 4kC1Vin −Vo1C1L2
1. Then the second-order partial derivative of the voltage

potential function matrix with respect to the voltage is

Bvv(v) =
∂2B(v)

∂V2
o1

= − kPCPL

V2
o1

(20)

Under the assumption of Φ ≥ 0, according to the third stability theorem of mixed
potential function, the minimum eigenvalues µ1 and µ2 are defined by

µ1 = min
{

L−
1
2

1 Aii(i)L−
1
2

1

}
= k RiTonVo1+

√
Φ

2C1
1−F

F Vo1

µ2 = min
{

C−
1
2

1 Bvv(v)C
− 1

2
1

}
= − kPCPL

V2
o1

(21)

When iL1 and Vo1 in the circuit satisfy µ1 + µ2 > 0, and if |iL1|+ |Vo1| → ∞, it yields

P∗(i, v) =
µ1 − µ2

2
P(i, v) +

1
2

PT
i (L−1

1 Pi)

+
1
2

PT
v (C

−1
1 Pv)→ ∞ (22)

that means when t→ ∞, all the solutions of the model converge to the equilibrium point,
i.e., the system reaches stable state even if there are large signal disturbances. Thus, one
can deduce the load power related stability boundary by

2Ri(k− 2)2V4
o1maxTon(2k− 2

√
ξ)− 64L2

1C1(Vin −Vre f )

16( 1−F
F )2Vo1maxL2

1C1

< PCPL <

2Ri(k− 2)2V4
o1maxTon(2k + 2

√
ξ)− 64L2

1C1(Vin −Vre f )

16( 1−F
F )2Vo1maxL2

1C1
(23)

where ξ= L2
1+2(k−2)2C4

1V2
o1max

2k2−Φ . Likewise, when choosing the parameters of the system, the
condition also needs to be considered, which satisfies ξ ≥ 0.

By introducing the parameters in Table 1 to the criterion formula Equation (23), one
can paint the full picture of the stable region of the system Equation (13) on the plane of
(PCPL, Vin), as depicted in Figure 4. From Figure 4, it can be seen that as Vin decreases,
the system has a lower tolerance for the stability operation range, and the system will
lose stability when the load power exceeds a certain range. Based on the analytical form
stability criterion Equation (23), engineers can determine the load power range when the
system remains stable under diverse dynamics conditions. This stability criterion derived
produces more straightforward guidance for the design of cascaded dc systems from the
load power perspective.

To verify the effectiveness of the stability criterion, the bifurcation diagram and the
eigenvalues trajectory of Jacobian matrix are, respectively, obtained in Sections 3.2 and 3.3.
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Table 1. Parameters of the system.

Parameter Value Parameter Value

L1/µH 15 C1/µF 100
L2/µH 15 C2/µF 100
Ri/mΩ 65 Vre f /V 1.25

RESR/mΩ 10 Vin/V 12
RFB1/Ω 100 Ton/µS 16

RFB2/kΩ 10 T2/µS 10
R/Ω 10 Ire f /A 1.5

PCPL/W [5, 35]

Figure 4. Stability boundary of the system as Vin varies from 8 to 16 V and PCPL varies from 0 W to 35 W.

3.2. Bifurcation Diagram Based Analysis

Introduce the parameters of the system listed in Table 1 to the model. By setting output
voltage Vo1 as the sampled parameter and varying the power PCPL of the load from 5 to
35 W, Figure 5 shows the bifurcation diagram of the output voltage Vo1 with the load power.
The last 80 points of the discrete-mapping model are adopted at the corresponding point of
each load power value of the bifurcation diagram.

Figure 5. Bifurcation diagram of PCPL from 5 to 35 W.

From Figure 5, it can be seen that the system keeps stable when PCPL is from 5.8
to 23.2 W. When PCPL is less than 5.8 W, the system goes into a period-2 subharmonic
oscillation state. When PCPL is between 23.2 and 32.8 W, the system is in a period-2
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subharmonic oscillation state with a wider sampled voltage. When PCPL is further increased
to 32.8 W, the system falls into chaotic state. In Figure 4, the term ds is the stability interval
at Vin = 12 V depicted by the bifurcation diagram. Within a reasonable margin of error, the
explicit operational boundary and the stability interval reveal a good relevance.

3.3. Jacobian Matrix Based Analysis

A Lyapunov-stability theory based analysis is offered in this part. The dynamics of
the system in a small neighborhood of the equilibrium point or orbit can be inspected
by determining the eigenvalues of the Jacobian of the system. By varying the system
parameters and tracking the loci of the eigenvalues trajectory in relation to the unit circle,
the stability information such as the classifications of bifurcations and the boundaries of
the stable operating regions can be identified [22–24].

Defining xo = (Vo1 iL1 Vc iload)
T is the state variable vector of Jacobian matrix of the

system [10]. Based on Equations (1), (6), (7) and (9), the equilibrium point of the system can
be expressed as

Xo =
(

Vo IL Vc
PCPL

Vo

)T
(24)

The Jacobian matrix can be obtained by the partial derivative of perturbing the state
equation near the equilibrium point [25], given by

J(Xo) =
∂ f
∂xo

+
∂ f
∂d1

∂d1

∂xo

∣∣∣∣
xo=Xo

(25)

Supposing that

eA1t1 =

(
a11 a12
a21 a22

)
, eA2t2 =

(
a′11 a′12
a′21 a′22

)
(26)

Then, the Jacobian matrix can be written in terms of Equation (25), (26) and linearized
CPL, as shown Equation (27).

J(Xo) =

a11a′11 + a12a′21 a21a′11 + a22a′21 − RFB2(a11a′11+a12a′21)
RFB1

PCPL(a11a′11+a12a′21)

V2
o

+
−4P2

CPLC1a′12(RESR+
1

C1
)

V3
o Vre f (C1RESR+1)

a11a′12 + a12a′22 a21a′12 + a22a′22 − RFB2(a11a′12+a12a′22)
RFB1

− PCPL(a11a′12+a12a′22)

V2
o

− RFB1(a11a′11+a12a′21)
RFB2

− RFB1(a21a′11+a22a′21)
RFB2

a11a′11 + a12a′21
PCPLRFB1(a11a′11+a12a′21)

V2
o RFB2

−V2
o (a11a′11+a12a′21)

PCPL
−V2

o (a21a′11+a22a′21)
PCPL

V2
o RFB2(a11a′11+a12a′21)

PCPLRFB1
a11a′11 + a12a′21


(27)

Then, the eigenvalues can be calculated by solving λ of the characteristic equation as

det[λI− J(Xo)] = 0 (28)

where I is an 4 × 4 identity matrix. If all eigenvalues are inside the unit circle, the system is
stable. If a pair of complex eigenvalues move out of the unit circle smoothly while all other
eigenvalues stay inside the unit circle, the system undergoes a slow-scale bifurcation. If
a negative real eigenvalue moves out of the unit circle at (−1, 0), a fast-scale bifurcation
occurs. If any eigenvalue jumps across the unit circle, a nonsmooth (border collision)
bifurcation occurs [10].

After combining Equation (28) and the parameters listed in Table 1, several typical
eigenvalues are shown in Table 2, and the loci of the eigenvalues is shown in Figure 6.



Electronics 2022, 11, 4181 10 of 15

Table 2. Eigenvalues at typical load power.

PCPL(W) Eigenvalues Modulus State

5.5

−1.0279
Period-doubling

bifurcation
0.8641

−0.8633 + j0.3039 0.8376−0.8633 − j0.3039

5.8

−0.9703

Stable0.8078
−0.8381 + j0.3478 0.8233−0.8381 − j0.3478

23.2

−0.9855

Stable0.8033
−0.7849 + j0.4341 0.8045−0.8633 − j0.4341

23.5

−1.0284
Period-doubling

bifurcation
0.8435

−0.8151 + j0.3898 0.8163−0.8151 − j0.3898

32.8

−1.3831
Period-doubling

bifurcation
0.9145

−0.9029 + j0.3151 0.9145−0.9029 − j0.3151

33.1

−1.4335
Border collision

bifurcation
0.9622

−0.9811 + j0.2437 1.0219−0.9811 − j0.2437

(a)

(b) (c)

Figure 6. Loci of eigenvalues: (a) PCPL varies from 5.8 to 5.5 W. (b) PCPL varies from 23.2 to 23.5 W.
(c) PCPL varies from 32.8 to 33.1 W.



Electronics 2022, 11, 4181 11 of 15

In Figure 6a, there are eigenvalues crossing the unit circle from right to left at the
negative real axis (−1, 0) when PCPL decreases from 5.8 to 5.5 W, and the rest of eigenvalues
are within the unit circle, indicating that a period-doubling bifurcation emerges in the
system, which is stable at the beginning. When PCPL increases from 23.2 to 23.5 W, a
phenomenon from steady state to period-doubling bifurcation can be observed shown in
Figure 6b. In Figure 6c, when PCPL increases from 32.8 to 33.1 W, there are eigenvalues
keeping away from the boundary of the unit circle (−1, 0) with pairs of complex eigen-
values jumping cross the unit circle, indicating that a border collision bifurcation occurs
after period-doubling bifurcation. Under the border collision bifurcation, the nonlinear
dynamical behaviors of the system may change dramatically such as a direct jump from a
periodic orbit to a chaotic orbit. The essential cause of this phenomenon is the bounded
duty cycle of the switching converter [26].

Combining Figures 4 and 5, the above theoretical boundary analysis result is consistent
with the explicit stability criterion and the bifurcation diagram of the system.

4. Circuit-Level Simulation and Experimental Validations
4.1. Circuit-Level Realization and Simulation

The simulation of the prototype cascaded dc system is constructed in PSIM in Figure 7.
The commercial chip LM5085 is used in the subsequent experiment to implement the
CMCOTC function, which allows 100% duty cycle operation to achieve low dropout and a
wide input voltage range. Hence, an imitation LM5085 chip is established as Figure 7 shows.

Owing to a tightly-regulated power converter behaves as a CPL, which may not
behave as an ideal CPL in all situations and this does not present worst situation from
a stability point of view [27–29]. Thus, a PCMC buck converter with 100kHz switching
frequency is regulated to the feeder converter as a CPL in Figure 7. The parameters of
the system refer to Table 1. With selected points a, b, and c—shown in Figure 4—as the
sample points, the output voltage waveforms are shown in Figure 8 at PCPL = 6 W, 24 W,
and 33.1 W, respectively. When PCPL = 6 W, the system is stable. When PCPL = 24 W, the
system works in a period-2 subharmonic oscillation state. When PCPL increases to 33.1 W,
the system is in a chaotic state.

Figure 7. Schematic of CMCOTC buck converter with CPL in simulation.
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(a)

(b) (c)

Figure 8. Simulation waveforms of the system with varying: (a) PCPL = 6 W. (b) PCPL = 24 W.
(c) PCPL = 33.1 W.

4.2. Experimental Results

In order to further verify the analysis and simulation, an experimental platform is
constructed, as shown in Figure 9, in which a CMCOTC Buck converter is connected with a
programmable dc electronic load. While this load works in a constant current mode and
the input current is 0∼12 A, the rise rate of the sink current is more than 0.001 A/µS but no
more than 0.2 A/µS, and the fall rate remains between 0.01 A/µS and 1.6 A/µS. Obviously,
in practice, the programmable dc electronic load meets the requirements of the dynamical
characteristic of an ideal CPL. The parameters are the same as Table 1 and the simulation.
Figure 10 shows the experimental output voltage waveforms of the system.

Figure 9. Experimental platform of the system.
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(a)

(b) (c)

Figure 10. Experimental waveforms of the system with varying: (a) PCPL = 6 W. (b) PCPL = 24 W.
(c) PCPL = 33.1 W.

When PCPL is 6 W, the system works in period-1 stability, which corresponds to
Figure 10a. When PCPL = 24 W, a period-2 subharmonic oscillation state can be observed in
Figure 10b. As PCPL increases to 33.1 W, a chaotic state occurs and the oscillation is more
intense, as shown in Figure 10c.

5. Conclusions

This work discusses a large-signal stability analysis of a dual-stage cascaded dc system
from the perspective of load power. In this cascaded system, the control strategies of the
feeder and the load converters are different, where a CMCOTC is adopted for the feeder
buck converter and a PCMC is employed for the load buck converter. During the modeling
process, the load buck converter is equivalent to a CPL for obtaining the discrete-mapping
model. Through the use of Lyapunov-type mixed potential theory, an explicit analytical
discriminant condition for the stability criterion is deduced, and the full picture of the stable
region is depicted in order to guide the design of such systems. According to the results,
the system remains stable when the load power is approximately maintained at [6, 24] W. In
order to validate the proposed approximation of the region of attraction, the full picture of
the discrete-mapping model-based large signal analysis is painted as a reference, in which
both a bifurcation diagram and the loci of eigenvalue are contained. Meanwhile, both
circuit-level simulations in PSIM and laboratory experiments are carried out to validate the
specific boundary conditions.
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