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Abstract: Today, transformerless inverters (TIs) are widely applicable in different solar photovoltaic
(PV) grid-connected applications owing to their promising features, such as higher efficiency and
power density. However, high-frequency common-mode voltage (CMV) in these topologies can result
in high leakage current, electromagnetic interference, and lack of safety, reducing the whole system’s
reliability. To resolve the problems associated with TIs, this paper proposes a novel hybrid switched
capacitor (SC)-based common-ground (CG) transformerless inverter (TI) topology, which can be
applied in grid-connected photovoltaic (PV) applications. The boost inductor is integrated to achieve
continuous input current and dynamic voltage gain. In addition, the proposed circuit comprises
nine switches and two SCs with a single input DC source. It can generate five-level AC voltage
with voltage boosting within a single-stage DC–AC power conversion. The working principles of
the proposed topology, circuit description, and control technique are presented. Furthermore, the
proposed inverter is comprehensively compared with other five-level TIs to show its superiority.
Finally, a laboratory prototype is developed and tested to validate the practical viability of the
proposed configuration.

Keywords: common-ground inverters; self-balancing; switched capacitors; transformerless inverters;
voltage boost

1. Introduction

In recent decades, transformerless inverters have developed significantly due to
their attractive features, including higher efficiency, compact size, lower cost, and high
power density, for many renewable energy applications—particularly for small-scale grid-
connected PV systems [1–3]. However, the leakage current in these inverters is the main
concern. Therefore, it becomes more critical to employ certain dedicated switching tech-
niques [4–6] and inverter configurations, resulting in reduced efficiency and increased
control complexity.

In the literature, many topological structures have been proposed to mitigate the
concerns of leakage currents, such as AC and DC decoupling-based circuit configurations.
The (HERIC) topology based on the AC decoupling method proposed in this paper is
the most popular and efficient of this type, and the DC coupling topologies include H5
and different types of H6 [7,8]. However, the leakage current problem still exists in these
inverters. In addition, conduction losses and the lack of voltage-boosting ability in the
inverter operation are the biggest drawbacks of such inverter topologies.
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Another alternative solution is to employ neutral-point-clamped (NPC) inverters
that maintain the common-mode voltage (CMV) constant, thereby mitigating the leakage
current to an acceptable range. In addition, the power quality increases by enhancing the
number of output voltage levels. In this category, the inverter structures such as active
neutral-point-clamped (ANPC) [9,10], t-type [11–14], and flying capacitor (FC)-based [15]
are the most developed and efficient topologies. An impedance-source-based five-level
inverter was proposed recently in [16]. The main drawbacks of this inverter are its limited
voltage gain, high number of components, and leakage current. Therefore, EMI filters are
used to minimize high-frequency variation in CMV, leading to an increase in the cost of the
inverter. However, in these topologies, the inverter’s maximum AC output voltage is half
of the DC-link voltage, requiring a two-stage power processing structure that incorporates
an additional boost converter for low-voltage PV applications.

Alternatively, a common-ground (CG) TI possessing the ability to eliminate the issue
of high-frequency common-mode voltage that causes leakage current is a new approach to
fulfil the requirements of grid-connected renewable energy sources—especially PV sources.
In recent times, SCMLIs based on the common-ground concept to mitigate leakage current
have been popular in the literature [17–22]. A new 5-L CG-type inverter was proposed
in [17], with two SCs, six switches, and a diode applicable to PV systems. However, extra
sensors are required to balance the SC voltages.

Recently, five-level CG topologies with integrated boost converters have been pre-
sented in [18,19]. In [18], boosted output voltage gain was achieved, and the voltage stress
was minimized, but the switch count was high. In addition, the voltage gain was limited,
i.e., 4Vin with more switches. A new 5L-boost-ANPC inverter [19] with a similar approach
was developed, retaining the advantages of the former while significantly increasing the
voltage gain with a lower switch requirement. The concept of common ground in trans-
formerless inverters has further motivated researchers to design improved topologies.
From the above discussion, it can be concluded that limited voltage gain and discontinuous
input current factors are the key constraints of the recent topologies. To integrate volt-
age boosting while generating multilevel AC voltage simultaneously, switched-capacitor
topologies based on the common-ground concept to mitigate leakage current are popular
and widely explored in the literature [16–29]. Despite using a low switch count, they
have the following drawbacks: (1) discontinuous DC source (input current), and (2) static
voltage gain depending on the number of switched capacitors used in the topology. These
drawbacks are serious concerns that hinder their practical application.

Considering the above, this study proposes a new five-level boost inverter to solve the
aforementioned limitations with zero leakage current capability. The contributions of the
proposed topology are listed as follows:

1. Achieves continuous input current suitable for interfacing with renewable energy
sources.

2. Enhances voltage gain with an integrated boost converter and single-stage DC–AC
conversion.

3. Eliminating the issue of high-frequency common-mode voltage that causes leakage
current.

4. Compared to the latest similar topologies, the proposed inverter achieves higher
voltage gain while reducing the switch count.

Section 2 presents the circuit configuration of the inverter and its operation. A complete
comparative analysis with other inverters is presented in Section 3. Section 4 presents the
simulation and experimental results to validate the inverter’s performance. Finally, the
conclusions of this paper are provided in Section 5.

2. Proposed Five-Level Common-Ground Boost Inverter

Figure 1 shows the circuit configuration of the proposed five-level boost inverter,
termed “5-Level single-stage common-ground boost inverter (5L-S2CGBI)”. Considering
the switched capacitor cell integrated into the proposed inverter’s topology, the number of
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voltage levels is increased from 3 to 5, and the boosting feature is enhanced. Here, nine
switches with antiparallel diodes, a single boost inductor, and two capacitors are employed.
Since the grid’s neutral point is directly connected to the negative rail of the input source,
both the AC and DC sides of the inverter are clamped to the same potential. Regarding this,
the CMV of the inverter is kept constant, and the leakage current concern is mitigated. Both
of the capacitors (C1 and C2) are inherently charged and discharged by the boost inductor at
high frequency and balanced without any additional control technique or circuitry, as both
of the capacitors are connected in parallel at least once in every switching cycle. Figure 2
illustrates the operating modes of the inverter. Only three power switches (S2, S8, and S9)
block the maximum voltage level, while the voltage stress of the remaining switches is only
half of the maximum voltage level. By using three identical cells connected in parallel to
a DC source, the proposed structure can be used for three-phase four-wire applications.
Similar to the single-phase topology, high-frequency common-mode voltage is mitigated
thanks to the common-ground structure. In addition, the three-phase four-wire structure
has the advantage of supplying an unbalanced three-phase load.
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Figure 1. Circuit configuration of the proposed five-level inverter.

To better explain the operating principle of the proposed inverter, level +1 is considered
as an example, as shown in Figure 2 and Table 1. Level +1 comprises two operating states:
the inductor charging state and the inductor discharging state, as detailed in Figure 2c,d,
respectively. When switch S1 is turned on, the inductor is charged by the DC source, as
shown in Figure 2c, while the switches S3, S4, S6, S7, and S8 are switched on to achieve
the +1 level. For the discharging mode, the operating state is depicted in Figure 2d. For
this state, S1 is switched off, and S2 is switched on while the same switches S3, S4, S6, S7,
and S8 conduct. To avoid continuously discharging C2 during the −1 and −2 levels, the
redundant state for [−1|C] can be used to charge the capacitor.

Table 1. Switching states of the proposed inverter.

State
Power Switches

Inductor
S1 S2 S3 S4 S5 S6 S7 S8 S9

[0]
1 0 1 1 0 1 1 0 1 Charging

0 1 1 1 0 1 1 0 1 Discharging

[+1]
1 0 1 1 0 1 1 1 0 Charging

o 1 1 1 0 1 1 1 0 Discharging

[−1]

1 0 1 0 1 1 0 0 1 Charging

0 1 1 0 1 1 0 0 1 Discharging

1 1 0 1 0 1 1 0 1 Charging

[−2] 1 1 0 0 1 0 0 0 1 Charging

[+2] 1 0 1 0 1 0 1 1 0 Charging
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The inductor is simultaneously charged in every switching period with a constant
duty cycle (D) that boosts the capacitor’s voltage across C1 and C2, and the average voltage
across capacitors C1 and C2 is obtained as follows:

Vc1 = Vc2 =
Vdc

1 − D
(1)

Therefore, the maximum voltage level (Vmax) is the sum of the capacitor’s voltage and can
be given as follows:

Vmax = Vc1 + Vc2 =
2Vdc

1 − D
(2)

By controlling the value of M, the peak of the output voltage can be obtained as follows:

Vo = MVmax =
2MVdc
1 − D

(3)
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where M is the modulation index (M) with a corresponding minimum Dmin that can be
determined as follows:

Dmin = 2M − 1 (4)

Therefore, the gain of the proposed inverter considering the D is related to the AC output
voltage and the DC source voltage, and it can be determined as follows:

G =
Vo
Vdc

=
2M

1 − D
(5)

As the boost inductor is charged with a constant duty cycle D, the inductor ripple current
is similar to that of the classical DC–DC boost converter.

∆IL =
DVdc
L fs

(6)

where f s is the frequency of the triangular carrier. The voltage ripple of the capacitor is

∆VC =
D(1 − D)IL

C fs
(7)

where IL is the average inductor current.

3. Comparison with Recent 5L-CG Inverters

A comprehensive assessment of the proposed 5L-CG inverter (P) in comparison
with other recently developed topologies is presented in Table 2. The proposed inverter
was investigated in terms of the required numbers of power switches, diodes, inductors,
capacitors, continuous DC source current and voltage-boosting features, and the common-
ground ability.

Table 2. Comparative study of the proposed inverter with its counterpart topologies.

Ref. NSW ND NC NL Nlevel G CIC CG η

[10] * 10 0 3 1 5 0.5M/(1−D) Yes No NA

[19] 7 0 2 1 5 M/(1−D) Yes Yes 94.9% @ 1 kW

[16] 8 6 4 4 5 1 No No 95.3% @ 200 W

[17] 6 1 3 0 5 1 No Yes 95.8% @ 1.2 kW

[18] 10 0 2 2 5 4 No Yes 97.1% @ 600 W

[20] 6 2 3 0 5 2 No Yes 98% @ 500 W

[21] 7 2 2 0 5 2 No Yes 98.1% @ 600 W

[22] 6 2 3 0 5 2 no Yes 98.1% @ 600 W

P 9 0 2 1 5 2M/(1 − D) Yes Yes 96% @ 1.2 kW

Nsw = number of switches, ND = number of diodes, NC = number of capacitors, NL = number of inductors,
NLevel = number of levels, G = gain, CIC = continuous input current, CG = common ground, η = efficiency.
* Conventional two-stage five-level ANPC inverter with a frontend boost converter is considered as
the benchmark.

In [16], the voltage gain was restricted to unity, a leakage current issue existed, and
split LCL filters were used to reduce high-frequency variation in the CMV. The main
contributions of the proposed topology compared with [19] are (1) doubling the voltage
gain, i.e., the voltage gain of the proposed topology is 2M/(1 − D), and (2) improving the
dynamics of the capacitor voltage, whereas in [19] the second capacitor is balanced at the
fundamental frequency (50/60 Hz), which has slow transient dynamics. The proposed
inverter offers many advantages when compared with [18,20–22], such as (1) achieving
continuous input current, whereas the input current of these inverters is discontinuous in
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nature, and (2) achieving higher and dynamic voltage boosting gain, while the voltage gain
of [18] is limited to four and that of [20–22] is limited to two.

4. Simulation and Experimental Results

A low-scale laboratory prototype was developed to verify the feasibility of the pro-
posed inverter, as shown in Figure 3a. The list of parameters used in the measurement
process for both simulations and experiments is given in Table 3. The following parametric
values were set corresponding to the inverter prototype: Vin = 24 V, load at R = 100 Ω and
R = 100 Ω, L = 200 mH with a power factor of 0.85, L = 3 mH, f s = 5 kHz, M = 0.8, and
D = 0.8. The values of C1 and C2 were set to 1200 µF with voltage ratings of 250 V. The
level-shifted pulse-width modulation (LS-PWM) with a switching frequency of 5 kHz was
considered to control the inverter and was implemented using the dSPACE 1104 controller.
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Table 3. Type and description of the parameters used in analysis and measurement.

Element Type Description

Input DC voltage (Vi) - 24 V

Modulation index (M) - 0.8

Duty cycle (D) - 0.8

Switching frequency (fs) - 5 kHz

Operating frequency (fo) - 50 Hz

Power switches IRGP35B60PDPBF-IGBT 600 V/60 A, ROn = 22 mΩ

Controller dSPACE DS1104

Switching frequency 5 kHz -

C1 and C2
ALC70A102EH450
-electrolytic capacitors 1200 µF, 450 V

Boost inductor Ferrite core 3 mH

Load Resistor and inductor R = 100 Ω & RL = 100 Ω + 200 mH

Gate driver TLP250 IC chip

Figure 3b–e show the experimental and simulation results obtained in the steady
state of the inverter’s operation. Here, the output voltage and current five-level staircase
waveforms were obtained without using output filters. Meanwhile, the peak fundamental
output voltage reached nearly 192 V, which is eight times the input voltage. The voltage
waveforms across C1 and C2 are illustrated in Figure 3c to verify the balanced voltage of
the SCs. As can be observed, the SCs are balanced around 120 V. Figure 3b,e display the
input DC source and the capacitor’s current waveforms, respectively. For the non-unity
power factor at R = 100 Ω, L = 200 mH; the corresponding output voltage waveform is
shown in Figure 3d. It is obvious that the proposed inverter is suitable for reactive power
capability in grid-connected PV applications. Figure 4 shows the experimental voltage and
the current spectra of the output voltage. It can be seen that the low-order harmonics are
removed, and other higher-order harmonics are placed around the multiple integrals of
switching frequency.
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To further investigate the feasibility of the inverter in dynamic modes of operation,
it was tested for both load and modulation index variations. The measured experimental
waveforms under the load variation from (R = 100 Ω, L = 200 mH) and the modulation
index variation (M = 0.8 to M = 0.4) are captured in Figure 5a,b, respectively. It can be
observed that the output voltage waveforms are unaffected during both the load transient
and the modulation index transient. The results confirm that the proposed inverter is
able to adapt to sudden variations in modulation index and load. The efficiency and loss
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distribution among the power components of the proposed CG inverter were analyzed over
a wide range of output power with PLECS simulation software, as shown in Figure 6. Here,
the value of the input voltage was set to 100 V. In addition, the conduction, switching, and
ripple losses were taken into consideration for efficiency evaluation. The thermal modeling
of the semiconductor devices was developed from the datasheet of the IKY75N120CH3
module. Efficiency as high as 96% was achieved at 1230 W, which was mainly attributed to
its single-stage power conversion feature. It can be observed that the conversion efficiency
of the proposed inverter is above 91% over a wide range of output power.
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5. Conclusions

This paper proposes a five-level inverter based on the common-ground concept with
single-stage power conversion for renewable energy applications. The proposed topology
is equipped with an integrated boost converter in such a way as to achieve high gain.
In addition, the common ground provided between the DC and AC terminals totally
eliminates the leakage current due to CMV, making it very suitable for transformerless
applications. The boost inductor is integrated into the proposed topology to achieve
dynamic voltage gain and continuous input current. In addition, the proposed circuit
comprises nine switches and two SCs with a single DC input source. It can generate five-
level AC voltage with voltage boosting within a single-stage DC–AC power conversion.
The working principles of the proposed topology, circuit description, and control technique
are provided to show the operation of the inverter circuit. Comparative assessment against
its recently introduced counterpart topologies verified its merits of high voltage gain and
continuous input current. Furthermore, the accurate operation and performance of the
proposed topology were confirmed and analyzed through simulations and experimental
results. The feasibility of the proposed inverter was verified through steady-state and
dynamic-state experimental results. The attractive features of the proposed topology, such
as high voltage gain and continuous DC source current, make it an attractive alternative
for transformerless PV applications.
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