
Citation: Osamy, W.; Khedr, A.M.;

Salim, A.; El-Sawy, A.A.; Alreshoodi,

M.; Alsukayti, I. Recent Advances

and Future Prospects of Using AI

Solutions for Security, Fault

Tolerance, and QoS Challenges in

WSNs . Electronics 2022, 11, 4122.

https://doi.org/10.3390/

electronics11244122

Academic Editor: Djuradj Budimir

Received: 4 November 2022

Accepted: 7 December 2022

Published: 10 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Recent Advances and Future Prospects of Using AI Solutions
for Security, Fault Tolerance, and QoS Challenges in WSNs
Walid Osamy 1,2,*,† , Ahmed M. Khedr 3,4,† , Ahmed Salim 4,5,*,† , Ahmed A. El-Sawy 2,6,† ,
Mohammed Alreshoodi 1,† and Ibrahim Alsukayti 7,†

1 Unit of Scientific Research, Applied College, Qassim University, Buraydah 52571, Saudi Arabia
2 Computer Science Department, Faculty of Computers and Artificial Intelligence, Benha University,

Benha 13511, Egypt
3 Computer Science Department, University of Sharjah, Sharjah 27272, United Arab Emirates
4 Mathematics Department, Zagazig University, Zagazig 44519, Egypt
5 Department of Computer Science, College of Sciences and Arts, Al-Methnab, Qassim University,

Buridah 52571, Saudi Arabia
6 Information Technology Department, Faculty of Technological Industry and Energy,

Delta Technological University, Quesna 32631, Egypt
7 Department of Computer Science, College of Computer, Qassim University, Buraydah 51452, Saudi Arabia
* Correspondence: w.elsherif@qu.edu.sa or walid.osamy@fci.bu.edu.eg (W.O.); a.salem@qu.edu.sa (A.S.)
† These authors contributed equally to this work.

Abstract: The increasing relevance and significant acceptance of Wireless Sensor Network (WSN)
solutions have aided the creation of smart environments in a multitude of sectors, including the
Internet of Things, and offer ubiquitous practical applications. We examine current research trends in
WSN using Artificial Intelligence (AI) technologies and the potential application of these methods
for WSN improvement in this study. We emphasize the security, fault detection and tolerance, and
quality of service (QoS) concerns in WSN, and provide a detailed review of current research that
used different AI technologies to satisfy particular WSN objectives from 2010 to 2022. Specifically,
this study’s purpose is to give a current review that compares various AI methodologies in order to
provide insights for tackling existing WSN difficulties. Furthermore, there has been minimal existing
related work concentrating employing AI approaches to solve security, fault detection and tolerance,
and quality of service (QoS) concerns associated to WSN, and our goal is to fill the gap in existing
studies. The application of AI solutions for WSN is the goal of this work, and we explore all parts
of it in order to meet different WSN challenges such as security, fault detection and tolerance, and
QoS. This will lead to an increased understanding of current AI applications in the areas of security,
fault detection and tolerance, and QoS. Secondly, we present a comprehensive study and analysis of
various AI schemes utilized in WSNs, which will aid the researchers in recognizing the most widely
used techniques and the merits of employing various AI solutions to tackle WSN-related challenges.
Finally, a list of open research issues has been provided, together with considerable bibliographic
information, which provides useful recent research trends on the topics and encourages new research
directions and possibilities.

Keywords: internet of things; fault detection and tolerance; artificial intelligence; security; quality of
service; wireless sensor networks

1. Introduction

Over the years, the domain of ad hoc network technology has attracted a lot of
academic interest [1]. Mobile Ad hoc Networks (MANETs) and Wireless Sensor Networks
(WSNs) are the two types of ad hoc networks. When compared to MANETs, WSNs consume
less power and contain lower-cost components [2–5]. Many IoT applications require precise
discovery of node positions in order to communicate data effectively across nodes [6]. WSN

Electronics 2022, 11, 4122. https://doi.org/10.3390/electronics11244122 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11244122
https://doi.org/10.3390/electronics11244122
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-6911-4346
https://orcid.org/0000-0001-7957-7862
https://orcid.org/0000-0001-5649-9662
https://orcid.org/0000-0003-3704-0164
https://orcid.org/0000-0002-3066-6909
https://orcid.org/0000-0002-6925-598X
https://doi.org/10.3390/electronics11244122
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11244122?type=check_update&version=3


Electronics 2022, 11, 4122 2 of 41

is recognized as the foundation of IoT and allows for numerous applications [7]. The IoT
integration with WSN enables the dynamic interconnection of sensor devices to the internet
and execution of tasks more efficiently. WSN offers essential capabilities to applications in
research, defense, industry, surveillance, home applications, medical services, catastrophe
prediction, and other areas, but it also confronts various challenges due to its resource
constraints [8].

The primary goal of this study is to give insight into current Artificial Intelligence (AI)
applications in handling different Security, Fault Detection and Tolerance, and Quality of
Service (QoS) challenges in WSN. We emphasize major problems in WSN and provide a full
discussion on current research that used various AI technologies to accomplish certain WSN
objectives in a period of 2010 to 2022. We then provide a systematic assessment and analysis
of various AI schemes used in WSNs, which will help the researchers in recognizing the
most widely adopted AI strategies to address the Security, Fault Detection and Tolerance,
and Quality of Service challenges, as well as the advantages of using different AI methods
to address these WSN challenges.

While there are survey articles on studying various issues that WSNs confront, the ma-
jority of them concentrated on utilizing AI approaches to tackle a specific challenge, such
as data gathering or energy utilization, while others concentrated on overcoming a few of
the challenges facing WSN. A related paper addressed or partially examined the literature
on AI protocols for overcoming various WSN issues. This study differs from others in
that it aims to give a latest review of current literature. We examine several AI approaches
that allow us to uncover promising strategies for handling existing WSN challenges and
improving the efficiency of WSN, along with multiple optimization techniques that handle
various WSN concerns. This survey’s main focus is on AI schemes for WSN, where we
cover multiple elements in handling diverse WSN concerns such as security, fault detection
and tolerance, and quality of service. Furthermore, we conducted a thorough examination
and comparison of publications in a period between 2010 and 2022. The article includes
a detailed review of 95 relevant publications from credible database sources spanning
several academic areas such as AI and computer science. Different AI techniques for WSN
enhancement have been explored and classified among the selected papers. The first step
is to provide an overview of various strategies. This taxonomy of AI approaches is then
used to demonstrate how AI strategies handled each task in WSN. Some articles will be
assessed for each category because they may address multiple factors. The research trends
that portray the usage of AI in WSN are examined in this study. The study also discusses
challenges and possible research opportunities in adopting AI solutions to different WSN
problems, with the goal of encouraging future studies.

The study’s significant contributions are as follows:

1. We present the most adopted AI techniques to overcome the Security, Fault Detection
and Tolerance, and Quality of Service challenges of WSNs. A taxonomy of these AI
techniques is also provided.

2. An overview and detailed discussion of current research that used various AI method-
ologies to accomplish certain WSN objectives between 2010 and 2022 is provided.
We include a thorough discussion of the main WSN Security, Fault Detection and
Tolerance, and QoS problems that were addressed using AI-based solutions.

3. Fill the gap in existing studies by studying the benefits of employing AI tools to solve
the WSN challenges such as security, fault tolerance, and QoS.

4. We provide a detailed comparison of the AI strategies utilized to solve each problem in
contrast to existing related work that covered only a portion of the literature by concen-
trating on single or a few AI approaches. The comparison was performed on multiple
aspects such as the proposed approach, AI algorithm, objectives, and performance.

5. With the goal of promoting and facilitating additional studies, we highlight interesting
research possibilities in adapting AI schemes to specific WSN issues.

We primarily present an overview and a review of different AI techniques. The appli-
cations of AI approaches for tackling the aforementioned difficulties and improving WSN
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performance are then shown. The reader will gain adequate knowledge of the challenging
concerns in WSNs, as well as the strength of AI approaches in resolving them. The rest of
the article is structured as follows: Security challenges and their AI solutions are given in
Section 5. Fault detection and tolerance challenges along with their AI solutions are given
in Section 6. In Section 7, quality of service and its AI solutions are discussed. We also state
the open research challenges while discussing each of the challenges. Section 8 provides
the discussion, and finally we conclude the paper in Section 9.

2. Research Methodology

In this section, we follow the same research methodology presented by [9,10]. As
indicated in Figure 1, the research methodology used here is separated into four phases.
The first phase (Phase 1) involves the selection of articles. The papers are then classified in
Phase 2. Phase 3 entails the analysis of articles, which is discussed further in Sections 5–7.
Phase 4 entails discussions and future scope, which will be detailed in Section 8.

Figure 1. Research methodology.

2.1. Selection of Articles

• Step 1: Select database sources The quality of research may be influenced by database
sources and key searching tactics. The articles in this study were selected from
reputable sources such as IEEE Explorer, Web of Science, and Scopus. Furthermore,
only indexed journals are taken into account. To perform a decent search that covers
the most relevant matter, the search query and keywords related to the study topic are
carefully considered.

• Step 2: Selection and screening of articles Research-related terminology, simple
phrases, and Boolean operators make up the search queries. The figure in Figure 2
depicts the entire task of forming query strings. To uncover the important relevant
publications from 2010 to 2022, search queries are executed on abstracts, keywords,
and titles from the selected sources. Journal papers are considered, whereas other
categories are omitted. The subsequent search results are gathered and sorted to
realize the most important works, rejecting irrelevant, duplicated, or poor quality
papers. Furthermore, in order to establish if the filtered papers are eligible for our
aims, the abstract is reviewed first, and if it does not provide a sign of eligibility,
the article’s content is examined. The 95 most significant papers are designated as
primary papers using this method.



Electronics 2022, 11, 4122 4 of 41

Figure 2. Diagram: search query construction.

2.2. Classification of Articles

Different AI approaches in WSNs have been detected and categorized from primary
database sources among the 95 publications examined. Fuzzy Logic, Artificial Neural
Networks, Evolutionary Computation, Nature-inspired, Multi-Agent Systems, Trajectory-
based, Physical computation, Reinforcement Learning, and Hybrid are some of the ap-
proaches employed. In addition, this classification of AI methods is being used throughout
the discussion of each problem in WSN to highlight how AI approaches tackled each
challenge. Section 3.4 gives an overview of these techniques.

3. Background

In this section, we initially present the security, fault detection and tolerance, and QoS
problems in WSNs. Then, various AI approaches for WSNs are discussed.

3.1. Security

Security is an important feature like performance and energy efficiency as the WSN
nodes are deployed for use in various applications such as battlefield applications, hos-
pitals, surveillance, monitoring and targeting. So, maintaining security of a WSN is very
challenging. Security encompasses different characteristics like authentication, integrity,
privacy, and anti-playback [11]. Different threats such as spoofing, changing the rout-
ing information, attacking the sink node, information gathering, jamming and denial of
service (DoS) attack may affect the performance of WSNs. As the dependency on the
information from a WSN has increased, the higher is the risk of secure transmission over
the network [12,13]. Various security issues, including node discovery and verification,
key establishment [14], node authentication [15,16], secure group management, secure
localization, and secure data aggregation [17,18], must be handled in WSNs.

3.2. Fault Detection and Tolerance

Many application domains need WSNs to be deployed in harsh conditions, making
them more vulnerable to failures. This exacerbates the design challenge of meeting ap-
plication requirements that include the challenges such as scheduling, quality of service,
fault identification and tolerance. WSNs are vulnerable to faults as they often work au-
tonomously in hostile environments. Besides its characteristics (e.g., storage size, battery
capacity), there are several other faults. Fault tolerance represents the capability of nodes to
cope with the failure of nodes. For example, in the event of node failure because of power
drain, impairment or some other cause, the nodes must be able to decide an alternative
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best transmission path. This means that fault identification and fault tolerance strategies
for successful fault control are critical and essential to the operation of WSNs [19].

3.3. Quality of Service

We can define QoS as a collection of services that must be fulfilled during source to
destination data communication. This corresponds to a networking QoS characteristic
that demands the network to have a range of service attributes to track the QoS, such as
jitter, delay, bandwidth and packet loss. The main difficulties in establishing QoS are (i)
improving end-to-end reliability, (ii) lowering end-to-end latency, (iii) shortening package
delivery miss ratio, (iv) lowering bandwidth use, (v) enhancing energy consumption and
sensor load balance, (vi) reducing channel access delay, (vii) reducing collisions, (viii)
reducing interference, and (ix) optimizing concurrent transmissions [20–22].

3.4. Overview: Artificial Intelligence (AI) Methods

The term AI refers to the study and design of intelligent entities (agents) that observe
their environments and act towards achieving goals. An agent could be defined as anything
that perceives its environment through sensors and acts upon that environment through
actuators. Hence, AI-enabled agents can range from machines truly capable of reasoning
to search algorithms used to play board games. Since the birth of AI in the 1950s, various
approaches have been applied to create thinking machines. These approaches include
symbolic reasoning, logic-based, fuzzy logic, knowledge-based systems, soft computing,
and statistical learning. In nature, there exist groups of thousands, millions, or trillions
of individual elementary entities that can self-organize into multifarious forms to fit a
functional objective purely through local and ordinary interactions. Throughout nature,
different organisms often profit from acting in swarms. By shared information, the group
could make better decisions than a single individual; this phenomenon is called “collective
intelligence”. By studying the characteristics of individuals and their relationships with
groups, algorithms for the corresponding mechanism, known as “swarm intelligence” have
been formalized. These are essentially biologically inspired calculations that have been
identified as an emerging topic and a key component of AI [23]. Due to the distributed
nature of some systems there is the need for approaches that can learn, plan and make
decisions in an environment that involves multiple interacting intelligent agents. The tools
to study these problems are provided by a sub-area of distributed AI called multi-agent
systems (MAS) [24].

Machine learning (ML) includes a set of supervised/unsupervised methods that try
to learn from data, and it is a core subset of AI. This group of AI techniques envelopes
methods that can identify patterns in the data in an automatic way, and then use these
patterns to predict, and techniques to perform other ways of decision making in an un-
certain environment. Learning from interaction is a fundamental idea in almost every
learning paradigm such as Reinforcement Learning (RL) [24], Artificial Neural Networks
(ANNs) [24], and Deep learning [24] Genetic algorithms (GAs) are stochastic search
algorithms which act on a population of possible solutions [25]. GAs are used in AI like
other search algorithms to search a space of potential solutions to find the best one that
solves the problem [26]. Also in ML, GA is used to search over a class of candidate solutions
to find the most effective one [26]. The AI tools such as the optimization tools, forecasting
tools (such as time series) and the classification tools (such as the Naive Bayes classifiers)
can perform better with the aid of GA [25].

AI is beneficial in addressing a range of challenging issues in several domains owing
to its ability to handle deficient and noisy data, non-linear problems, and prediction and
generalization at fast speed when trained [27]. The survey’s major focus is on AI approaches
for WSN. Various AI approaches used in WSN have been explored and categorized. WSNs
and AI methods are used in a variety of applications that include:

Agriculture: AI-based WSNs can be combined to improve agricultural productivity
and efficiency [28]. Forest fire detection: Feedforward Neural Network (FNN) in con-
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junction with WSN can identify firestorms in the forest and by predicting the firestorm
in the forest [29]. Intelligent Transportation System: AI-based WSNs can be integrated
with Intelligent Transportation System for solving challenges in Intelligent Transportation
Systems [30,31]. Health care and smart environments: AI-based WSNs can improve the
quality of life for people and provide a smart environment [32–35]. Structural Health
Monitoring: Automated Monitoring systems are available as a result of the glue of sen-
sors along with AI methods such as ANN, ML, DL, CNN, Hybrid Intelligence and Cloud
Computing [36]. Monitoring: intelligent monitoring devices based on ANN and IoT-based
WSNs for observing the amount of charges on different appliances in each household [37].

The following is an overview of various adopted approaches.

1. Metaheuristics
Metaheuristics are used in several optimization problems by employing a degree
of randomness to reach near-optimal solutions [38]. Metaheuristic algorithms are
classified in a variety of ways. One such scheme is: trajectory-based and population-
based [39]. Piecewise style movement in the search space is commonly used in
trajectory-based methods to find a single best solution (e.g., simulated annealing).
Population-based methods, on the other hand, explore space for numerous solutions
and work together to arrive at a final answer (e.g., physical inspired, evolutionary and
nature inspired computation). Genetic Algorithm, Differential Evolution and Memetic
Algorithm are examples of Evolutionary computation. Central Force Optimization,
Gravitational Search Algorithm and Intelligent Water Drops are examples of Physical
inspired computation. Nature inspired computations imitate how naturally occurring
events interact in diverse environmental circumstances, for example, bat algorithm,
cuckoo search and so on [40]. Swarm Intelligence (SI) is the collective behavior that
emerges from a collection of social insects, information sharing for learning, self-
organization and co-evolution throughout iterations [41]. In order to learn new things
and make choices, agents search for neighboring agents and interact with them or the
environment. Agents use their expertise to make conclusions and execute appropriate
actions in order to fulfill their given goal [42,43].

2. Learning Methods
Without being specifically designed, learning is the capacity to spontaneously acquire
new knowledge and enhance it through experience [44]. Examples of such AI methods
include Reinforcement Learning (RL), Artificial Neural Networks (ANN), and Deep
Learning (DL).
ANNs have proven effective in handling complicated problems due to their capacity
to replicate biological brain networks and human qualities. New data samples can be
supplied after an ANN has been trained using training data sets, allowing the trained
ANN to be utilized for forecasting and classifying purposes. The capacity to describe
non-linear and complicated functions without much disruption between input/output
variables is a fundamental benefit of employing ANNs over other approaches. Many
problems involving optimization, function approximation, time series analysis, etc.,
are solved using it. Radial Basis Function network, Multi-Layer Perception (MLP),
Back-Propagation, and Recurrent Neural Network (RNN) are examples of ANN
designs found in the literature [27].
RL is a field of AI that deals with how intelligent creatures should behave in a
particular situation in order to maximize the idea of cumulative reward. In the RL
process, learning is performed by the interaction between the learning entities and
their surrounding environment. The three elements of RL are the value function,
reinforcement function, and environment. The RL context is frequently dynamic,
with a variety of states where each state has a set of feasible options at any given
moment [45].
DL is an interesting AI method using representation learning since it can learn without
supervision and from unstructured and unlabeled data. DL design contains several
levels and is regarded as a universal learning method that is utilized to solve a wide
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range of problems [46]. DL is also utilized to handle big data challenges and produce
effective data abstractions and representations [47]. DL differs from other machine
learning algorithms in that feature extraction is expressed on numerous hierarchical
levels. DL is currently being utilized in a variety of scenarios where intelligent
machines is beneficial:

• Humans cannot describe their knowledge (sound, speech, language recognition,
and vision).

• The answer must be tailored to a specific situation (e.g., biometrics).
• If the answer to an issue evolves through time, e.g., weather forecasting, predict-

ing stock price.
• Unavailability of human experts (e.g., navigating in Mars).
• High complexity problems for restricted reasoning abilities (e.g., ranking web

page, determining advertisement matches in Facebook, sentiment analysis).

3. Fuzzy Logic (FL)
FL is an AI method that mimics how humans make decisions. It is used for uncertain
reasoning and partial information management [27]. FL operates on the basis of a
“truth-value” range of 0 to 1 [48]. Membership value in a fuzzy set can be any number
from 0 to 1. Centroid defuzzification, maximum, and mean-of-maxima citer3 are some
examples [45].

4. Multi-Agent System (MAS)
MAS stands for self-organized intelligent system, which models a complex and un-
predictable real-world domain with many diverse interacting components, and where
system-level qualities are difficult to extract from component properties. MAS is made
up of several autonomous intelligent agents, all of which can cooperate to address
issues that are above the capacity of an individual agent. Distributed AI incorporates
MAS and have been shown to have several applications [43]. Agents address issues
and give more flexibility because of their intrinsic ability to analyze and make infer-
ences. Agents learn new contexts and behaviors through their interactions with other
agents and the surroundings. Agents then utilize their knowledge to determine and
carry out an action in order to complete their assigned objective.

These are some of the most common AI strategies for dealing with WSN problems
in recent years. In the following sections, we will provide the current research trends in
AI approaches used in WSN. We then discuss the security, fault detection and tolerance,
and quality of service challenges in WSN, and highlight alternative strategies to handle
these challenges using various AI techniques, as well as open research issues. Furthermore,
we compare them to identify appropriate technique(s) for addressing these WSN challenges,
as well as open research topics and future scope.

4. Related Surveys

In this section, we present and discuss existing studies and surveys in the secu-
rity, fault tolerance, and quality of service research categories that are relevant to WSNs.
Tables 1 and 2 show a comparison of the existing related surveys.

4.1. Security

The work in [49] provides an overview of WSN attacks as well as mitigating measures
against threats in WSNs. A comprehensive review is undertaken in [50] to highlight recent
sinkhole attacks in WSNs and associated preventive measures. State-of-the-art systems for
managing trust for WSN are studied in [51], their merits and weaknesses, as well as their
protection against internal threats, are equally assessed. In [52], WSN threats as well as
reactive and non-reactive jammers are studied and explored. Various algorithmic ways to
identify jammer threats were also examined and compared. Ref. [53] discussed a review
of the literature for trustworthy research on WSNs and security considerations, where a
study of important WSN security features is undertaken based on reputable literature,
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and various security elements are assessed using security-related characteristics to generate
various security criteria. The work in [54] addresses the possibility of reducing the security
costs of WSNs using machine learning (ML) algorithms. This paper conducted an analytical
study of the recent studies that worked to improve security in WSNs using ML algorithms.
Additionally, the authors showed the pros and cons of each study and the promising future
trends in this field. Ref. [55] examines the role of ML in solving the challenge of intrusion
detection in WSNs.

In [56], several sorts of threats in WSN are addressed and categorized as active/passive.
Furthermore, many Intrusion Detection Systems (IDS) were thoroughly studied, with de-
fects in tolerance, service denial, IDS-focused outcomes, trust, DL and functional selection
approaches all being investigated. Ref. [57] presents an in-depth examination of the features
of different authentication, trust, and key management techniques, as well as the benefits,
methodologies, and drawbacks of the existing key exchange, trust and authentication
mechanisms in WSN.

In [58], the authors explore several security challenges in WSN and briefly discuss
each type of difficulty in order to introduce open research issues. They also addressed
how ML may benefit WSNs, and they looked through articles based on ML from 2011 to
2019 to have a better idea of the recent developments in the area of WSN. The study in [59]
provides a brief review of 12 articles to handle security and privacy problems in WSN.
Ref. [60] discusses the security standards for WSNs and the current security challenges
along with the importance of security in WSNs, as well as analyzes the current situation
of security problems facing WSNs which includes active and passive attacks that come
from internal and external sources. In addition, it discusses reputation and trust in WSNs,
its history, significance, concept, and characteristics. The aim of the work in [61] is to
analyze cybersecurity and identify the threats generated by WSNs, as well as the encryption
algorithms incorporated into WSNs for data security.

4.2. Quality of Service

Due to the changing network environments, varied traffic patterns, and constrained
resources, providing QoS to various areas of WSN applications remains a problem [62].
In this context, ref. [62] presents a study of QoS techniques in WSN for computational
intelligence driven routing strategies. The work in [63] has a brief discussion on QoS in
relation to MAC protocols in WSNs. Ref. [64] studied QoS-guaranteed routing methods
for WSN-MANETs. The authors presented a systematic review of QoS parameters in
light of ML approaches in [65]. They propose a methodological framework for assessing
performance as well as a statistical analysis of ML utilized for QoS indicators during
the previous 10 years, from 2011 to 2021. Ref. [66] provides a comprehensive review and
analysis of QoS usage in IoT networks and protocols, including QoS-aware IoT architectures,
layers-dependent QoS metrics, and resource-optimization methods for IoT networks.

4.3. Fault Detection and Tolerance

A fault detection system examines network status data, narrows the problem range,
and locates and detects defective nodes. The fault diagnosis refines the fault type and
diagnoses the reason for the network issue based on the fault detection [67]. In this regard,
the work in [67] examines techniques and algorithms that can be used to monitor and
diagnose defects, and then summarizes the shortcomings and advantages after examining
their relevant technology and algorithm. Six ML methods for fault detection in WSNs are
summarized and compared in [68]. The most accurate methods were determined to be
SVM and DL. In [69], a comparative study of existing fault-tolerant methods is proposed.
A new categorization of fault management frameworks has been presented in [19] based
on how well they control faults and how many nodes are involved. The frameworks
were then examined in terms of their primary issues. A comprehensive classification and
analysis of fault tolerance structures and their essential components is presented in [70],
as well as a categorization of errors from multiple angles. Several existing automated fault
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detection and diagnosis approaches in WSNs are discussed in [71], along with their benefits
and drawbacks.

It should be emphasized that earlier work only covered a portion of the literature on
using AI approaches to handle security, fault detection and tolerance, and QoS concerns in
WSN. This study’s purpose is to give a current review that compares various AI method-
ologies in order to propose new ideas for tackling existing WSN difficulties. Furthermore,
there has been minimal existing related work concentrating on employing AI approaches to
solve security, fault detection and tolerance, and quality of service concerns associated with
WSNs, and our goal is to fill the gap in existing studies. The application of AI solutions for
WSNs is the goal of this work, and we explore all parts of it in order to meet several WSN
difficulties such as security, fault detection and tolerance, and QoS. A list of open research
issues has been provided, together with considerable bibliographic information, which
provides useful recent research trends on the topic and encourages new study possibilities.

Table 1. Existing surveys and reviews related to security, fault detection and tolerance, and quality of
service in WSNs.

Reference Year Title Limitations

[49] 2020 A Review On Security in WSN Only consider overview on WSN attacks along with limited discussion about defend
techniques against threats in WSNs. AI methods utilization in WSNs not considered.

[50] 2020 Addressing Sinkhole Attacks in WSNs-A Review Only focus on highlight sinkhole attacks in WSNs and their prevention methods. AI
methods utilization in WSNs not considered.

[51] 2020 Trust-based attack and defense in WSNs: a survey Only focus managing trust for WSN and discussion about their advantages and
disadvantages. AI methods utilization in WSNs not considered.

[52] 2020 WSN jammer attack: A detailed review Only focus reactive jammers along with non-reactive jammers in WSNs. AI methods
utilization in WSNs not considered.

[53] 2020 A survey on security requirements for WSNs: focusing on the characteristics
related to security AI methods utilization in WSNs not considered.

[59] 2020 Security and Privacy in WSNs: Advances and Challenges Limited discussion focus on security and privacy problem in WSN. AI methods
utilization in WSNs not considered.

[55] 2021 Role of Machine Learning Algorithms Intrusion Detection in WSNs: A Survey Focus on identifying intrusion in WSNs. ML method is only considered.

[56] 2021 Survey On Various Attacks And Intrusion Detection Mechanisms In WSNs Focus on Attacks and Intrusion Detection problem in WSNs. Limited discussion on
Deep learning to handle Attacks And Intrusion Detection was proposed.

[57] 2021 A comprehensive study on key management, authentication and trust management
techniques in WSNs AI methods utilization in WSNs not considered.

[58] 2021 Security issues in wireless sensor network—A survey Focus on Intrusion Detection problem in WSNs. ML method only considered.

[60] 2022 Review on Security Issues and Applications of Trust Mechanism in WSNs Focus generally on security challenges and trust mechanisms in WSNs. AI methods
utilization in WSNs not considered.

[54] 2022 Machine Learning for Wireless Sensor Networks Security: An Overview of
Challenges and Issues ML method is only considered.

[62] 2020 A survey on QoS mechanisms in WSN for computational intelligence based routing
protocols Focus only QoS-aware routing approaches based on CI.

[63] 2020 Review on QoS aware MAC protocols for multichannel wireless sensor network Limited discussion focus on QoS aware MAC protocols in WSN. AI methods
utilization in WSNs not considered.

[65] 2021 A Systematic Review of Quality of Service in Wireless Sensor Networks using
Machine Learning: Recent Trend and Future Vision ML method only considered.

[64] 2021 A Survey of QoS-aware Routing Protocols for the MANET-WSN Convergence
Scenarios in IoT Networks

Focus on QoS-aware Routing Protocols. AI methods utilization in WSNs not
considered.

[66] 2022 QoS-aware IoT networks and protocols: A comprehensive survey AI methods utilization in WSNs not considered.

[19] 2020 Fault Management Frameworks in WSNs: A Survey Not focused on the role of AI methods to fault management problem in WSNs.

[67] 2021 A Review on Fault Diagnosis in WSN Focus on fault diagnosis in WSN. Limited number of AI methods are considered.

[69] 2021 Survey on fault tolerance-based clustering evolution in WSN Focus mainly on clustering in WSNs. Fault detection and diagnosis and the role of AI
methods are not considered.

[68] 2021 A Review of ML Based Fault Detection Algorithms in WSNs ML methods are only considered.

[70] 2022 Fault Tolerance Structures in WSNs: Survey, Classification, and Future Directions ML methods are only handled.

[71] 2022 Automated Fault Diagnosis in WSNs: A Comprehensive Survey The role of AI methods are not considered.
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Table 2. Comparison: Proposed work with existing related reviews of security, fault detection and
tolerance, and quality of service in WSNs with respect to different AI methods.

Ref. (Year) SI EC NI FL DL MAS PC RL ANN Hybrid ML

[49] (2020) × × × × × × × × × × ×

[50] (2020) × × × × × × × × × × ×

[51] (2020) × × × × × × × × × × ×

[52] (2020) × × × × × × × × × × ×

[53] (2020) × × × × × × × × × × ×

[59] (2020) × × × × × × × × × × ×

[62] (2020) X X × X × × × X × × ×

[63] (2020) × × × × × × × × × × ×

[19] (2020) × × × × × × × × × × ×

[55] (2021) × × × × × × × × × × X

[56] (2021) × × × × X × × × × × ×

[57] (2021) × × × × × × × × × × ×

[58] (2021) × × × × × × × × × × X

[65] (2021) × × × × × × × × × × X

[64] (2021) × × × × × × × × × × ×

[67] (2021) × × × X × × × × X X X

[69] (2021) × × × × × × × × × × ×

[68] (2021) × × × × × × × × × × X

[60] (2022) × × × × × × × × × × ×

[54] (2022) × × × × × × × × × × X

[66] (2022) × × × × × × × × × × ×

[70] (2022) × × × × × × × × × × X

[71] (2022) × × × × × × × × × × ×

Proposed X X X X X X X X X X X

5. Security Challenges in WSNs

Numerous security issues in WSNs must be handled, such as node detection and veri-
fication, key establishment [12,14], node authentication [15,16], secure group management,
secure localization and secure aggregation of data [17,18]. Tables 3 and 4 gives a summary
of AI solutions to WSN security issues.

5.1. AI Based Solutions to Security Challenges in WSNs

Rapid advancement and large scale implementations of WSN have both made sensor
localization security a critical challenge as well as a serious step. The efficiency of node
localization cannot be guaranteed in hostile conditions without appropriate protection
measures. In [17], a trust-based scheme for secure WSN localization is proposed using
neural network. It performs localization of nodes with the proper evaluation and use
of beacon nodes and ensures that the unknown nodes are localized with valid location
information. The evaluation model examines the activity of beacon nodes and uses a
screening strategy to identify malicious beacons.

WSN gathers sensitive data that must be secured from intruders. The authors of [12]
presented a method for ensuring privacy of node locations by applying Ant Colony Opti-
mization (ACO). They introduced an energy efficient and flexible approach for modifying
the routing strategy of nodes that makes it hard for an attacker to identify the actual lo-
cation of nodes. A random strategy for forwarding the packet is achieved through the
use of ACO, and this helps in ensuring privacy. Any neighbor node can be the receiver,
and it is unlikely to recognize the next-hop node. By tracking the movement of the packets,
the intruder therefore cannot infer the position of the source node since the packets are
delivered after a random delay. The scheme is efficient in preserving the location privacy
of sensors and also enhances the network lifetime. Another intrusion detection system
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proposed by [72] is based on point-to-point communication by imitating the web spider
hunting procedure, in which the fake WSN nodes acted as spiders and the attacker as prey.
To analyze the performance, the authors conducted two tests, one by evaluating the impact
of communicating directly between the intruder and the node, whilst the other measuring
the response time of nodes with various latencies.

A light weight and dynamic TRUST model is presented in [73]. Honey Bee Mating
Algorithm is utilized to restrain a malicious node from becoming a CH and selects the
most suitable node as CH. The new scheme is more energy efficient and secure. In [74],
a hybrid system that combines spectral clustering (SC) and a sparse auto encoder-based
deep neural network (DNN) called SCDNN is proposed. The data set is initially converted
into k-subsets according to sample similarity as done in SC. In the next step, the distance
between data points in the training and testing set is computed and provided to DNN
as input for detecting intrusion. An SI technique to defend from cheating and tampering
attacks using a trusted node, called SBTN-TC, is introduced in [75]. The trusted node (TN)
is responsible for recognizing the cheating or tampered node by adopting SI. To ensure
security in communication between TN and a node, a cryptographic method based on
puzzle hiding is utilized.

The authors of [76] developed a secure WSN middleware (SWSNM) using an unsuper-
vised learning algorithm known as generative adversarial network. SWSNM involves two
networks, a discriminator (D) and a generator (G). The G generates and merges fake data
that resemble the original sample with the original sensor data, which creates confusion for
the attacker. The D involves multiple layers and is responsible for differentiating fake data
from the original one. The desired output is the actual data interpretation communicated
safely in the WSN. The results of implementation depicts that the framework improves
data accuracy and security. In [77], a DL-based architecture is proposed to detect the WSN
localization attacks. A feature representation scheme based on complex network theory
is introduced which integrates location features with topological indexes for enhancing
classification performance. Stacked Denoising Autoencoder is adopted to learn and inter-
pret the characteristics of input data. The weights are updated through back propagation.
The method is found to be successful in efficiently identifying the Normal Beacons, Replay
attacks, Sybil attacks and Interference attacks.

A trust value evaluation model to analyze the trust degree of nodes is proposed by [78].
The scheme, named SRPMA, aims to achieve the goal of maximizing the WSN security
with minimal consumption of energy by introducing a secure scheme for WSN routing
using multi-objective ACO. SRPMA modified ACO to include the trust value of the routing
path and the nodes residual energy as the two objectives for optimization. The final route
optimization result is achieved using the Pareto optimal solution method.

A WSN security technique by using attack graph and enhanced binary particle swarm
optimization (BPSO) is proposed by [79]. Upon detection of intrusion with the help of
an attack graph, a series of weighted security strategies are utilized to analyze the cost
for defending the attack. Then, improved BPSO is applied for optimization and selects
the minimal cost defense scheme. The optimal security scheme is then determined using
M-IDS along with game theory, and Markov Decision Process (MDP) is utilized to further
predict and prevent future intrusion by devising suitable defense schemes.

An important security challenge in WSN is the safe transmission of data packets
between nodes. As a solution to this challenge, [80] proposed an efficient clustering
scheme in which the CH is determined using adaptive Cuckoo Search Optimization (CSO).
The method is successful in improving scalability and lifetime of the WSN with reduced
delay. A fuzzy based jamming attack detection scheme by incorporating Fuzzy Inference
System (FIS) (based on Takagi–Sugeno FL) and adaptive neuro-fuzzy inference system
(ANFIS) is proposed in [81]. The two proposed methods make use of RSSI and packet
delivery ratio (PDR) for jamming attack detection. The schemes are implemented in CH and
BS to determine attacks at CMs and CH. The use of FL helps to optimize the used metrics for
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better identification of jammer attacks. The results indicate that the ANFIS-based scheme
achieves better performance than the FIS-based scheme.

Another approach for protecting WSNs from jamming attacks is provided in [82],
which introduced two schemes to identify the maliciousness level of nodes in clustered
WSNs. The first scheme contains two modules named monitoring and certification modules.
The monitoring module is responsible for discovering the victim nodes of jamming attacks,
and the other module secures the WSN from such attacks. The second scheme uses FL to
optimize the metrics for accurate detection of jamming attacks.

A detailed analysis on the application of ML and DL techniques in providing better
intrusion detection systems (IDS) for WSN is presented in [83]. The performance is studied
and compared with existing adaptive ML-based IDS (ASCH-IDS). Ref. [84] modeled the
cooperative communication process using selected relay in WSN as MDP and is based on
Deep RL. The proposed DQ-RSS (DQN-based relay selection scheme) involves training of
the deep-Q-network(DQN) based on mutual information and outage probability, and the
optimal relay selection is achieved without using any prior data or a WSN model. This helps
to accelerate the learning process by processing high-dimensional state spaces. DQ-RSS is
compared with Q-learning based relay selection technique, and the effectiveness is studied
in terms of system capacity, outage probability and energy expenditure. The results prove
that DQ-RSS offers better performance with faster convergence than the other schemes.

A secure DL scheme for dynamic WSN-IoT networks based on dynamic clustering
is proposed in [85]. The network is developed with Bi-Concentric Hexagons and MS
technology to boost energy efficiency. Within the Bi-Hex network, dynamic clusters form,
and the best CHs are chosen using the Quality Prediction Phenomenon to ensure energy
efficiency and QoS.

Because IoT users can access sensory data, this research also focuses on IoT user
security. To authenticate IoT users, they employ a data mining approach. The a priori-based
validation algorithm authenticates all IoT users by mapping the best authentication feature
set for each user. Ref. [86] proposed a method for obtaining IoT data that is both secure
and efficient. Setup, secure data gathering, and reconstruction are the three phases of
the proposed approach. The features of primes are used in the setup phase for effective
clustering and routing tree method lowers the power expended during data communication.
Secure intra- and inter-communication methods are elements of the secure data collection
step. The compressive sensing-based data encryption and compression is employed during
safe intra-communication procedures. Incorporating Private and Public key schemes while
taking into consideration the energy of IoT devices in the secure inter-communication
method improves the security performance. Finally, a viable recovery method that is a
hybrid of Bees and Genetic Algorithms effectively retrieves actual data from compressed
data, thereby improving the data recovery performance.

In [87], a feature selection method that picks the ideal amount of features for detecting
identified and unidentified categories of attacks based on an intelligent DT approach is
introduced. Furthermore, an intelligent modification to the DT based on fuzzy tempo-
ral constraints is proposed for more precisely identifying network traffic and network
users. Convolutional neural networks are also used to classify enormous amounts of data.
Ref. [88] develops a dynamic smart key management system with the aim to improve the
network’s security by eliminating cryptanalyzed nodes, increase the network’s resistance
against cryptanalysis attacks, and minimize memory and energy usage and communication
overload. For path key creation and additional nodes insertion, the fuzzy systems of FSDS1
and FSDS2 were used in the design of this system. Malicious nodes that disrupt mobile
WSNs are a threat.

A Reinforcement Learning-based malicious node detection model is introduced in [89].
They also devised a reinforcement learning approach for detecting smart harmful nodes
and built a strong classifier for detecting these smart malicious nodes that is updated on a
regular basis. Ref. [90] examined cyber-physical systems, which are made up of a network
of sensor and robotic nodes. The authors have looked into the challenge of connectivity
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restoration once multiple nodes die at the same time. The suggested strategy involves
a distributed repositioning of the highly eligible nodes in each partition to the center
of deployment (CoD). FL is used to choose recovery participants according to residual
energy, node rank, and distance from CoD. They tested the proposed methods (connectivity
restoration with FL, CoRFL2, CoRFLN) using rigorous simulations and a testbed with a
few robots. Ref. [91] presented a privacy preserving data fusion method to enhance secure
and reliable fusion of data in WSNs. To reduce energy utilization, the ideal number of
CHs is chosen, and adaptive clusters are formed based on node energy and node location
relationships. The cluster members then gather and encrypt data, which the CH then cleans
and aggregates. Furthermore, CHs and the sink may fuse data within as well as between
clusters by assessing data correlation and forming a back propagation neural network for
improved data fusion performance.

In the paper [92], a fuzzy rule-based system (called FzMAI) was presented to prevent
intrusions in WSN. The suggested technique works by categorizing nodes into three groups:
“red,” “orange,” and “green.” The color “red” indicates malicious nodes and should not be
allowed into the network. The color “orange” indicates that the node “may be malicious”
and should be treated with caution. The color “green” indicates non-malicious nodes.
Packet transmit to base station, power usage, packets obtained and packet delivery rate are
the parameters used in the method.

In [93], a hybrid solution using MS is introduced to secure the WSN data gathering.
The scheme includes a LEACH-based Firefly algorithm, and a Hopfield NN (WSN-FAHN).
MS is used to enhance energy efficiency and to maximize WSN life. Firefly algorithm con-
duct clustering and authentication in two levels is used to overcome DoS attack. Moreover,
the Hopfield NN identifies the route of the MS for successful transfer of data from CH.

In [94], clustering is performed by integrating distributed autonomous fashion with
fuzzy if–then rules. For routing, an adaptive method that preserves the privacy of source
location is suggested. A Principle Component Analysis (PCA) based secure scheme for
data collection is utilized to provide end-to-end authenticity and privacy. The work
in [95] proposed a complete trust estimation technique to improve power usage, trust,
and safety. The dynamic trust is assessed after clustering by integrating direct and indirect
trust. Finally, the unified trust mechanism may adjust the parameter and updates the trust
level to provide adaptability. A physical danger is posed by a clone attack, in which an
attacker may quickly seize a node and steal data from it, then reprogram it to make a copy
of the node. As a replicated node cannot be discovered, copies will be dispersed throughout
all network regions and dubbed real networkers. The WSN can be either static or dynamic
when centralized clone attack detection mechanisms are applied. A promising approach
for the identification and categorization of clone nodes is provided in the paper [96].
The preprocessed input data is further normalized to eliminate any undesired content.
The best characteristics are chosen for the classification procedure. Modified PSO is utilized
in order to achieve the best results. After that, the data is grouped using the K-means
cluster scheme. MPSO and the Modified ANN (MANN) are used for training, and MANN
helps to identify and categorize the clone attack as normal or harmful. Monitoring illegal
movement within WSNs is the most difficult task. The attacker favors mobile malicious
nodes because the variety of paths allows him to strengthen his intention. An approach
using three-step negotiation is used in [97] to detect the mobile intruder node by employing
the mobile agent. Multi-mobile agents are employed in several techniques for WSN
data gathering following authentication. However, due to mobility, power expenditure,
and latency, authenticating entire nodes in WSN is inefficient. As a solution, clustering
is performed, and the corresponding cluster heads are then validated by a mobile agent.
In [98], a DL-based intrusion detection process is demonstrated. By leveraging cross-
correlation to choose appropriate features, the computational cost of the proposed DNN is
lowered. The model efficiently classifies various types of threats in the NSL-KDD dataset.
It is compared to traditional ML techniques like SVM, DT and random forests. In [99],
different secure routing strategies are proposed to improve packet transmission efficiency;
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however, finding the ideal path without compromising reliability is difficult in WSNs.
Particle-Water Wave Optimization (P-WWO), an efficient and optimum security routing
method, is introduced for data routing along a safe path. The cluster head is chosen
using PSO-based cellular automata with fitness value to estimate the secure path required
to broadcast the data packets. The suggested optimization utilizes the path maintenance
procedure to determine if the packets travel along the designated path or are to be re-routed.
Due to its strong capacity to mix and efficiently blend input characteristics to create suitable
conclusions about CHs, FISs are the ideal alternative for constructing successful clustering
methods for energy-efficient routing protocols in WSN. In [100], fuzzy type-2 based on CS
is used for electing CH. In inter-cluster transmission, a threshold-based communication
technique as well as a multi-hop routing strategy are utilized for data communication.
Intrusion detection models are defined to analyze occurrences that exceed security controls
and expose regular data flow to risk. Ref. [101] proposed an approach to analyze the
traffic flow processing time in the existence of an attacker, but it has no influence on the
unfairness of the traversing flow. The use of Graph Neural Networks to conserve network
flow from source to sink is being implemented. This successfully identifies the presence
of traffic flow fairness in multi-hop transmission with resilience to variable connections.
Because localization procedures completely rely on nearby relations to infer the position of
nodes, WSNs are extremely sensitive to localization threats. Ref. [102] proposed methods
for localization threats, independent and collusion threats. The Improved Randomized
Consistency Position Technique is the first method they offer for determining the position
of unknown nodes and the PSO to identify the unknown nodes’ coordinates. The other
is Enhanced Attack-Resistant Secure Localization Technique, which is a mix of voting
technique, position optimization, and PSO for identifying the position of unknown nodes.
The work in [103] introduced a security model for WSNs. It can withstand the majority of
known network intrusions without dramatically affecting the power usage of nodes. It
also ensures security by calculating trustworthiness and forming mutual trust between
trustworthy nodes, as well as operating the trust evaluation system using a centralized
strategy. Finally, based on the LEACH contract, it suggests a novel safety structure suitable
for securing the WSN.

In [104], a hybrid method of PSO and GWO is employed for secure data communica-
tion and power efficiency. To realize the environment, a Learning Dynamic Deterministic
Finite Automata (LD2FA) is proposed and implemented. The main purpose of LD2FA is
to send the learned and approved string to a hybrid model in order to optimize the paths.
Ref. [105] suggested a simple system known as the cuddling death model, which is based
on the Artificial Bee Colony algorithm (ABC). The goal of the strategy is to locate any unfit
or fraudulent cluster heads in the WSN and replace them before they pose a danger to
any of the other nodes within the WSN. Due to suspicious occurrences such as replication
nodes, some nodes in the WSN have to expend high energy. To eliminate data loss and save
power usage, the node replication must be anticipated. The authors of [106] developed a
unique method for node identity verification based on Whale optimization to recognize
replicating nodes in a Mobile WSN. The objective function is employed to determine each
node’s power consumption and to discover precise replicating nodes. After establishing the
needed number of nodes, the specifications of each node are recorded, and the replicating
node is discovered during the screening and predicting phase by examining the node’s
characteristics and conduct. The work in [107] aimed to enhance different QoS metrics
such as latency, hops and energy by proposing a power effective and secure routing scheme
based in fuzzy logic and trustworthiness values of nodes. The node’s instant as well as
overall trust is examined for efficient and safe routing. Ref. [108] proposes an intrusion
detection scheme to satisfy the QoS metrics such as energy, security and lifetime. In this,
a neuro-fuzzy model is used for clustering. Then, optimal heads are decided based on
Deer Hunting Optimization method (DHO). A cross layer protection method based on
fuzzy logic and trust values is proposed in [109]. It employs several parameters retrieved
from cross-layer data to mitigate the impacts of safety threats in WSN. The fault tracking
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mechanism uses an enhanced CNN model based on trustworthiness to discover malicious
nodes in WSN.

In [110], a secure method using fuzzy and dragonfly algorithm (DA) is utilized for
data aggregation. Using fuzzy scheduling, the data transmission rates are adapted and an
aggregation tree between CHs is built for inter cluster aggregation. A fuzzy scheduling
system is used to adapt the appropriate data transmission rates of cluster member nodes
during the intra-cluster data aggregation phase. An aggregation tree is built between the
cluster head nodes during the intercluster data aggregation phase. To discover the best
aggregation tree between CHs, DA is applied. A modified Residue Number System (RNS+)
based encryption scheme is used for securing the data transmission. An enhanced model
based on PSO and SVM is introduced for intrusion detection in [111]. The results suggest
that this model boosts the detection rate of new threats while improving the accuracy of
unknown threats. Moreover, adequate SVM parameters are chosen to avoid excessive or
low fitting problems. Ref. [112] developed a Multi-Ant Colonies based Routing Mechanism
scheme based on enhanced ant meta-heuristic and an enhanced trust evaluation strategy.
Ref. [113] presented an attack recognition model using fuzzy and feed-forward NN where
five types of attack on routing is examined and successfully identified to enhance QoS and
overall network performance. The feed-forward NN is trained using fuzzy rules, and the
accuracy level is assessed using experiment. The findings show that the suggested model
outperforms others in terms of prediction accuracy.

5.2. Open Research Issues and Challenges

In the future, safe trust-based routing and trust management solutions will be nec-
essary since WSNs face multiple security risks and system failures. Future work in this
approach will include the employment of intelligent agents for distributed communication,
as well as system testing on a real network test bed to improve and evaluate performance.
In addition, using several MSs to minimize energy usage in WSNs is advised. Performance
experiments using different attackers to examine the reply times can be conducted to
enhance the existing works. This can help in developing a better model, extending the
work to larger networks with more sensors, considering the sensor nodes’ mobility and
challenging communication models to investigate their influence on real WSNs.

Additional aspects of a real-time localization threat recognition system for realistic
WSNs may be researched and implemented to secure localization schemes by employing
AI techniques. To increase the applicability, creditability, and reliability of the assessment
findings, more criteria must be addressed in trust evaluation and under various network
circumstances. Other aspects of node localization efficiency, such as processing expenses
and communication cost, must be looked into and evaluated. Study into effective data
fusion strategies for WSNs, extraction of features, data communication privacy and location
privacy preservation will all require more attention in the future.

Data protection and resilience in WSNs is a relatively recent subject of study. Since
network resources are limited, energy efficiency, computational efficiency, and overall
quality of performance must be taken into account. To build an ideal protection mechanism,
further study is required. In future research, security and protection for the task of data
aggregation must be ensured using methods like digital signature and watermarking. This
assures data integrity.
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Table 3. Summary of AI-based solutions to WSN security problems discussed in Section 5.

AI Techniques Algorithm Ref. Objectives Implementation Approach Mobility Performance Metrics

SI ACO [75] Tampering and Cheating Attack Not specified Distributed Static Residual Energy, Packet Delivery Ratio, Packet Drop and Overhead.

SI Ant Colony Algorithm with
Multi-objective (SRPMA) [78] Increase residual energy of nodes and

the trust value of a route path NS2 simulation Distributed Static Packet loss rates, Routing loads, and Average energy consumption.

SI Binary PSO [79] Minimizing key strategy set Simulation Centralized Static Average number of iterations, and Average calculation time of a single
iteration.

SI ACSO [80] Optimal CH selection PYTHON simulation Distributed Static
Performance value of Bandwidth and Bit Error Rate, Rate of Packet
Delivery, Sensitivity, QoS, Decryption Time, Encryption time,
and Accuracy.

SI Honey Bee mating [73] CH selection Test bed Distributed Static Network effectiveness, Scalability, and Average residual energy.

SI Web Spider [72] Intruder detection in the WSN Real test bench Centralized Static Response time.

SI EELP [12] Preserve sensor’s location Simulation Centralized Static Scalability, Fault Tolerance, Latency and Energy difference.

SI PSO [102]
Solve the sensor localization
estimation problem under the
localization attacks in WSNs

C# simulation Centralized Static Positioning success rate, average positioning error of positioning
methods, success rate of changing the number of malicious nodes.

SI Artificial Bee Colony [105] Secure scheme for the organization of
WSNs MATLAB simulation Distributed Static Energy consumption, packet delivery ratio, energy efficiency,

authentication delay, and throughput.

SI Multi-Ant Colonies (MACRAT) [112]

Enhance security in WSN using trust,
Increase network life, Choose the path
with the least number of hop to
destination and High throughput

MATLAB simulation Distributed Static Packet loss rate, exchange latency, malicious nodes detection rate, error
rate, transmitted data receiving rate, and throughput rate.

SI Particle Swarm Optimization [111]
Improve the detection accuracy and
convergence speed of intrusion
detection

MATLAB simulation Distributed Static Detection rate, accuracy, and false alarm rate.

SI Whale-based Node Identity
Verification (WbNIV) [106] Detecting replication nodes in the

Mobile WSN MATLAB simulation Distributed Mobile Accuracy, packet drop and delay rate and power consumption.

FL FIS and ANFIS [81] Jamming detection metrics MATLAB simulation Distributed Static RMSE, ANOVA test, and true detection ratio.

FL FIS [82] True detection ratio, false detection
ratio

MATLAB simulation and NS2
simulations Centralized Static True detection ratio, undetection ratio and false detection ratio.

FL FzMAI [92] Avert intrusions NS2 simulation Distributed Static Sensitivity, Positive Predicted Value, and Negative predicted Value.

FL DSKMS [88] Key management NS-Alinone-2.35 simulation Distributed Static Memory space requirements, communication overload,
and energy usage.

FL CoRFL, CoRFL2, and CoRFLN [90] Select best recovery candidate MATLAB simulation and
Prototype-based Experiments Distributed Mobile

Traveled Distance Per Partition, Recovery Team Energy, Total Traveled
Distance, Total Replacement Travel Distance, Average Movement Per
Node, Messaging Overhead, and Running Time Complexity.

FL IDAF-FIT [94] Secure Data Aggregation in WSN Tiny OS Distributed Mobile Network lifetime, packet delivery ratio, packet dropping ratio, residual
energy and energy consumption.

FL CLS-FLTCM [109] Identify malicious nodes on the
network NS-2 simulation Centralized Static Detection accuracy, false-positive rate (FPR), and fake-negative rate

(FNR).

FL SUCID [108] Secure unequal clustering protocol
with with intrusion detection MATLAB simulation Distributed Mobile Energy Efficiency, Network Lifetime, and Average Delay.

FL SEORMP [107] Secured and energy-efficient routing NS2 simulation Distributed mobile Packet Transmission Ratio, Energy level, and Network Lifetime.
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Table 4. Summary of AI-based solutions to WSN security problems discussed in Section 5.

AI Techniques Algorithm Ref. Objectives Implementation Approach Mobility Performance Metrics

Hybrid PSO and GWO [104] Optimal route MATLAB simulation Distributed Static Consumption of energy, network lifetime, throughput

Hybrid fuzzy type-2 and CSO [100]
Overcome the limitations in clustering
algorithms by optimizing routing
protocol, and trust management

Matlab simulation Centralized Static total energy consumption, energy balancing, and network lifetime.

Hybrid PSO and WWO [99] Optimal secure routing algorithm PYTHON simulation Distributed Static Energy balancing index, coverage, number of alive-nodes, and average energy.

Hybrid FL and dragonfly [110] Secure data aggregation NS-Allinone-2.35 simulation Centralized Static consumed energy, Processing time of the sensor nodes , end to end delay, Network
delay, Network lifetime, and Packet delivery rate.

Hybrid GA and BEEs [86] Minimize reconstruction error Simulation Centralized Static MAPE, Average consumed energy, standard deviation, ANMSE, and Network lifetime.

Hybrid FL and CNN [87] Intrusion detection NS2 simulation Distributed Static Comparative analysis, Packet delivery analysis, and Delay analysis.

Hybrid of FL and FFA [93] Prolong network lifetime NS2 simulation Distributed Static Misbehaving sensor ratio, Residual Energy, and Throughput.

Hybrid MPSO and MANN [96] The detection and classification of
clone node Not specified Distributed Mobile Packet delivery ratio and detection ratio.

Hybrid FL and FFNN [113] Intrusion detection NS2 simulation Distributed Static Accuracy, precision, recall, F-score, and specificity.

DL SCDNN [74] Attack detection Simulation Centralized Static Accuracy, recall, Error rate, and Specificity.

DL SWSNM [76] Reduce energy consumption Python simulation Centralized Static Energy usage, End-to-End Delay and Throughput.

DL RBC-IDS [83] Increase accuracy rate NS3 simulation Centralized Static Accuracy Rate, Detection Rate, False Negative Rate, F1 Score curve, and Receiver
Operating Characteristic curve.

DL DQ-RSS [84] Cooperative communications with
relay selection Simulation Centralized Mobile Performance convergence and Energy consumption.

DL SDALAIA [77] Increase average classification
accuracy Simulation Centralized Static The number of hidden layers, back-propagation, the ratio of suspicious beacons,

and beacon density.

DL Secure DL [85] Improve energy efficiency NS3 simulation Centralized Static Analysis on Encryption time, Analysis on delay, and Analysis on throughput.

DL Deep neural network [98]
Detect unauthorized access to
improve the security features of
WSNs

MATLAB simulation Distributed Static Accuracy, precision, recall, and f1-score.

DL GNNSFR [101] Intrusion detection NS-2 simulation Centralized Static Energy consumption, Packet size, Attack interval, Execution time, and end to end delay.

RL Neural Network [89] Detect malicious nodes Simulation Centralized Mobile Detection accuracy and False detection rate.

ANN Neural Network [17] Increase accuracy of sensor
localization Simulation Centralized Mobile and Static Average localization error.

ANN Back propagation Neural Network [91] Minimize the network energy
consumption OPNET simulation Distributed Static Network lifetime, Average residual energy, Death of nodes, Data fusion efficiency,

and Privacy leakage probability.

MAS MWC-DTE [95] Enhance the energy consumption,
trustworthiness and security MATLAB simulation Centralized Static Analysis of the trust value for malicious node, normal node, and dead node.

MAS Mobile agent [97] Identifying the mobile malicious Not specified Distributed Mobile Traffic overhead, mobility, delay, energy consumption, and drop ratio.

NI Biological immune system [103] Developed a trust management
system based on clustered WSN Not specified Distributed Static Collusion and Oscillation Attack Experiment, Energy Difference between Nodes,

Number of alive nodes.
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6. Fault Detection and Tolerance Challenges in WSNs

This section discusses various fault detection and tolerance challenges in WSNs and
their solutions through diverse AI methodologies. The continually changing topology of
the network requires mechanisms to achieve self-organization and tolerance to faults. It is
critical in the case of WSN applications owing to changes that may occur in the network
as well as the underlying applications. As a result, the researchers are concentrating their
efforts on the creation of AI-based intelligent models for creating self-organizing and
fault-tolerant WSNs.

Table 5 gives the summary of the AI-based solutions to fault detection and tolerance
challenges discussed in Section 6.

6.1. AI Based Solutions to Fault Detection and Tolerance Challenges in WSNs

In [114], a technique for fault detection of nodes in WSN based on PSO is presented to
address the high energy consumption issue and difficult computations in previous methods.
The threshold value range is determined by optimizing the measured data of nodes using
the PSO’s rapid convergence rate and simple principles.

In [115], a primary/backup strategy is employed to create a soft fault-tolerant task
allocation system in real-time. The discrete PSO building approach is achieved by using
a binary matrix encoding procedure to reduce job execution time, minimize node energy
costs, load handling, and establish a objective function to improve scheduling efficiency
and network stability. Additionally, it uses simultaneous passive backup copies and may
adaptively assess backup copy mode by arranging main copies as soon as feasible and
backup copies as slowly as possible. In [116], a PSO-based fault-tolerant and unequal cluster
model termed PSO-UFC is discussed. The PSO-UFC protocol uses an uneven clustering
technique in order to solve the unbalanced clustering problem. The network connection
is also recovered by picking an additional CH called Surrogate CH, which overcomes the
unexpected Master CH loss.

A distributed filtering strategy is designed to cope with the fault tolerance challenge
in nonlinear stochastic systems with WSNs [117]. Interval type-2 Takagi-Sugeno (IT2 T-S)
fuzzy scheme describes the nonlinear stochastic models of discrete-time form. Each WSN
sensor may obtain measurements subject to deterministic interconnection from itself and
its neighboring nodes in the topology. A fault reference scheme also improves the efficiency
of the model. A novel defect detection framework is designed in this model. They used the
Lyapunov functional approach to assess the reliability and performance of the developed
defect detection system. In the design process, new approaches are used to solve the
decoupling problem. The desired parametric matrices of fuzzy filters are built in compliance
with the parameters laid down, which is an essential prerequisite of reliable medium-
square asymptotic stability for the overall disruption attenuation performance in the fault
detection method.

A fault tolerant routing mechanism, using ABC and PSO algorithms, for mobile WSNs
(MWSN) is introduced in [118]. Their work focused on creating a reliable and robust data
transmission environment with the help of an efficient route recovery strategy, which
could offer enhanced lifetime and energy efficiency for MWSNs. A feed-forward NN
trained using a hybrid meta-heuristic algorithm that blends the ideas of exploitation and
exploration of the search space is used in [119]. For both nodes and connections in the
WSN, the implemented approach is successful in identifying composite faults such as soft
permanent, hard permanent, transient, and intermittent faults. Moreover, the technique
can categorize various types of faulty behavior of nodes as well as links in the WSN,

A modified PSO (MPSO) based fault detection in WSN suitable for use in monitoring
3D structures is proposed in [120]. After formation of WSN by placing the nodes on 3D
structure, the nodes send a signal to the destination. This is done to ensure if there is
any obstacle or problem in the path. MPSO is applied to determine the optimal solution.
After that, the shortest path between any two sensors is determined using Dijkstra’s
algorithm. The bandwidth is then analyzed using link fitness, and the round trip time is
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calculated to see if the path is good or not. The defects are identified using the accumulated
data received at the sink. This is a reliable and resilient method for 3D constructions’ health
monitoring with a small number of sensors.

The constrained resources and diverse deployment environments make fault detection
a challenging task in WSNs. In [121], six classifiers are applied and analyzed, which
include: Multilayer Perceptron, Support Vector Machine, Stochastic Gradient Descent,
Convolutional Neural Network, Probabilistic Neural Network, and Random Forest (RF)
on the prepared data-set. The evaluation is done according to the performance measured
using the metrics: True Positive Rate, Matthews Correlation Coefficients, F1-score and
Detection Accuracy. The analysis shows that the RF classifier outperformed the remaining
classifiers in terms of the mentioned metrics.

A distributed FL-based defective node detection technique for heterogeneous WSNs
is described in the paper [122]. In the case of events such as fire and transient failures,
each sensor node can accurately identify its condition using this technique. The approach
allows for recognizing and isolating problematic nodes in heterogeneous WSNs, as well as
the recognition of network events (such as fire) and a reduction in false positives. To do
so, each node employs a FL Controller (FLC), which multiplies the weight of the values
detected by neighboring nodes by different parameters. When the majority of nearby nodes
have detected different values from the tester node, the tester node might determine that it
is malfunctioning and enter the sleep mode.

The authors of [123] established a fault tolerance scheme to overcome errors that arise
due to link/node failure during data transfer from nodes to sink. It includes an improved-
handoff (Imp-Handoff) mechanism to offer fault tolerance during node failure, as well as
an enhanced quadratic minimum spanning tree (Imp-QMST) approach to discover the alter-
native connection if it fails due to different situations. In addition, four SI methods (ACO,
PSO, Imperialistic Competitive Algorithm, and Firefly algorithm) and also the PRIMS
algorithm have been used to construct MST to improve the data collection performance.

The work in [124] provides a method for fault detection and classification using
continuous density hidden Markov model (CDHMM) and multiple neural networks (NNs)
hybridization, including probabilistic neural network, learning vector quantization, radial
basis function and adaptive probabilistic NN. Hybrid models of each NN are used to
classify sensor defects, such as bias, drift, and random faults. The suggested methods are
analyzed using multiple performance measures, including precision in detection, Matthews
correlation coefficient, false positive rate, and F1-score.

A pre-fault detection mechanism for multilevel communication, which is based on
fuzzy rules in distributed WSNs, is discussed in [125]. To determine forwarding decisions,
it employs a fuzzy rule set. A fuzzy decision rule set is used to execute routing based on a
node’s fuzzy fault score state. To conserve energy and increase performance, the method
performs advance diagnosing of fault and determines the best path. The data communica-
tion rate is set based on the node failure state to avoid unnecessary energy usage.

A neuro-fuzzy optimization scheme for WSNs is proposed in [126]. To identify prob-
lematic nodes, the fuzzy estimator is utilized. When the primary fails, traditional techniques
use a centralized method to eliminate problematic nodes. In contrast to this, the fuzzy
estimator technique is used to identify and classify the problematic nodes.

The goal of the research in [127] is to investigate the energy efficiency and fault
handling challenges faced by the traditional LEACH-based approach. It uses a random CH
voting approach to accomplish dynamic use of resources with little regard for the nodes’
residual energy levels. In sophisticated obstacle conditions, the Q-Learning algorithm
calculates the best path for data communication. CH node uses the auxiliary data to
proactively determine the next hop, resolving the blind search problem. This approach
considerably improves the algorithm’s quality of learning and speed of convergence.

A smart fault tolerance technique is developed in [128] to improve the resilience of
IoT-WSNs. Regular and special are the two categories of nodes considered in this work.
The Maximum Coverage Location Problem approach is utilized to discover the best loca-
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tions for special nodes after regular nodes are deployed at random in the region. Clusters
are established depending on special node’s communication range once the best locations
have been found. Then, a Multi-objective Deep RL scheme finds the malfunctioning nodes
with the least amount of energy usage. Moreover, for optimization of Q-values, Double
DNN is employed. Ultimately, in each iteration, data is collected from special nodes using
a mobile sink.

The cluster-based fault tolerant routing scheme presented in [129] is a hybrid model
of FA and GWO. The proposed method increases the network’s QoS. Metrics including
the node’s energy, gateway load, distance between node to CH/BS, hop-count, and QoS
are among the fitness functions. The proposed fault-tolerant mechanism permits data
routing to nearby nodes if one node failure occurs. For validation purposes, the fault model
adopted is Weibull distribution.

6.2. Open Research Issues and Challenges

The future work in this area can focus more to expand the scope of the application.
Recommendations for further research in fault-tolerance should be encouraged to decrease
unneeded redundancy by incorporating technologies such as active backup overlapping
technology or others. The fault tolerance model that was used for statically installed sensor
nodes may be modified and validated for dynamic deployment settings; additional security
protocols and regulations can be added for further investigation.

For non-linear systems with sophisticated constrained communication, such as the
network-induced latency restriction and the event-triggered process in WSNs, extended
works can be devised. Researchers should focus more on assessing the correctness of sensed
data in future research and studies by using meta-heuristic algorithms to discover more
trustworthy nodes with fewer defective attributes.

Hidden Markov Model (HMM) based approaches like Weibull distribution and Bath-
tub distribution might be used to diagnose and forecast the remaining usable life and
aging profile of the sensors. In a real-time context, a hybridized algorithm may be used to
identify errors online. Alternative algorithms can be used to overcome issues relating to
training speed.

In terms of training and implementation, maintaining small training sets will help
you save time throughout the training phase, especially when it comes to online defect
detection. The efficacy of different classifiers in detecting an incoming data failure may be
investigated further so that a better system for fault prevention can be established.

Additionally, fault detection in WSNs necessitates a higher degree of attention in order
to effectively identify and detect abnormalities at the sensor node level. The algorithm’s
resilience may also be tested by altering the number of nodes. This will allow researchers
to determine how robust a WSN is to threats in various network circumstances and react
accordingly. In the future, studies on guaranteeing the security using cryptography
techniques to help WSNs for real time, resilient and energy efficient tolerance against faults
can be explored.
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Table 5. Summary of AI-based solutions to fault detection and tolerance surveyed in Section 6.

AI Techniques Algorithm Ref. Objectives Implementation Approach Mobility Performance Metrics

SI MPSO-SHM [120] Path optimization Simulation Centralized Static Routing overhead, Throughput, Packet delivery ratio, End to end delay and Average
message overhead.

SI PSO [114] Diagnose the fault nodes MATLAB simulation Centralized Static Diagnosis accuracy and Convergence rate.

SI FTAOA [115] Fault-tolerant task allocation Simulation Distributed Static Rate of convergence, Energy consumption, Deadline missing ratio, Execution time
consumption, Reliability cost, and Network lifetime.

SI PSO [116]
Construct a multi-hop routing tree
between the CHs with the optimum
number of clusters

MATLAB simulation Centralized Static Total energy consumption, Residual energy, and Network lifetime.

Hybrid Firefly Optimization (FA) and Grey
Wolf Optimization (GWO) [129] Enhance lifespan Matlab simulation Distributed Static network lifetime, average rate of success, nodes survival ratio, and end-to-end latency.

Hybrid Imp-QMST, Imp-Handoff [123] Fault-tolerant and improve quadratic
minimum spanning tree MATLAB simulation Centralized Static End-to-End Delay, Energy consumption, and Throughput.

Hybrid ABC and PSO (IABC) [118] Reduce energy consumption MATLAB simulation Centralized Static with MS Network reliability, Network connectivity, Packets loss rate, and Energy utilization rate.

Hybrid

ANN and combination of
gravitational search algorithm (GS)
and particle swarm optimization
(PSO)

[119] Fault diagnosis Testbed and Matlab simulation Centralized Static Mean squared error, False positive rate (FPR), False alarm rate (FAR), and False
classification rate (FCR).

FL IT2 T-S Fuzzy [117] Fault detection MATLAB simulation Distributed Static Plant reactions to disturbances and faults, residual signal, weighting fault signals and
their mistakes, and state responses.

FL EAPFM [125] Detect faulty nodes and find best
suitable path for routing Matlab simulation Distributed Static Fuzzy fault count, Data delivery rate, and power usage.

FL ANFIS estimator [126] Detect faulty nodes Matlab simulation Distributed Static Fault detection accuracy.

FL FIS [122] Fault detection Omnet++ and MATLAB simulations Distributed Static Detection accuracy and Number of false positives.

ANN CDHMM [124] Sensor Fault Detection and
Classification Matlab simulation Centralized Static F1-Score, Average detection accuracy, False Positive Rate, and Detection accuracy.

RL Q-Learning algorithm [127]
Analyze the energy conservation and
fault-handling problems inherent in
the classic LEACH-based technique

Matlab simulation Distributed Static Energy efficiency, Life Cycle, Delay Time, Perception accuracy, Scalability,
and Fault tolerance

DL Multi-Objective Deep RL (MO-DRL) [128] High precision and low complexity
detection of defective nodes NS-3.33 Distributed Static with mobile sink Fault Detection Accuracy (FDA), Network Lifetime, False Alarm Rate (FAR), False

Positive Rate (FPR), and Throughput.

DL SVM, CNN, MLP, SGD, RF, and PNN [121] Fault detection in WSNs PYTHON simulation Centralized Static Detection Accuracy and True positive Rate.
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7. Quality of Service Challenges in WSNs

This section discusses various QoS challenges in WSNs and their solutions using
different AI techniques. The inclusion of AI techniques in WSNs has been proved to be
helpful in enhancing the network performance. QoS-driven algorithms based on AI are
gaining increased attention from researchers.

Table 6 gives the summary of the AI-based solutions to Quality of service challenges
discussed in Section 7.

7.1. AI Based Solutions to QoS Challenges in WSNs

WSNs’ degree of assistance for their users is determined by the QoS they give. The en-
ergy usage rate of sensor nodes and bandwidth are network-specific factors for QoS. Node
measures, distribution, and node count are all application-specific factors. Significant
resource constraints, unexpected traffic, duplicated data, sophisticated networks, energy
management, scalability, variable sinks, and traffic classification are all issues in maintaining
QoS for WSNs [130].

In [131], an agent-based QoS-aware routing method for WSNs is discussed. Net-
work topology changes, network traffic flow, and the routing status of each node are all
monitored using intelligent software agents. These agents will then aid with network
routing and administration. An agent model is applied to perceive the changes in network
topology, the network communication flow, and each node’s energy state. Multi-agents
can also participate in network routing and network maintenance. Compared with the
traditional algorithm, the proposed algorithm can effectively improve the QoS metrics
of WSN. The paper considers the synthetic effect of QoS parameters, including delay,
bandwidth, and packet loss. Using PSO and agent-based routing (referred to as QoS-PSO
algorithm), an optimal path for nodes is determined based on the synthetic QoS metrics.
AODV (Adhoc On-Demand Distance Vector Routing) [132] and EEABR (Energy-Efficient
Ant-Based Routing Algorithm) [133] have been chosen as the two benchmark algorithms for
PSO-QoS performance testing. AODV can be applied to all kinds of network environments
and support QoS requirements while EEABR is a SI-ACO-based WSN routing algorithm.
QoS-PSO algorithm reduces end-to-end delay by 10–50% more than AODV algorithm and
by 10% more than EEABR algorithm. When there are few nodes in the network, QoS-PSO
algorithm exhibits the same packet loss as AODV and EEABR, whereas QoS-PSO requires
a large number of nodes to achieve good performance. AODV’s packet loss is about 0.52,
EEABR’s is 0.47, and QoS-PSO’s is only 0.38 with 100 nodes, which is about 30% less than
AODV, and about 20% less than EEABR. QoS-PSO algorithm payed more attention to
synthetic QoS metrics, and it observed that delay and packet loss are reduced by only
10–50%, but the synthetic QoS ratio rises up to 25–100% through considering the synthetic
QoS metrics.

With unpredictable sink mobility, a swarm intelligence-based sensor selection tech-
nique (referred to as SISSA) is proposed to fulfill established QoS constraints [134]. It does
a mathematical analysis of the algorithm in order to reach theoretical constraints on energy
usage, count of sent packets, and rate of convergence. For the set of network parameters
considered, SISSA achieves an average lifetime approximation ratio level of 56.9%. SISSA
is compared with the 802.15.4 and TDMA schemes. SISSA and TDMA are energy-efficient
irrespective of the number of nodes, while 802.15.4 becomes inefficient as the network
size assumes significant values. This is because SISSA and TDMA provide a contention-
free channel access to the sensor nodes, allowing them to transmit their data efficiently
regardless of the number of nodes considered. Both 802.15.4 and TDMA fail to provide any
of the minimum throughput constraints required by the application. Conversely, SISSA
guarantees all throughput constraints using a (much) lower duty cycle than both TDMA
and 802.15.4. This is because SISSA allows just a subset of nodes to communicate during
each tour, the time slot allocated to each node becomes larger as compared to TDMA.

In [135], ant-based mobility assisted routing for QoS-efficient data collecting (AR-
QEDE) in WSN was proposed. The ACO approach is first utilized to analyze a trustworthy
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path. The ant colony considers the consistency of the link and the time it takes to complete
it while choosing a path. After deciding on a route, the source sends data packets to the
destination. The robotic nodes are positioned between the two successive intermediate
nodes in a weak connection if the link quality is deemed to be inadequate. This boosts the
consistency of the link and improves link efficiency. Then, the data is transmitted to the
destination by adding robotic nodes if the efficiency of the communication is estimated to
be low. For QoS efficient data collection of WSN, every mobile robot is fitted with multiple
antennas that allow the use of Space Division Multiple Access(SDMA) technology to gather
data efficiently. The performance of ARQEDE is compared with RoCoMAR [136] and
MoXMAC [137] protocols. The associated delay of ARQEDE is 73% less when compared to
RoCoMAR and 64% less when compared to MoX-MAC; this is because ARQEDE includes
the link delay metric in path establishment. Moreover, the results show that at higher
data rates, the packet drop linearly increases for RoCoMAR, whereas ARQEDE shows a
steady packet drop and delivery ratio. Accurate estimation of link quality in ARQEDE
yields a 63% higher delivery ratio and 90% less packet drops when compared to RoCoMAR,
and ARQEDE yields a 70% higher delivery ratio and 88% less packet drops than MoXMAC.
The use of ACO technique in ARQEDE reduces the huge packet exchange involved in route
discovery. Hence, the overhead of ARQEDE is 84% less when compared to RoCoMAR and
85% less when compared to MoXMAC. ARQEDE has 21% higher residual energy than
RoCoMAR since the number of route disconnections is minimized in ARQEDE, thereby
reducing the energy involved in retransmission and 18% higher residual energy than
MoXMAC. The use of ACO technique in ARQEDE reduces the huge packet exchange
involved in route discovery. Hence, the overhead of ARQEDE is 46% less when compared
to RoCoMAR, and 68% less when compared to MoXMAC.

Industrial WSNs (IWSNs) allow battery-powered nodes to be used to provide fast
deployment and low maintenance, even in harsh environments. The optimum configura-
tion of the network can be a challenging concern because, many restrictions and criteria
must be addressed, especially the energy consumption. In [138], a FL-based technique for
enhancing energy efficiency of IWSN is proposed. This technique determines the sleep time
of nodes using the node’s available energy and the throughput to workload ratio. A PSO-
based method is adopted to determine the suitable values of parameters for FL controller
through optimization of membership functions and by adjusting their range, for enhancing
energy efficiency of IWSN. In general, the ratio of Throughput to Workload fluctuates
between 27% and 81% using the fuzzy-based approach proposed in [138]. The values
achieved without Fuzzy Logic Controller (FLC) shift from 67% to 82%, which represents
the best results regarding the ratio of Throughput to Workload but at the expense of battery
consumption. However, in the case of PSO with 40 particles, the ratio of Throughput to
Workload fluctuate from 60% to 81%, and at the same time prolongs the battery life.

LECR-GA (Low Energy-efficient hierarchical Clustering and Routing protocol based
on Genetic Agorithm) were presented in [139] contain two algorithms, one for energy-
efficient clustering and the other for WSN routing, were presented in the report. They have
demonstrated that the clustering algorithm balances the CHs’ lifespan as well as decreases
the sensor nodes’ energy usage. The routing method was created by evaluating a trade-off
between communication distance and hops. Both algorithms have been defined with the
correct representation of the chromosome and fitness function derivation, followed by the
necessary GA operations. It can be found that the periodic application of a clustering and
route generation using GA can help to preserve the system’s total resources with optimum
operability. Simulation results revealed that a network employing the LECR-GA protocol
has 100% alive nodes even after round 600 in contrast to a network that uses LEACH and
LEACH-C protocols [140], where there are no alive nodes (LND) after rounds 500 and
600, respectively. LECR-GA protocol is better than LEACH and LEACH-C in terms of
the number of packets received by the BS. The number of messages received by the BS
using the LECR-GA protocol is five times more than that of the other protocols. Moreover,
LECR-GA protocol has significant abatement in terms of energy consumption. This is
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because the LECR-GA protocol tries to find out the nodes with higher values of weight
as well as residual energy making the energy consumption more balanced, and by using
the genetic algorithm, LECR-GA explore the entire search space to arrive at the desired
optimization (best number and location of the CH), therefore, saving of energy.

Ticket-based routing is a viable routing strategy since it may determine routes based
on several essential characteristics, such as path cost and latency. However, it suffers from
the requirement to send a significant count of tickets in order to validate the WSN and
determine the route’s latency and cost. GA can be utilized to reduce the tickets count and
the overhead of the discovery message. Ref. [141] implemented a scheme incorporating
genetic algorithm and TBR (called GA-TBR) to obtain state details within the Smart Grid
WSN framework and thereby improve the process of route selection to guarantee the
desired QoS. In GA-TBR, genetic algorithm operations are used to explore new feasible
routes without sending any extra number of tickets. Mutated routes are evaluated using
the information stored in sensor nodes caches. Therefore, there is no extra routing message
overhead required for validating new routes (off springs) due to unicast traffic, which
is a huge advantage of this approach compared to existing works. On the other hand,
the results of genetic algorithm running time demonstrated that GA-TBR has minimum
execution overhead. In addition, in terms of the number of hop counts and total delay,
in some cases, GA-TBR shows 68% improvement, and compared to AODV [132], it gives
28% average improvement.

In [142], a highly efficient and robust Evolutionary computing-based routing scheme
for WSN is proposed for ensuring QoS and enhancing energy-efficiency. Evolutionary Com-
puting assisted Dual-Disjoint Forwarding Path (EC-DDFP) [142] employs a dual objective
function where the first intends to achieve the optimal forwarding nodes for path planning,
while the other functions to achieve best dual disjoint forwarding path estimation for
reliable transmission. GA is applied to obtain fault-resilient dual-disjoint best forwarding
paths for QoS-centric transmission and to maintain low-hop counts, high connectivity
(low-connectivity loss) and high availability with minimum shared components for QoS
centric communication. EC-DDFP model achieves a (dual) set of best forwarding paths
to perform data transmission between the source and the destination. Besides, EC-DDFP
model preserves the energy because of the low or reduced computational complexity and
retransmission probability.

A hybrid model with an improved optimization method is addressed in [143] with
the intention of enhancing the QoS qualities of WSNs. On the Destination Sequence
Distance Vector (DSDV) routing approach [144], a set of two soft computational algorithms,
including genetic algorithm (GA) and Bacteria Foraging Optimization (BFO) algorithm, are
applied independently, and then hybrid GA and BFO are utilized for further performance
optimization. The results show that when GA is applied on DSDV routing protocol,
the throughput score lies between 76 and 94.5. It means that the throughput increases with
the increase in the number of nodes. The value of packet delivery ratio goes up to 95.5 from
81, indicating a gradual rise in packet delivery ratio with the increase in the number of
nodes. The end to end delay is quite less when the number of nodes is more than 50. When
the soft computing technique, BFO, is implemented on DSDV routing protocol, the value
of throughput is more better, showing a rise from 77 to 95.6. As observed, data packet
delivery ratio increases with respect to GA as the collision is less which lowers the number
of packet drops caused by collisions. Its value is ranging up to 95 from 78. When the
hybridization of GA and BFO is implemented with DSDV, there is a marginal increase in
the score of throughput. In regard to the data packet delivery ratio, it came out to be 97.8.
The end-to-end delay in this case is decreased and it is in between 0.15 and 0.16. From the
simulation results, it is evident that the combination of two optimization approaches along
with DSDV routing protocol performs better than using DSDV alone in a WSN scenario,
and the proposed approach can be best utilized in a small-sized WSN.

In [145], a Grey wolf-based metaheuristic is utilized for node placement to ensure
a number of QoS measures, such as improving coverage, connectivity, and lowering
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the network’s total cost. The goal is to determine the optimal distribution of nodes for
various p-coverage and q-connectivity settings. The results show that the efficiency
of the proposed method in selecting appropriate positions with desired coverage and
connectivity is improved by 11%, 14%, and 20%, respectively, when compared to PSO, GA,
and Greedy approach.

An ideal WSN clustering technique, which comprises cluster creation and CH selection,
may considerably enhance QoS and extend the service life of a WSN. GWO-based clustering
and routing is proposed in [146] to enhance the network lifespan while giving exact QoS
guarantees. Energy usage, network life span, latency, data rate, cost, stability, efficiency,
and other QoS characteristics are all taken into account while studying network QoS. The
proposed technique is simulated and evaluated based on the Quality of Service (QoS)
parameters viz. residual energy, stability period, throughput, network lifetime, and delay.
The proposed technique improves the overall network performance by 10.00%, 23.75%,
and 54.54% when compared to ESO [147], GECR [148], and LEACH [140]. The reasons
behind these results include: (1) consistent transmission of sensed data to BS through
CH, (2) use of normal, advanced, and supernodes to elect them as CHs, which in turn
increase the overall throughput of the network by increasing the number of packets received
at the BS, (3) giving less chances to the nodes with low residual energy to become CH,
which overcomes the rapid death of nodes and consequently increases network lifetime, (4)
considering the intra-cluster distance and average sink distance while electing CH and (5)
minimizes the end-to-end delay and energy consumption by selecting the optimal path
between the BS and CH.

The hybrid PSO-CS optimization technique for multi-path routing is proposed in [149].
It presents a QoS aware method to identify reliable routes multi-hop data communica-
tion. It uses routes that do not compromise QoS for quick data transport. In contrast to
conventional QoS methods, it also increases the network lifespan by regularly updating
CHs depending on remaining energy and by using the appropriate routes for data transfer.
PSO-CS uses several paths for delivering data packets and has excellent control over data
traffic in the network. Simulation results show that PSO-CS outperforms the existing
QoS centric protocols like EE-LEACH [150], EPSO-CEO [151] and OQoSCMRP [152] in
terms of throughput, end-to-end delay, packet delivery ratio, network lifetime and energy
conservation. Hence, PSO-CS can be used in various delay sensitive applications. The en-
ergy consumption of PSO-CS is decreased by 40.06%, 32.4%, and 18.21% compared with
EE-LEACH, EPSO-CEO and OQoS-CMRP protocols.

Ref. [153] proposes an enhanced QoS aware algorithm based on GA (called ENSGRA).
It updates points of reference to get better solutions by using a dynamically balanced
clustering vector. In addition, an advanced crossover approach is used to acquire the
best Pareto Fronts (PF). ENSGRA relies on Non-Dominated Sorting Genetic Algorithm 3
(NSGA-III), but adjusts reference points through the use of a dynamic weighted clustered
scheduled vector to obtain new solutions. Moreover, ENSGRA can be used to find an
integration between two parents through crossover with multi-parent crossover (MPX)
to produce multiple children and improve new offspring to obtain the optimal Pareto
Fronts (PF). This algorithm excelled the lagged multi-objective jumping particle swarm
optimization [154], Non-dominated Sorting Genetic Algorithm–II [155] and NSGA-III [156]
In terms of the QoS aspects, this approach outperforms the existing schemes (31% better
optimization performance). Results show that this proposed ENSGRA is superior over
other algorithms in the evaluation measures for multi-objective algorithms.

In order to enhance routing and maximize QoS in WSNs, the study in [157] proposes
a multi-objective GWO (called QAMO-GWO). Nodes gather environment data periodi-
cally and deliver it to the respective CHs. The method attempts to pick the best CHs by
optimizing QoS factors.

In [157], multiobjective grey wolf optimization algorithm (MO-GWO) balances the
QoS parameters and focuses on selecting the optimal CHs. Simulation results show that
MO-GWO has been able to improve QoS criteria by balancing the goals in the network. MO-
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GWO method is compared with other methods [158–160] according to network lifetime and
the energy usage in the network. Compared to the other methods, MO-GWO gives a lower
average energy usage per 100 nodes. MO-GWO has improved the energy consumption in
WSN by about 11% and improved the data delivery rate by about 1%. Additionally, the
first node in MO-GWO dies much later than the other methods, which reflects the balance
of energy and the network lifetime in WSN improved by about 16%. Besides, MO-GWO
has a higher delivery rate in comparison to [158–160] due to the optimal selection of the
route, avoidance of bottlenecks and the loss of the least amount of packets.

7.2. Open Research Issues and Challenges

As a future work, the network with variable traffic load scenario needs further research
to study the QoS aspects. This necessitates improving fault tolerance, network depend-
ability, and energy usage rates, as well as expanding the network’s message capacity and
extending its lifetime. These new research paths will be crucial for studies on mobile WSN
fault tolerance and QoS.

In the future, new solutions will be necessary to be successful for networks with high
mobility nodes, as well as routing networks with numerous sink nodes, by establishing
certain correct WSN settings. In order to meet QoS requirements and extend the lifespan
of WSN, a mix of additional bio-inspired optimization approaches can be used for other
energy sensitive routing protocols. In order to analyze and compare the hybrid algorithms
in terms of processing and memory needs of the participating node, more testing of the
hybrid algorithms is required. In the future, spatio-temporal characteristics based on
network dynamics may be produced, and different classifiers or AI approaches can be used
to leverage the interrelationship between spatial and temporal behavior of nodes to detect
malicious nodes that can impair the QoS of the connected application. Malicious patterns
may be transformed into knowledge, allowing for faster judgments in subsequent phases
without having to repeat the detection process. Safety period (time between successful
data transmissions), packet latency, and energy usage are all essential QoS criteria. The
researchers should consider all the important parameters while designing a new QoS-aware
algorithm as this can affect the network performance. To achieve good QoS performance
with fewer calculations, a balanced trade-off between location privacy and energy usage is
preferable. Modeling a safe and robust strategy that addresses all necessary parameters,
on the other hand, is a complex task, thus researchers should concentrate on all of these
factors while developing new solutions. In addition, the present work must be updated
for usage in IoT-based real-time applications like catastrophe monitoring and control.
The solution should be able to survive all main security threats while also protecting the
privacy of the sink location from both local and global adversaries. In the future, alternative
evolutionary strategies for node deployment issues in three-dimensional (3D) settings and
target mobility can be investigated, and also to ensure different QoS measures in terms of
optimizing coverage, connection, and lowering the network’s total cost.
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Table 6. Summary of AI-based solutions to QoS problem surveyed in Section 7.

AI Techniques Algorithm Ref. Objectives Implementation Approach Mobility Performance Metrics

SI Ant Colony [135] QoS-effective data collection NS2 simulator Distributed Mobile Throughput, End to end delay, PDR and Routing overhead.

SI Grey wolf optimization [145]
Satisfy QoS metrics like coverage
optimization, connectivity and
lowering total network’s cost

Matlab simulations Centralized Static Change in location and number of targets without changing the
network size setting.

SI Grey wolf optimization [146] Enhance QoS and network lifetime Matlab simulation Distributed Static QoS metrics like residual energy, stability period, lifetime, throughput,
and delay.

SI Grey wolf optimization [157] Optimize routing and improve QoS in
WSNs Matlab simulation Centralized Static transmission rate, latency, number of dropped packets,

and delivery rate.

Hybrid PSO and CS algorithm [149]
Enhance QoS metrics like throughput,
packet drop, delay and lifespan of
network.

NS-2 Simulator Centralized Static QoS parameters such as throughput, packet delivery ratio, end-to-end
delay, and network lifetime.

Hybrid FLC-PSO [138] Decrease the energy consumption MATLAB simulation Centralized Static Energy usage and Throughput-Workload ratio.

Hybrid GA-BFO [143] Optimizing the quality of service MATLAB simulation Centralized Static Throughput, End to end delay, PDR and Routing overhead.

MAS Multi-agent and PSO [131] Improve QoS Real network deployment Distributed Mobile Synthetic QoS, Average residual energy, Packet loss, and Mean delay.

MAS SISSA [134] Optimizes network lifetime and meets
predefined QoS constraints Experimental Distributed Static with mobile sink Network Lifetime, Throughput and Energy per byte.

EC Genetic Algorithm [139] Prolong lifetime and increase the QoS NS2 simulation Distributed Static Amount of data, Alive nodes, Energy consumption, Packets received
by the BS and First node death.

EC Genetic Algorithm [141] Improve the QoS NS2 and Matlab simulations Centralized Static Delay Cost.

EC Genetic Algorithm [142] Improve QoS and energy-efficiency NS2 and Matlab simulations Centralized Static Energy exhaustion, End-to-End delay, and Packet Drop.

EC NSGA-III [153] Improve the QoS in WSNs Matlab simulation Centralized Static Hyper Volume and Number of Non-Dominated Solution. indicators.
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8. Discussion

In the area of WSNs, we have seen an increase in the application of AI-based solutions
that help with service optimization. The coupling of AI methodologies with WSNs has
become a reality, bringing benefits to the IoT by allowing the frameworks to learn and track
activities while also assisting in decision-making.

We have presented a survey of different issues and concerns in WSNs in this study.
Various AI approaches used in WSNs are briefly discussed, as well as their categories.
For the year 2010 to 2022, AI strategies utilized by researchers to handle the Security, QoS,
and fault detection and tolerance concerns in WSNs are briefly outlined. The use of AI
to solve these problems has been studied and summarized. The use of these methods
in Security have been reviewed and summarized in Tables 3 and 4. For QoS, and fault
detection and tolerance, the methods are reviewed and summarized in Tables 5 and 6.

The following findings can be summarized from Figures 3 and 4:

• Security: Figure 3 shows that for security, the most appropriate AI methods are Swarm
Intelligence, FL, DL, RL, Hybrid and ANN. Overall, 28% of papers applied SI followed
by Hybrid by 21%, 21% for FL, then 19% for deep learning, while the other methods
(Nature inspired, Reinforcement learning, Evolutionary Computation, Multi-Agent
Systems, Trajectory based, Physical computation) are considered not appropriate by
the research community.

• QoS: As evident from Figure 3, for QoS problems in WSNs, the most adopted method
is Evolutionary Computation (31%), followed by Hybrid (23%), 23% for SI then by
15% for Multi-Agent Systems, and 8% for Nature inspired.

• Fault detection and tolerance: from Figure 3, the most appropriate AI methods are
Swarm Intelligence, and FL. Overall, 25% of papers applied SI and FL, followed by
Hybrid 19%, then ANN and 13% by 13% and 6% for Reinforcement learning.

Figure 3. AI approaches in relation to different WSN challenges.
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Figure 4. Diagram of route of technology development for each application.

It can be argued that one of the most common AI techniques widely adopted for
solving the critical challenges of WSN is SI. This can be attributed to its efficiency and
applicability for different WSN architectures. SI algorithms can effectively meet WSN
objectives and ensure high WSN performance. It can also be noticed that implementing
hybrid AI solutions is another commonly adopted approach to address WSN challenges.
This is mostly due to the ability of these solutions to improve the efficiency of the algorithm
by developing more effective combinations of AI algorithms. However, there is always a
need to maintain the complexity of any AI solution to meet WSN limitations in terms of
energy, bandwidth, storage and computational resources. The balance between efficiency
and complexity should be emphasized as a key design issue that needs to be resolved
before implementing hybrid AI solutions at scale.

Furthermore, Figure 5 provides a summary of the main WSN problems addressed
using AI-based solutions considering the major WSN topics. It is evident that the research
community gave careful considerations to a multitude of diverse WSN aspects. The com-
mon WSN problems among the different challenging topics of interest is data traffic routing
and nodes clustering. Accordingly, addressing such problems was approached using dif-
ferent AI techniques with SI being the mostly adopted one. Another critical problem that
received considerable attention is node deployment and localization, which are deemed
critical for effective support of security, failure handling, and QoS in WSNs. Among the
multiple AI methods utilized for addressing this problem, SI and DL were the preferred
choices due to their usability and efficiency. For effective AI-based security support, there
has been a noticeable trend to develop intrusion detection systems considering diverse AI
approaches. Less attention has been paid to other important considerations such as real-
time threat recognition, data protection, node identity verification, and trust management.
In regards to fault detection and tolerance, several challenges were adequately investigated,
whereas other important issues such as node mobility and data fault detection still require
further AI-based research. Node mobility also gained limited interest in the context of
AI-based QoS support in WSNs, but remains an open WSN research problem. Moreover,
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it is apparent how difficult it is to have one-solution-fits-all, but a feasible consideration
would be jointly addressing multiple aspects using a fusion of several AI methodologies in
an effective design with well-maintained complexity. Overall, this review made it clear that
WSN challenges have exposed adequate room for further AI-based improvements towards
effective support of security, failure handling, and QoS in WSNs.

Figure 5. A summary of the main WSNs problems addressed using AI-based solutions.

In exploring the search space for global optimum solutions, GA is particularly efficient
and stable, and it excels in large-scale optimization. It is possible to employ both contin-
uous and discrete factors [161–163]. In order to tackle a wide range of WSN difficulties,
researchers employ GA for these qualities.

Tables 3–6 emphasize that PSO is applied abundantly in all WSN problems. This is
because PSO poses a great deal of benefits compared to alternative optimization methods.
The PSO does not require any derivatives. It can be used in tandem with other optimization
techniques. It is less sensitive to the objective function’s nature and can deal with stochastic
objectives. PSO has few parameters, able to run parallel computation, can converge fast
and is easy to implement [163].

ACO algorithm is based on ants where their task is to search for food. Each ant takes a
path in searching. That makes ACO suitable to work in parallel problems and is applicable
to solve some WSN challenges. ACO has many characteristics that encourage researchers
for usage. It can adapt to changes, have guaranteed convergence and can provide good
solutions rapidly [163].

New AI solutions, as well as various methodologies for embedding these schemes in
WSNs, must be promoted in the future for WSN advancement. The majority of the solutions
described thus far have leveraged AI to address particular difficulties in specific industries.
Learning platforms and models are needed instead of specialist solutions. The majority of
issues arise from layer incompatibility and significant human contact. Setting and adjusting
solutions necessitates self-adaptivity. Hybrid techniques to resource usage optimization in
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WSN must be developed [164]. Further research into developing an effective distributed
data mining solution for WSN, as well as advancements in the noisy data filtering process,
should be encouraged in the future. DNN’s layered structure and other common traits
make it an attractive alternative for use in such circumstances. The primary problems
are distributed multi-layered DNN training and a better balance between processing and
transmission power usage. Parameter learning and optimization is another fascinating area
of research for AI approaches in WSNs.

Many attempts have been sought to address the WSN interference categorization
problem. With the growing use of license-free frequency bands, appropriate wireless inter-
ference detection and control has become a major concern. Future research opportunities
include interference mitigation strategies, deployment planning, and other possible uses.
A choice is the DL classification model.

WSN traffic flow management might be a future path. Another interesting study area
that may be aided by head nodes, normal nodes, and BS is mobility. The most crucial
hurdles to overcome are modifications in WSN structure and control message complexity
generated by dynamic topology. Few studies have been conducted to increase mobile agent
intelligence for improved route planning and data collection. An combination of DL and
RL utilizing numerous mobile agents is a suitable technique to handle node distribution
in dynamic setting. The application of RL can help mobile agents make more intelligent
conclusions about what action to take in a given environment. Furthermore, identifying the
appropriate count of mobile agents and their path by considering many criteria that might
deliver efficient outcomes would necessitate future research. Furthermore, most existing
algorithms failed to take into account the data security and/or privacy in numerous mobile
agent settings. Future studies are likely to pay more attention to these concerns. To address
real-world difficulties, more robust and efficient mobile agent learning approaches must be
developed in the future.

A potential future approach is the use of AI schemes to tackle the problems of MWSNs.
Transmission delay, energy usage, dependability, and security of MWSNs are all research
concerns that have yet to be answered. In the future, combining SI with other optimiza-
tion approaches should be promoted. During the optimization of MWSNs, cross-layer
optimization model issues must be adequately addressed. The findings of the research of
human-related biological characteristics can be used to develop future solutions to similar
situations. Distributed and real-time deployment of light-weight algorithms may be a
potential path for addressing the issues of dynamic MWSNs.

According to the study, the majority of AI-based solutions are just simulation-based.
In a real-time setting, AI approaches should be applied and examined [165,166]. In the fu-
ture, this should be promoted. More research is needed to demonstrate how AI approaches
may be applied. Cross-layer techniques based on AI methodologies are infrequently used
to solve problems and remain an important field of study. Hybrid AI approaches are
also underutilized and must be thoroughly studied. Future research is anticipated to take
heterogeneity, dynamic contexts, and different transmission restrictions into account while
developing algorithms. The WSN becomes cognitive when AI approaches are used to
manage and overcome issues that develop during operation. We hope that the concepts
discussed in this paper will encourage researchers to use AI to address complex WSN
challenges by making nodes intelligent.

In order to determine whether WSNs are appropriate before deployment, simulation
is an effective method. By simulating algorithms, one can assess scalability without being
limited by the hardware. Furthermore, it simplifies the development of WSN application,
making them a powerful and popular research tool. According to Tables 3–6, over 90%
of implementations are simulations based. MATLAB is widely used for implementation
with 37%, 26% uses NS-2/NS-3, 6% uses PYTHON, 1% uses OPNET, 1% uses OMNet++,
and 20% uses other packages.

In terms of memory requirements, flexibility, and computational requirements, a gen-
eral comparison of AI methods [167–177] is presented in Figure 6. The centralized approach
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at BS is more suitable for AI methods that have a high or medium level of computational
and memory requirements, respectively. On the other hand, methods with low class re-
quirements could be fitted for execution in distributed manner. Flexibility is the capability
of AI methods to be adapted to the changes in the environment [167]. Additionally, AI
methods are capable of finding the best solution for certain problems. It is important that
the designer selects the right method or set of methods according to the application’s speci-
fication in order to provide the best performance. We have summarized the performance
metrics adopted in each article in the last column of Tables 3–6. According to these tables,
the performance metrics vary with regard to the objectives of the problem presented in
each article. It is noted that most of the articles do not evaluate the AI method itself in
terms of computational and memory complexities during its utilization for solving the
given problem. In the future, it is recommended to employ performance metrics for the AI
methods along with performance metrics for the problem itself.

Figure 6. General comparison of computational, memory, and flexibility requirements of utilized
AI methods.

Open Challenges and Issues

Some insights into open challenges and issues can be summarized as follows:

• WSNs are considered as additional components of a heterogeneous system that con-
tribute to a wide range of applications (for example, in Intelligent Transportation
Systems, where WSNs collaborate with other technologies such as VANET). In fu-
ture study, security, QoS, and fault detection and tolerance for such a heterogeneous
system-based WSN should be extensively explored by utilizing different AI solutions.

• Security vulnerabilities, link and node failures, and degradation of QoS performance
are still evident and open challenges in WSN architectures. WSNs lack standardized
solutions addressing such issues. As a result, wide deployment of effective WSN
networks would be highly hindered in demanding IoT applications.

• WSN architectures have exposed adequate room for effective incorporation of AI
techniques. A wide variety of AI solutions have also been proposed by combining
multiple AI algorithms. However, no effort has been made yet to effectively develop a
comprehensive solution addressing multiple WSN challenges.

• When it comes to integrating AI algorithms into WSNs, there is no one-solution-fits-all
choice. Future studies might look towards integrating diverse AI solutions into a
single WSN implementation.

• The trade-off between efficiency and complexity is insufficiently emphasized in the
context of developing AI solutions for WSNs. This is more evident in the case of
implementing hybrid AI solutions.

• Experimental simulation testing is a predominant implementation methodology
among the current studies. Little consideration has been given to realistic experi-
mentation using physical testbeds. A shift towards such a viable methodology is
important to increase evaluation practicality and credibility.

• Frameworks and mechanisms could be designed to mitigate high computations of
AI methods. Moreover, it is recommended to employ performance metrics for the AI
methods along with performance metrics for the problem itself.
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• Intelligent fault detection and tolerance techniques, as well as QoS for collaborative
routing with link scheduling needs to be examined in dynamic IoT networks to enable
real-time adaptation to network changes.

• There is a limited number of works considering fault tolerance and data storage issues
in IoT/WSN. Further investigation is required to enhance storage of IoT/WSN, which
can result in an improvement of recoverable data and energy.

• Employing learning -based AI methods could open the way to develop a rapid fix
and self-healing techniques to tolerate node faults according to applications require-
ments [178]. However, several studies utilizing learning-based AI algorithms have
raised ambiguity on how they can be implemented in WSN environments. As a result,
it was advised that more research and discussion should be conducted in terms of
training and complexity of learning-based AI approaches in WSNs.

• Frameworks for fault tolerance and back up node placement-based optimizations
methods could be further discussed by considering the flexibility and the strength of
the application requirements (e.g., surveillance application). Moreover, these frame-
works could employ a mechanism that intelligently performs backup node switching
to maintain continuous acquisition of data [179].

• It is desirable to test and explore the applicability of ML methods to networks with a
large number of event parameters and data with complex properties.

• For population-based metaheuristic methods, future research could be done on the
population size of these methods and their applicability for a given problem.

• Considering QoS while also satisfying privacy and security constraints as an exten-
sion to existing work by developing effective techniques that address both of these
challenges could be handled in future research.

• Designing node deployment techniques that are aware of QoS parameters in three-
dimensional environments based on various AI methods could be further explored.

• Based on the application requirements for reliability and energy, predicting QoS
parameters needs further investigation and recommendations for future solutions
based on AI methods or hybrid combination of them is required for improving the
overall performance.

• Optimization approaches as well as the creation of fitness functions have been used to
address issues with QoS, fault tolerance, and security. However, most of the current
work ignores multiple fitness function evaluations using the same AI approach; hence,
it is desirable to test different fitness functions for the same problem while evaluating
optimization techniques.

• It is common in trust management that trust reports may generate message overhead;
also, trust calculation is a resource intensive process for large and dense networks [180].
As a result, optimizing the reporting mechanism is essential to reduce message over-
head, and additional research is required to optimize trust management in WSNs.

• It would be beneficial to study deep reinforcement learning algorithms with more
sophisticated exploration methods. Moreover, multi-agent and partially distributed
learning techniques can be introduced to overcome the scalability issues in existing
learning solutions [180].

9. Conclusions

There has been a growing interest in advancing WSNs with AI-based solutions in
a wide-range of smart applications. Incorporating AI systems in WSN would enrich its
applicability and revive its potentiality for real-life IoT deployments. In this study, thor-
ough review and thoughtful analysis of the recent research activities on enhancing WSN
efficiency with different AI technologies is presented. It provides insight towards establish-
ing a firm understanding of the standing state and future prospects of AI-based solutions
addressing security, fault detection and tolerance, and quality of service challenges in WSN.
The review in this paper demonstrates the potential of AI-based approaches to improve
these major WSN aspects considering different AI algorithms. It is found out that Swarm
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Intelligence and Evolutionary Computation were the mostly employed AI techniques in
addition to other techniques such as FL, DL, RL, and ANN. Hybrid AI algorithms were
also of interest as well as Multi-Agent Systems, particularly for QoS support in WSNs.
Moreover, the study provides a comprehensive exploration and discussion of possible
future AI-based enhancements to WSN efficiency. It emphasizes different potential research
directions for future studies to address critical relevant topics such as cross-layer AI solu-
tions, mobility-aware QoS support, and secure trust management. These also include the
need for intensively researching hybrid AI approaches and advanced techniques combining
multiple optimization algorithms. Another important consideration is promoting real-life
experimental evaluation using a physical testbed to increase testing credibility and reliabil-
ity. It is accordingly envisaged that this research study facilitates broad comprehension of
recent AI-supported WSN enhancements and paves the way for addressing further WSN
challenges in follow-up AI-oriented studies.
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DNN Deep Neural Network.
DC Data Collection.
DL Deep Learning.
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IoT Internet of Things.
GA Genetic Algorithm.
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ML Machine Learning.
MAS Multi-Agent Systems.
NI Nature Inspired.
PC Physical computation.
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WSN Wireless Sensor Network.
WOA Whale Optimization Algorithm.
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