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Abstract: Nowadays, deepfake detection on subtle-expression manipulation, facial-detail modifi-
cation, and smeared images has become a research hotspot. Existing deepfake-detection methods
on the whole face are coarse-grained, where the details are missing due to the negligible manip-
ulated size of the image. To address the problems, we propose to build a transformer model for
a deepfake-detection method by organ, to obtain the deepfake features. We reduce the detection
weight of defaced or unclear organs to prioritize the detection of clear and intact organs. Meanwhile,
to simulate the real-world environment, we build a Facial Organ Forgery Detection Test Dataset
(FOFDTD), which includes the images of mask face, sunglasses face, and undecorated face collected
from the network. Experimental results on four benchmarks, i.e., FF++, DFD, DFDC-P, Celeb-DF, and
for FOFDTD datasets, demonstrated the effectiveness of our proposed method.

Keywords: generated face; image-forensics detection; generative adversarial network

1. Introduction

Nowadays, the deepfake methods have been applied to various scenarios and have
achieved great success, such as actor face-swapping and virtual hosts. However, the
incidents of using face-swapping methods on celebrities have confused the public and
disrupted the social order, which has also brought harmful effects at the same time. It has
become increasingly important to explore the deepfake-detection methods.

Generally, the deepfake methods can be divided into two categories regarding the
type of synthetic object: complete-facial synthesis and facial-organ synthesis. Identifying
the complete-facial synthesis is the mainstream method. Earlier methods [1,2] detect the
forgery regions by combining physical methods such as symbiotic matrix and spectral
consistency, with deep learning methods. Meanwhile, some other methods [3,4] put main
emphasis on CNN models to extract synthetic trace-features and detect the superimposed
noise generated during the synthesis process [5–7]. Recently, Ni et al. [8] proposed a
detection method based on consistent representation learning by capturing the different
representations with different augmentations and calculating the distance for the different
representations. Wang et al. [9] proposed to combine the color domain and frequency
domain, using a frequency-domain filter-based multi-scale transformer. Yuan et al. [10]
achieved deepfake discrimination by classifying fake methods using multi-class forgery-
classification tasks. With the improvement of the effect of deepfake approaches, fewer and
fewer traces of forgery are detected, especially for the subtle operations on expressions
and organs. The identification methods in complete-facial synthesis have reflected some
shortcomings, and need to be addressed.

With the development of deepfake methods, deepfake detection on partial areas has
become a hot topic. Existing approaches [11–13] have utilized deep learning models to ex-
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tract physiological features, which focus on the detection of unusual physiological features.
Meanwhile, it has been of vital importance for research to detect facial organs consistently.
Matern et al. [14] detect a fake face by the light reflections and color inconsistencies in
specific areas such as eyes and teeth. Nirkin et al. [15] employ contextual association to
detect inconsistencies in organs of the face after facial recognition. In recent years, with
the rapid development of the attention mechanism and visual transformer, some meth-
ods [16,17] integrate the attention mechanism to make the discriminator focus more on the
manipulated partial-areas. The visual-semantic transformer [18] divides the person’s face
into organs, and builds an attention map for the parsing map to judge the faked region
by blocks.

Although some promising methods have focused on facial-region deepfake detection,
most of the existing methods still detect forgeries region-by-region without considering
organ-level detection. In particular, as the forgery methods tend to diversify, the forged
people may wear masks, sunglasses, or other accessories, which will cause the partial face to
be occluded. The features extracted from the original methods are further reduced, leading
to poor detection performance. At the same time, to avoid being detected, some of the
forged media are blocked with cropping, masking, down-sampling, and other operations,
which will also reduce the accuracy of existing deepfake-detection methods.

To address the above problems, we propose a novel deepfake-detection framework
based on the transformer to detect organs and whole faces. Meanwhile, we build a test
dataset that simulates the real-world scenarios to verify the effectiveness of our method.
Our contribution can be summarized as follows:

1. We propose a novel deepfake-detection method based on transformer architecture,
which can identify facial-detail editing and is robust to synthetic facial-recognition
methods dealing with occluded masks or sunglasses.

2. The method focuses on organ-based forgery detection, which trains different transform-
ers for different organs. Each transformer can work independently and flexible. At the
same time, the weight of obscured and stained organs are reduced automatically.

3. We propose a deepfake-detection dataset, namely Facial Organ Fake Detection Test
Dataset (FOFDTD). It is consisting of 750 authentic images, 750 GAN-generated
images, and 900 forgery images made by humans, including masks, sunglasses, and
undecorated faces. All the authentic images in the FOFDTD are collected from the
Internet, and are mainly used for deepfake detection in real-world.

2. Related Work

The early forgery-detection methods mainly focused on the whole image. Fridrich et al. [19]
proposed a novel strategy to detect the forgery images. The method begins by assembling
a model of noise components into a union of several different sub-models, formed from
the joint distribution of adjacent samples obtained using linear and nonlinear high-pass
filters that quantify image-noise residuals. Cozzolino et al. [20] proposed the local de-
scriptors, which can be regarded as a CNN, to detect the image-noise residual, find the
forgery regions, and label them. Tan et al. [21] proposed a scaling method that uniformly
scales all depth-, width-, and resolution-dimensions, using a simple yet highly effective
compound coefficient.

With the development of image-synthesis technology, face-oriented forgery has be-
come an important research direction. Compared with the earlier detection methods, face-
oriented forgery detection has a specific dependence on physiological features. Meanwhile,
traditional image-forensics techniques are usually not well suited to deepfake detection,
due to the compression that strongly degrades the data and the post-processing operations
which confuse detection or image artifacts. Afchar et al. [22] presented a method to auto-
matically and efficiently detect face forgery. The model has a low number of layer networks,
and focuses on the subtle features of the image. Güera et al. [23] proposed a temporal-aware
pipeline to detect deepfake media, using a CNN to extract the features in the frame level and
using an RNN to classify them. Chollet [24] proposed a deep convolutional-neural-network
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architecture illuminated by inception, where inception modules have been replaced with
depth-wise separable convolutions. Experiments have proved that the model explicitly
affects the identification of forged faces.

At the same time, research on frequency detection or inconsistency is also the focus
of research on facial forgery. Qian et al. [25] utilized frequency-aware decomposed-image
components and local frequency statistics, in face-forgery detection Luo et al. [26] proposed
utilizing high-frequency features for detection by combining models such as a multi-scale
high-frequency feature-extraction module and a residual-guided spatial-attention module.
Ni [8] proposed consistent representation learning (CORE), which constrains the consis-
tency of different representations. The method based on the different representations is first
captured with different augmentations, and then the cosine distance of the representations
is regularized, to enhance consistency. Although face-based detection performs well in most
deep-forgery-detection scenarios, the detection granularity of those methods is relatively
coarse. There is still room for improvement when detecting fine-grained forgery methods.

Detecting partial regions is a fine-grained method aiming to detect a forged face.
Matern et al. [14] used several characteristic artifacts, such as eyebrow color and geometric
analysis, to detect face forgery. Chen et al. [27] proposed DefakeHop, which uses the
successive subspace learning (SSL) principle and the channel-wise Saab transform to
extract features, and the feature-distillation model to reduce the spatial dimension. In
addition, dividing the synthetic image into the partial area for detection, is a novel method.
Chen et al. [28] proposed a framework to build correlation between the partial regions,
to avoid the overfitting problem caused by global supervision. These methods still have
certain limitations, and the detection effect for some situations needs improvement, such as
occluded and low-resolution images.

Recently, multiple-attention mechanisms and multiple models have become essential
methods for solving deepfake discrimination. Zhao et al. [29] proposed a multi-attentional
deepfake-detection method to detect the subtle and partial features in real and fake images.
The technique had three key components: multiple spatial-attention-heads, a textural-
feature-enhancement block, and an aggregate module. Wang et al. [9] proposed a multi-
modal, multi-scale transformer, to detect deepfake images. The model can detect image
patches of different sizes, to find the local inconsistencies at different spatial-levels.

The above methods can identify the deepfake content within limits. However, the
above methods still need to detect the critical organs of the face, which leads to the detection
effect of the process not being robust in low-resolution images and organ-occlusion-images
detection. In particular, post-processing methods or image defilements are added to some
deepfake images to blind the deep-forgery-discrimination model, which makes the existing
detection-methods based on the whole face, more difficult.

Based on this, we employ the transformer to perform local-organ detection and com-
bine the full-face features for analysis. Finally, the method employs a classifier to synthesize
the identification results. The experiment shows that our method can adapt well to face
occlusion, image defacement, or low resolution.

3. Proposed Method
3.1. Overview of the Framework

We propose a novel deepfake-detection architecture. Firstly, we extracted the critical
organs, which include the eyes, nose, mouth, eyebrows, and ears, and we built the trans-
former encoder and calculated the feature vector by organ. Meanwhile, we also built a
transformer encoder for the whole face, to supplement the discrimination. After that, we
combined the feature vectors of each organ and the whole face, to form a feature-vector
group. Finally, we classified the vector group. Moreover, the feature weights were set
to 0 when the organ was stained, as shown in Figure 1. The input image is shown in
I ∈ PH×W×3, where H, W represents the height and width, respectively.
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Figure 1. Our proposed method framework includes an organ-selection module, facial-region
interception module, organ-level transformer, and classifier. The organ-selection module is mainly
used to select clear organs and then utilizes the extractor to obtain features organ by organ. The
facial-region interception module mainly frames the facial area and then uses the feature extractor to
obtain the features of the whole face. Finally, we use a classifier to classify the results.

3.2. Organ Selection and Feature Extraction

We employed the Dlib [30] to obtain 68 coordinate points in the facial RoI to extract
critical organs such as the eyes, nose, mouth, eyebrows, and ears. Each part of the region
can be written as

(
τi

Hi×Wi×3, ∂i
)
, where Hi, Wi are the width and height of the region

τi, respectively, and 3 is the number of color channels. ∂i is the weight occupied by the
region τi, and we set the weight of occluded or unclear organs to 0, to ensure their features
did not affect the final results. We utilized the multiple CNNs to extract the feature map
fi ∈ τi

(Hi/4)×(Wi/4)×C by organ, and the extracted features were used as input for the organ-
level transformer. Moreover, the fusion module excludes the part where the weight is 0.

3.3. Organ-Level Transformer

We set up a multi-group transformer model for different organs, and each organ
corresponded to a transformer. We set the feature map, fi, of each organ, τi, as the input,
which was partitioned into spatial blocks of various sizes. The self-attention of the spatial
blocks was calculated using different headers. Following the method 9, we extracted
the block with the shape rh × rh × C from fi. We reshaped it to a 1-dimensional vector
of h-heads. After that, the flattened vector was embedded into the sequence, using the
fully connected layer to form Qh

i ∈ τi
(Hi/4rh)×(Wi/4rh)×(rh×rh×C). In addition, the key

embeddings, Kh
i , and the value embeddings, Vh

i , had the same operation. The attention
matrix corresponding to organ τi can be calculated using Equation (1).

Ah
i = so f tmax

 Qh
i

(
Kh

i

)T

rh × rh × C

Vh
i (1)

Then Ah
i was reduced to the resolution of the original space, and the features of

different heads were stitched together, to obtain the output Ti ∈ τi
(Hi/4)×(Wi/4)×(rh×rh×C)

through the 2D residual block.
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After each organ calculation, all the vectors were reorganized into a vector group, T,
as shown in Equation (2).

T = (T1, T2, . . . , Tn) (2)

where n represents the number of valid organs.

3.4. Whole-Face Transformer and Classifier Network

Following the method 9, we built a transformer based on the whole face, which
received the facial features, Ww_ f , extracted from the feature model. After the feature
extraction by the transformer, we sent them to the classifier network.

The classifier consists of a linear layer and a softmax normalization layer, which can
map the probability, p, to represent the vector group, T, into scalars. The two-dimension
output of the softmax layer was used as the final probability 8, and the output probability
was used to distinguish the deepfake faces.

3.5. Loss Functions

We utilized the standard cross-entropy loss as the classification loss, as shown in
Equation (3).

l(p) = ylogp + (1− y)log(1− p) (3)

where y denotes the ground-truth and p is the predicted result for an organ. For a single
image with N organs, the classification loss can be calculated as follows:

l
(

pN
1

)
=

N

∑
n=1

(l(pn)) (4)

4. Facial-Organ Forgery-Detection Test Dataset

We proposed a test dataset FOFDTD to simulate an occluded-face forgery in the real
world. FOFDTD has 750 authentic images, 750 GAN-generated images, and 900 forgery
images made by humans. Moreover, it consists of masks, sunglasses, and undecorated
faces. The actual images were collected from the Internet (www.baidu.com, accessed on
30 August 2022), and we used StarGAN [31] to make the fake images. Meanwhile, the
artificial images were used to ensure authenticity, as shown in Figure 2. We can download
FOFDTD at www.github.com/ZiyuXue/FOFDTD (accessed on 30 August 2022).

4.1. GAN-Generated Image

GAN-generated images use StarGAN to edit and modify the character attributes in
the entire image and the images without adding manual operations. The forgery methods
mainly include appearance changes such as darker skin color, lighter skin color, and hair-
color change, and emotional changes such as anger, joy, and smile, as shown in Figure 3.

4.2. Artificial Image

Artificial images use PhotoShop and other software to modify the local details of the
face and retain the background or irrelevant details. For example, in the group “eyebrow-
color change”, we only adjusted the eyebrow color, and did not process the background
and other facial details. The manual methods included darker skin color, lighter skin
color, thinner face, eyebrow-color change, eye-size change, and lip-color change, as shown
in Figure 4.

www.baidu.com
www.github.com/ZiyuXue/FOFDTD
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5. Experimental Results
5.1. Implementation Details

Dataset: We selected five mainstream datasets, including FaceForensics++ (FF++) [32],
Celeb-DF [33], deepfakeDetection (DFD) [34], and DFDC Preview (DFDC-P) [35]. FF++
is widely used for deepfake facial-detection. It includes 1000 real videos and 4000 fake
videos. In the real videos, there are 720 videos for training and 280 for validation and
testing. Celeb-DF contains 590 real videos obtained from the Youtube website and 5939 fake
videos, which have a more realistic faking effect compared with earlier methods. The
DFD dataset contains 363 real and 3068 fake videos, with FF++ as the base data. DFDC-P
contains 1131 real and 4119 fake videos, all of which are low quality and modified in terms
of gender, age, etc. Meanwhile, we also examined our model in FOFDTD.

Implementation Protocol: Our model was trained using TensorFlow on one NVIDIA
RTX 3090 (24G) GPU. The accuracy (ACC) and area under the curve (AUC) were used as
the evaluation criteria.

5.2. Ablation Study

We conducted ablation experiments for different organ-combinations, to verify the
effectiveness of our method. We selected FF++ to train and test our method, and the results are
shown in Table 1. The selected combinations included four groups: “eyebrows + eyes + nose”,
“nose + mouth + ears”, “eyes + nose + mouth”, and “eyes + nose + mouth + eyebrows + ears”.

Table 1. Results of key-organ ablation experiments.

Combination Simulated Scene ACC AUC

eyebrows + eyes + nose Face with mask 86.73 83.24
nose + mouth + ears Face with sunglasses 86.52 84.13
eyes + nose + mouth Cover the eyebrows 95.43 93.64

eyes + nose + mouth + eyebrows + ears Undecorated face 99.67 99.93

We also mapped the experimental group to the corresponding scene. The group
“eyebrows + eyes + nose” represented the face with a mask in the real world, the group
“nose + mouth + ears” represented the face with sunglasses in the real world, and the group
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“eyes + nose + mouth + eyebrows + ears” represented the undecorated face, as shown
in Table 1.

We reduced the weight of the covered organs to 0. For example, in the group “eyebrows
+ eyes + nose”, we reduced the weight of the mouth to 0. Table 1 shows that our method
is acceptable when detecting missing- organs forged faces. Our proposed method had a
better detection effect on “undecorated face.” We also found that the “eyes + nose + mouth”
group showed better detection results. The artifacts on the eyes, nose, and mouth were
more distinct in the detection process than those on the eyebrow.

5.3. Comparison with Other Methods

We evaluated the detection results at the frame level using the FF++ dataset, which
includes RAW, LQ, and HQ. Table 2 shows our method’s ACC and AUC results and state-
of-the-art on the FF++ dataset. The best experimental group in the ablation experiment was
selected for comparison with other methods. It can be seen that our method had a superior
detection performance on the HQ and LQ datasets. Our model can reduce the weight of
unclear organs after zoom, to guarantee the overall effect of the method. From the table,
our method improved by 1.25% in ACC and 1.12% in AUC, the results from M2TR 9 in the
LQ dataset. Moreover, our method showed a better result for the HQ datasets.

Table 2. Detection results of Acc and AUC at frame level for our method and the state-of-the-art (FF++).

Methods
RAW HQ LQ

ACC AUC ACC AUC ACC AUC

Steg.Features [19] 97.63 - 70.97 - 55.98 -
LD-CNN [20] 98.57 - 78.45 - 58.69 -
MesoNet [22] 95.23 - 83.10 - 70.47 -

F3-Net [25] 99.95 99.80 97.52 98.10 90.43 93.30
RFAM [28] 99.87 99.92 97.59 99.46 91.47 95.21

Multi-attention [29] - - 97.60 99.29 88.69 90.41
CORE [8] 99.97 100.00 97.61 99.66 87.99 90.61
M2TR [9] 99.50 99.92 97.93 99.51 92.89 95.31

Ours 99.67 99.93 98.12 99.67 94.14 96.43

Figure 5 shows a line chart, in which our model has better adaptability for HQ and
LQ data. Our method performs well in the LQ dataset, mainly because the method reduces
the weight of obscured or low-resolution organs, and ensures the detection of clear organs
and faces. This also proves the proposed method has relatively little impact on the change
in segmentation ratio, and can be adapted to detect the scaled synthetic images.
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5.4. Cross-Dataset Evaluation

Mainstream Dataset. We also evaluated our approach on the cross-dataset, as shown
in Table 3. We trained our approach in FF++ and tested in DFD, DFDC-P, and Celeb-DF. In
Table 3, Xception, Local-relation, HFF, and CORE methods were trained using real and
faked images in FF++. Note that LSC only used real images for training. The experimental
results are referred to in 8.

Table 3. The cross-dataset evaluation results for DFD, DFDC-P, and Celeb-DF datasets (AUC%).

Methods DFD DFDC-P Celeb-DF

Xception [24] 87.86 - 73.04
Local-relation [28] 89.24 76.53 78.26

HFF [26] 91.90 - 79.40
LSC [36] - 74.37 81.80
CORE [8] 93.74 75.74 79.45

Ours 94.32 75.93 82.43

As shown in Table 3, our model performed better on DFD and Celeb-DF datasets.
Meanwhile, the local-relation method’s AUC was 0.6% higher than our method for DFDC-P.
That is because the DFD and Celeb-DF datasets have some lower-resolution data. Our
method focuses on organ detection and does not rely on high resolution, which is more
suitable for such detection tasks. In this way, low-resolution faces did not affect subsequent
results. Meanwhile, our method was relatively more stable in the cross-dataset experiment
than the others.

FOFDTD. We evaluated the performance effects of the baseline and advanced
methods [9,21] on FOFDTD. We set up two group experiments on GAN-generated and
artificial datasets, as shown in Tables 4 and 5. Moreover, the model we used was consistent
with the above experiments.

Table 4. Cross-dataset evaluation results on FOFDTD (GAN-generated) dataset (ACC% and AUC%).

Methods
All Mask Face Sunglasses Undecorated

ACC AUC ACC AUC ACC AUC ACC AUC

Efficientnet-B4 [21] 49.1 78.5 48.7 68.5 48.8 89.4 49.7 83.2
M2TR [9] 61.7 63.8 57.6 58.8 66.5 70.6 61.0 65.4

Ours 64.2 66.7 60.5 60.2 68.9 72.3 63.3 67.4

Table 5. Cross-dataset evaluation results on FOFDTD (artificial) dataset (ACC% and AUC%).

Methods
All Mask Face Sunglasses Undecorated

ACC AUC ACC AUC ACC AUC ACC AUC

Efficientnet-B4 [21] 54.3 50.0 54.2 50.6 54.1 53.8 54.8 47.9
M2TR [9] 50.9 51.7 54.4 52.7 46.7 49.4 51.6 53.8

Ours 55.5 55.0 57.0 55.5 54.2 53.4 55.3 56.2

Table 4 shows that our method had the best ACC score compared with other methods.
The average ACC is 15.1% higher than EfficientNet-B4 and 2.5% higher than M2TR, but
EfficientNet-B4 performs well for AUC.

We synthesized Tables 4 and 5, to form Figure 6. Figure 6a is the ACC result and
Figure 6b is the AUC result. At the same time, we put similar groups next to each other.
For example, the first two columns in Figure 6a represent the overall ACC generated by
GAN and artificially, to facilitate comparison between the similar groups. It should be
noted that during the detection process, a suitable method’s ACC and AUC curves should
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be relatively gentle, and the severe fluctuation is not conducive for application to the actual
situation. Figure 6 shows that, compared with others, our method was more stable and had
better robustness for deepfake detection in different forgery types.
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5.5. Complexity Measure

We compared the time complexity with methods [9,21] as shown in Table 6. The
experiment showed that our approach and M2TR [9] had more time complexity than
the basic method [21] based on CNN, which is a common problem with transformer-
based methods.

Table 6. Time-complexity comparison table with the state-of-the-art.

Methods Input Size Params Flops

Efficientnet-B4 [21] 320 × 320 0.129 M 0.1391 G
M2TR [9] 320 × 320 0.345 M 1.5217 G

Ours 320 × 320 1.221 M 3.8573 G

Compared with M2TR, the time complexity of our method was higher, mainly because
our model has at least one organ-level transformer. Although our approach ignores some
unclear organs, organ-level transformer detection still consumes a lot of computation.
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To optimize efficiency, we will choose the more critical organ-level transformers for the
following work step.

6. Conclusions

In this paper, we propose a transformer-based deepfake-detection method for facial
organs, which can effectively distinguish deepfake media. Our method is robust to detect
subtle expression-manipulation, partial detail-modification, and stained deepfake images.
We also build transformers at organ level, to obtain the features. The accuracy was increased
by reducing the weights of organs that were stained, defaced, and of low-quality. A
whole-face transformer was also used to assist in the detection of partial information.
Moreover, we built a test dataset to simulate the realistic scenarios for facial-organ deepfake
discrimination, named FOFDTD. The dataset consists of the mask face, sunglasses face,
and undecorated face. To verify the effectiveness of our method, we evaluated our method
with the FF++, DFD, DFDC-P, Celeb-DF, and FOFDTD datasets. The results demonstrated
that our method are superior to the state-of-the-art methods.

Author Contributions: Z.X. designed the study. Z.X. and Q.L. performed the experiments and
analyzed the data. Z.X. wrote the paper. H.S. and X.J. guided the research and reviewed the
manuscript. R.Z. labeled the test set. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Fiscal Expenditure Program of China under
Grant 130016000000200003.
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of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.
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