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Abstract: Crystal Structure Algorithm (CryStAl) is a new meta-heuristic algorithm, and it has
been studied by many scholars because of its wide adaptability and the fact that there is no need
to set parameters in advance. An improved crystal structure algorithm (GLCryStAl) based on
golden sine operator and Levy flight is designed in this paper. The algorithm makes good use
of the relationship between the golden sine operator and the unit circle to make the algorithm
exploration space more comprehensive, and then gradually narrows the search space in the
iterative process, which can effectively speed up the convergence rate of the algorithm. At the
same time, a Levy operator is introduced to help the algorithm effectively get rid of the attraction
of local optimal value. To evaluate the performance of GLCryStAl, 12 classic benchmark functions
and eight CEC2017 test functions were selected to design a series of comparative experiments. In
addition, the experimental data of these algorithms are analyzed using the Wilcoxon and Friedman
tests. Through these two tests, it can be found that GLCryStAl has significant advantages over
other algorithms. Finally, this paper further tests the optimization performance of GLCryStAl in
engineering design. GLCryStAl was applied to optimize pressure vessel design problems and
tension/compression spring design problems. The optimization results show that GLCryStAl is
feasible and effective in optimizing engineering design.

Keywords: crystal structure algorithm; golden sine algorithm; levy flight; engineering
optimization problems

1. Introduction

Nowadays, practical problems in the fields of traffic scheduling, engineering design,
machinery manufacturing, etc., are becoming more and more complex and challenging.
When dealing with these problems, people often use optimization algorithms to save some
costs. Since most production practice problems are multivariate, nonlinear, and have many
complex constraints, the traditional conjugate gradient method does not perform well in
the optimization of these problems [1]. The meta-heuristic algorithm has the characteristics
of not depending on gradient information and wide adaptability, which can effectively
make up for the shortcomings of traditional optimization algorithms. At present, the
meta-heuristic algorithm is applied in various industries, such as workshop scheduling [2],
task planning [3], engineering management [4–7] and so on.

The meta-heuristic algorithm is a mathematical method inspired by the biological
behavior and some physical phenomena in nature [8]. The meta-heuristic algorithms
mainly include the swarm optimization algorithm [9], evolutionary algorithm [10], physical
and chemical algorithms [11] and human based algorithms [12]. The simulated anneal-
ing algorithm [13,14] and differential evolution algorithm [15] are classical evolutionary
algorithms. Some classic and newly proposed swarm intelligence optimization algorithms
are as follows: the bee collecting pollen algorithm (BCPA) [16] is proposed by simulating
the behavior of bees collecting pollen. The fruit fly optimization algorithm (FOA) [17] is
proposed by simulating the process of drosophila predation using its keen sense of smell

Electronics 2022, 11, 4109. https://doi.org/10.3390/electronics11244109 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11244109
https://doi.org/10.3390/electronics11244109
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-2393-145X
https://orcid.org/0000-0002-6672-8315
https://doi.org/10.3390/electronics11244109
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11244109?type=check_update&version=2


Electronics 2022, 11, 4109 2 of 18

and vision. The bat-inspired algorithm (BA) [18] is proposed by simulating bats using a
sonar to detect prey and avoid obstacles. The grey wolf optimizer (GWO) [19] and the tuna
swarm optimization (TSO) [20] are proposed by simulating the hunting behavior of wolves
and tuna swarms. At present, the metaheuristic algorithm is applied in more and more
fields, which has caused more and more scholars to study it.

In nature, a large number of microscopic material units such as molecules, atoms and
ions are regularly arranged to form material structures called crystals. “Lattice points” are
the basic units of crystal; they form a periodic lattice in a predefined space. The “basis”
associated with each lattice point determines the position of the molecule in the crystal
structure. In 2021, SIAMAK TALATAHAR proposed a new meta-heuristic algorithm called
crystal structure algorithm (CryStAl) [21], by studying the principle of adding basis to form
crystal structures with lattice points. The crystal structure algorithm has the advantages
of simple structure, no need to set parameters in advance and strong adaptability, so it
has generated widespread interest since it was proposed. Although CryStAl has excellent
performance in many aspects, there are still some deficiencies in the crystal structure
algorithm. CryStAl is susceptible to local extremes during iteration, resulting in insufficient
exploration. Furthermore, the convergence speed of CryStAl is relatively slow. Up to
now, no scholars have made relevant improvements to the crystal structure algorithm.
Because the crystal structure algorithm has the advantages of simple structure, being easy
to understand and low time complexity, this paper improves the algorithm under the
premise of retaining these advantages of the crystal structure algorithm so that it can obtain
better comprehensive optimization performance.

In view of these shortcomings, this paper developed a crystal structure algorithm
improved by using a Levy flight operator and golden sine operator.

To ensure CryStAl has a balanced exploration and development performance, ran-
dom numbers subject to Levy distribution are added to the CryStAl, which can effectively
avoid CryStAl being affected by the suboptimal solution iterative process, and the golden
sine operator is applied to modify the update strategy of candidate solutions, so that
the algorithm converges faster. GLCryStAl is designed according to the modification
strategy above.

The main contents of the article are summarized as follows. Section 2 introduces the
CryStAl algorithm. Section 3 introduces the improved algorithm GLCryStAl in detail. In
Section 4, a series of comparative experiments are designed and experimental numerical
analysis is carried out. Section 5 uses GLCryStAl to optimize two engineering problems.
Section 6 provides a comprehensive discussion of GLCryStAl. The paper ends in Section 7.

2. An Overview of the Crystal Structure Algorithm

The crystal structure algorithm is inspired by the principle of adding basis to lattice
points to form crystals. Based on this principle, SIAMAK TALATAHAR proposed a crystal
structure algorithm in 2021.

The internal particles of the crystal are regularly arranged. The structural particles
that make up a crystal are regularly arranged at certain points in three-dimensional space,
and these points periodically form an infinite lattice with a certain geometric shape, called
a “lattice”. The “basis” associated with each lattice point in the crystal determines the
position of the particle in the crystal structure, adding basis to the lattice point to form the
crystal structure. The mathematical model of the lattice position is as follows [22]:

r = ∑ niai (1)

where i represents the number of crystal angles, ai is the shortest vector and ni is an integer.
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CryStAl initializes crystals using the following formula:

Cr =
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...
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...
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,
{

i = 1, 2, · · · , n
j = 1, 2, · · · , d

(2)

where n is the total number of single crystals and d is the total number of variables. Single
crystals are initialized using the following formula:

xj
i(0) = xj

i,min + ξ(xj
i,max − xj

i,min),
{

i = 1, 2, · · · , n
j = 1, 2, · · · , d

(3)

where xj
i,max and xj

i,min denote the two extreme values of the jth decision variable of the ith

candidate solution, ξ is a random value in the range of 0–1 and xj
i(0) denotes the initial

position of the single crystal.
In CryStAl, the crystal at the corner is called Crmain. The average value of randomly

selected crystals is Fc. Currently, the best crystal is Crb. The crystal structure algorithm has
four candidate solution updating strategies, as follows:

Simple cubicle strategy:

Crnew = Crold + rCrmain (4)

Cubicle with the optimal crystal:

Crnew = Crold + r1Crmain + r2Crb (5)

Cubicle with the average crystal:

Crnew = Crold + r1Crmain + r2Fc (6)

Cubicle with the optimal crystal and average crystal:

Crnew = Crold + r1Crmain + r2Crb + r3Fc (7)

where r–r3 are four random values, Crold is the position of the old crystal and Crnew is the
position of the new crystal. The pseudocode of CryStAl is displayed in Algorithm 1:
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Algorithm 1. Pseudo-code of CryStAl

1: Initialization: the positions of crystals, Cri (I = 1, 2, . . . , n)
2: Calculate the fitness value of all crystals
3: while t < tmax do
4: for (each crystal) do
5: Create Crmain
6: Create new crystals through formula (4)
7: Create Crb
8: Create new crystals through formula (5)
9: Create Fc
10: Create new crystals through formula (6)
11: Create new crystals through formula (7)
12: if (the new crystal goes beyond the preset boundary) then
13: Modify the position of the new crystal
14: end if
15: Calculate the fitness values of all new crystals
16: Update the crystal with the optimal fitness value
17: end for
18: t = t + 1
19: end while
20: return the best crystal

3. The Proposed Algorithm

In this chapter, we first introduce the golden sine operator and Levy flight operator.
Based on these two operators, the original crystal structure algorithm is modified. Then,
a crystal structure algorithm based on Levy flight and golden sine operators is proposed,
which is called GLCryStAl.

3.1. Golden Sine Position Update Strategy

The golden sine algorithm [23] is called golden-SA for short. It is a new intelligent
optimization algorithm proposed by Tanyildizi, inspired by the mathematical model of sine
function. Golden-SA is widely studied because of its simple structure, fast convergence
speed and strong stability. Golden-SA simulates the search space exploration process by
using the sine function to scan the unit circle. It makes good use of the special relationship
between the sine function and the unit circle and combines the golden section coefficients
to search the algorithm space iteratively, and finally finds the optimal solution set.

The golden section coefficient is a concept proposed by the ancient Greek mathemati-
cian Eudoxus. It does not depend on gradient information and only needs to be iterated
once per step, while its contraction steps are fixed per step. Scholars have found that the
strategy of combining the traditional sine function with the golden section coefficient can
help the algorithm quickly find the extreme value of the unimodal function. At the same
time, the golden sine search strategy has good ergodicity, so it can effectively prevent the
algorithm from being attracted by the local extreme value.

The mathematical description of the Golden-SA strategy is shown in Equation (8):

Vt+1
i = Vt

i |sin(r1)| − r2 sin(r1)
∣∣x1Bt

i − x2Vt
i
∣∣ (8)

where t represents the current number of iterations and Bt
i represents the position of the

best individual in the population in the tth iteration. r1 and r2 are random numbers in [0,2π]
and [0,π], respectively; they determine the moving distance of the current individual in
the next iteration and the direction of the current individual position update. Vt

i and Vt+1
i

represent the positions of the ith individual in iteration t and iteration t + 1, respectively.
x1 and x2 are the golden section coefficients mentioned above, which can help the algorithm
gradually narrow the search space and guide the ordinary individuals in the population
toward the optimal individuals.
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The mathematical expressions of x1 and x2 are as follows:

x1 = a · (1− τ) + b · τ (9)

x2 = a · τ + b · (1− τ) (10)

τ =

√
5− 1
2

(11)

where a and b are the search interval, and the golden sine algorithm is segmented by the
interval of the standard sine function. Since the period of the standard sine function is
2π, according to the relationship between the standard sine and the unit circle, in order
to enable the population to traverse the searched space in each dimension throughout the
period, the values of a and b are usually π and −π. τ is the golden ratio.

3.2. Levy Flight Position Update Strategy

Levy operator [24] is a search strategy consistent with Levy distribution, and its step
size is random, which makes Levy operator more suitable for exploration in a wider space
than Brownian motion [25]. In the search process, Levy flight uses long distance step in
low frequency and short distance step in high frequency, which can effectively avoid the
algorithm being attracted by local extrema in the optimization process. Due to the high
complexity of Levy distribution, researchers often use the Mantegna [26] algorithm to
simulate Levy flight step size, which is defined as follows:

s =
µ

|ν|1/β
(12)

where µ and ν are defined as follows:

µ ∼ N
(

0, σ2
µ

)
(13)

ν ∼ N
(

0, σ2
ν

)
(14)

σµ =


Γ(1 + β) sin

(
πβ
2

)
Γ
[
(1+β)

2

]
· β · 2

(1+β)
2

, σν = 1 (15)

where the value of β is usually 1.5.
In order to show the global exploration capability of Levy flight more intuitively,

this paper compares Levy flight with random walk strategy. The comparison results are
presented in Figure 1.
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Figure 1 shows that the Levy flight has a larger search range. The jump points of
random walk strategy are more concentrated, and the jump points of Levy flight strategy
are widely distributed. This means that the crystal structure algorithm modified by Levy
flight can effectively enhance its global search performance.

3.3. Improved Crystal Structure Algorithm

Aiming at the shortcomings of crystal structure algorithm, such as slow convergence
speed and the requirement of practical engineering project for algorithm accuracy, this
paper proposes a crystal structure algorithm (GLCryStAl) combining golden sine and
Levy flight operator.

The GLCryStAl algorithm introduces the golden sine algorithm and the golden section
coefficient into the three position update strategies mentioned in Equations (4)–(6), and
determines its update position according to Equation (8). Because the golden sine operator
has excellent ergodicity, it can make the optimization space of the algorithm more compre-
hensive and control the distance and direction of the candidate solution update through the
parameters r1 and r2, so the exploration space of the algorithm can be gradually reduced.
Therefore, the introduction of the golden sine operator can reduce the solution time of the
algorithm and help the algorithm to obtain a more ideal solution.

Levy operator can significantly enhance the algorithm’s global exploration perfor-
mance. In this paper, the update strategy in Equation (7) is mutated by using the jump
characteristics of the combination of long and short steps of the Levy operator, which
can greatly improve the diversity of the algorithm population and make the optimization
efficiency of the algorithm higher. The specific steps of GLCryStAl are as follows:

The modified simple cubicle strategy:

Crnew = Cr1|sin(r1)| − r2 sin(r1)|x1Crb − x2Cr1| (16)

The modified cubicle with the optimal crystal:

Crnew = Cr2|sin(r1)| − r2 sin(r1)|x1Crb − x2Cr2| (17)

The modified cubicle with the average crystal:

Crnew = Cr3|sin(r1)| − r2 sin(r1)|x1Crb − x2Cr3| (18)

Cubicle with the optimal crystal and average crystal:

Crnew = Crold + α⊗ Levy(λ)⊗ Crmain + α⊗ Levy(λ)⊗ Crb + α⊗ Levy(λ)⊗ Fc (19)

where Crb is the optimal candidate in the current population. Cr1, Cr2 and Cr3 are the
candidate solutions produced by Equations (16)–(18) in the last execution,α is a distance
control parameter, ⊗ denotes point multiplication, and Levy(λ) is the jump path whose
jump distance obeys Levy distribution. Considering that the exploration step size of Levy
flight is too aggressive, it may jump out of the main search range during the algorithm
search process, so this paper sets α to 0.01.

The pseudocode of GLCryStAl is displayed in Algorithm 2:
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Algorithm 2. Pseudo-code of GLCryStAl

1: Initialization: the positions of crystals, Cri (i = 1, 2, . . . , n)
2: Calculate the fitness value of all crystals
3: while t < tmax do
4: for (each crystal) do
5: Create Crmain, Crb
6: Create new crystals through formula (16)
7: Create new crystals through formula (17)
8: Create new crystals through formula (18)
9: Create Fc
10: Create new crystals through formula (19)
11: if (the new crystal goes beyond the preset boundary) then
12: Modify the position of the new crystal
13: end if
14: Calculate the fitness values of all new crystals
15: Update the crystal with the optimal fitness value
16: end for
17: t = t + 1
18: end while
19: return the best crystal

4. Simulation Experiments and Results Analysis

In this section, 12 classic benchmark functions and eight CEC2017 test functions are
applied to design comparative experiments of the other five algorithms of GLCryStAl in two
different dimensions. To avoid the length of the article being too long, this paper selected
part of the CEC2017 test function, which is also representative. Finally, the experimental
results are numerically analyzed to verify the optimization performance of GLCryStAl.

4.1. Benchmark Functions and Experimental Design

The details of the test functions are displayed in Table 1. F1–F6 are unimodal functions,
which are applied to evaluate the solution speed of these algorithms. F7–F9 are multimodal
functions, which are applied to evaluate whether these algorithms have excellent global
exploration capacity. F10–F12 are combined functions, which are suitable for testing algo-
rithm performance in fixed dimensions and are used to test the answer accuracy of these
algorithms. F13–F20 are the CEC2017 functions which are applied to test the comprehensive
capability of these algorithms.

Based on these 20 test functions, this paper designs a series of experiments compar-
ing GLCryStAl with some of the latest algorithms and an improved algorithm. These
competitor algorithms are CryStAl, Accelerated Particle Swarm Optimization Algorithm
(APSO) [27], Whale Optimization Algorithm (WOA) [28], Golden Jackal Optimization
(GJO) [29], Tunicate Swarm Algorithm (TSA) [30] and the newly proposed Dung beetle
optimizer (DBO) [31]. Functions F1–F9 are tested in 30 and 100 dimensions, respectively,
and F10–F12 are tested in their suitable dimension. Eight CEC2017 benchmark functions
are tested in 50 dimensions. The maximum number of evaluations of F1–F12 is 1000.
Since CEC2017 benchmark functions are too complex, the number of evaluations of eight
CEC2017 functions are simplified to 3000 without losing representativeness. The popula-
tion size of each algorithm is 30. To avoid accidental interference, we run each algorithm
30 times independently in each experiment. The parameter values of these algorithms
involved in these experiments are shown in Table 2.
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Table 1. Benchmark functions.

Function Dim Range fmin

F1(x) = ∑D
i=1 x2

i 30, 100 [100, 100] 0
F2(x) = ∑D

i=1|xi|+ ∏D
i−1|xi| 30, 100 [−10, 10] 0

F3(x) = ∑D
i=1 (∑

D
j−1 xi)

2 30, 100 [−100, 100] 0

F4(x) = maxi{|xi|, 1 ≤ i ≤ D} 30, 100 [−100, 100] 0
F5(x) = ∑D

i=1 100(x2
i+1 − x2

i )
2
+ (xi − 1)2 30, 100 [−30, 30] 0

F6(x) = ∑D
i=1 ixi

4 + random[0, 1) 30, 100 [−1.28, 1.28] 0
F7(x) = ∑D

i=1 (x2
i − 10 cos(2πxi) + 10) 30, 100 [−5.12, 5.12] 0

F8(x) = −20 exp

(
−0.2

√
1
D

D
∑

i=1
x2

i

)
− exp

(
1
D

D
∑

i=1
cos(2πxi)

)
+20 + e 30, 100 [−32, 32] 8.8818 × 10−16

F9(x) =
D
∑

i=1

x2
i

4000 −
D
∏
i=1

cos
(

xi√
i

)
+ 1 30, 100 [−600, 600] 0

F10(x) = ((1/500) + ∑25
j=1 (1/(j + ∑2

i=1 (xi − aij)
6)))

−1 4 [−65.53, 65.53] 0.998004

F11(x) = ∑11
i=1 (ai − (x1(b2

i + bix2)/b2
i + bix3 + x4))

−1 4 [−5, 5] 0.0003075

F12(x) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)]

×[30 + (2 x1−3x2)
2(18− 32 x1+12x2

1+48x2−36x1x2+27x2
2)]

2 [−5, 5] −1.03163

F13(x)(CEC2017 14 :Hybrid Function 4 (N = 4)) 50 [100, 100] 1400
F14(x)(CEC2017 15 :Hybrid Function 5 (N = 4)) 50 [100, 100] 1500
F15(x)(CEC2017 17 :Hybrid Function 6 (N = 5)) 50 [−100, 100] 1700
F16(x)(CEC2017 18 :Hybrid Function 6 (N = 5)) 50 [−100, 100] 1800
F17(x)(CEC2017 19 :Hybrid Function 6 (N = 5)) 50 [−100, 100] 1900
F18(x)(CEC2017 20 :Hybrid Function 6 (N = 6)) 50 [−100, 100] 2000
F19(x)(CEC2017 23 :Composition Function 3 (N = 4)) 50 [−100, 100] 2300
F20(x)(CEC2017 27 :Composition Function 7 (N = 6)) 50 [−100, 100] 2700

Table 2. Parameter values of the algorithms.

Algorithm Parameter Value

APSO α = 1, β = 0.5, γ = 0.95, population size N = 30, tmax = 1000, 3000
WOA population size N = 30, tmax = 1000, 3000
GJO population size N = 30, tmax = 1000, 3000
TSA Pmin = 1, Pmax = 4, population size N = 30, tmax = 1000, 3000
DBO k = 1, λ = 4, b = 0.3, S = 0.5, population size N = 30, tmax = 1000, 3000

CryStAl population size N = 30, tmax = 1000, 3000
GLCryStAl population size N = 30, tmax = 1000, 3000

4.2. Results and Analysis

Table 3 displays the experimental results of GLCryStAl and other competitors in low
dimensional benchmark functions (dimension = 30). Std is the standard deviation and
mean is the average. The mean reflects the solution accuracy of these algorithms and Std
reflects their robustness. F10–F12 are tested in their suitable dimension.

Table 4 displays the test data of GLCryStAl and competitors in high-dimensional
benchmark functions (dimension = 100). The experimental results of eight test functions in
CEC2017 are shown in Table 5.
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Table 3. Experimental results in 30 dimensions.

Function Performance APSO WOA GJO TSA DBO CryStAl GLCryStAl

F1

Mean 5.27 × 10−39 4.31 ×
10−159

4.15 ×
10−113 0 7.46 ×

10−283 5.97 × 10−32 0

Std 1.16 × 10−39 8.51 ×
10−159

8.45 ×
10−113 0 0 1.74 × 10−31 0

F2

Mean 2.62 × 10−1 1.45 ×
10−103 1.75 × 10−65 3.75 ×

10−200
3.93 ×
10−122 4.58 × 10−17 0

Std 4.21 × 10−1 3.74 ×
10−103 3.00 × 10−65 0 1.24 ×

10−121 1.12 × 10−16 0

F3
Mean 9.76 1.56 × 10+4 1.90 × 10−34 0 2.64 ×

10−185 6.03 × 10−34 0

Std 4.43 6.68 × 10+3 5.71 × 10−34 0 0 1.08 × 10−33 0

F4

Mean 3.15 × 10−1 4.77 × 10+1 4.77 × 10−34 8.15 ×
10−185

4.45 ×
10−107 7.54 × 10−17 0

Std 1.27 × 10−1 2.98 × 10+1 7.95 × 10−34 0 1.41 ×
10−106 2.01 × 10−16 0

F5
Mean 3.09 × 10+1 2.74 × 10+1 2.74 × 10+1 2.89 × 10+1 2.48 × 10+1 2.87 × 10+1 2.87 × 10+1

Std 6.28 5.90 × 10−1 5.54 × 10−1 3.20 × 10−1 2.20 × 10−1 2.66 × 10−2 1.09 × 10−1

F6
Mean 1.74 × 10−1 6.67 × 10−4 1.94 × 10−4 7.17 × 10−6 6.77 × 10−4 5.37 × 10−4 5.11 × 10−5

Std 6.11 × 10−2 1.25 × 10−3 8.02 × 10−5 2.54 × 10−5 3.26 × 10−4 3.38 × 10−4 3.39 × 10−5

F7
Mean 8.51 × 10+1 0 0 6.81 2.19 0 0

Std 1.74 × 10+1 0 0 1.84 × 10+1 6.92 0 0

F8
Mean 3.43 × 10−1 5.15 × 10−15 4.44 × 10−15 4.44 × 10−15 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16

Std 4.84 × 10−1 2.13 × 10−15 0 0 0 0 0

F9
Mean 5.57 × 10−3 0 0 9.86 × 10−4 0 0 0

Std 1.33 × 10−2 0 0 2.96 × 10−3 0 0 0

F10
Mean 1.27 × 10+1 2.37 5.10 1.13 × 10+1 1.39 9.98 × 10−1 9.98 × 10−1

Std 1.48 × 10−13 2.90 4.64 6.25 8.37 × 10−1 0 0

F11
Mean 5.04 × 10−3 7.72 × 10−4 4.96 × 10−4 1.54 × 10−2 7.02 × 10−4 4.03 × 10−4 3.09 × 10−4

Std 7.77 × 10−3 5.34 × 10−4 3.64 × 10−4 2.61 × 10−2 2.63 × 10−4 5.58 × 10−5 8.23 × 10−7

F12
Mean 3.00 3.00 3.00 8.40 × 10+1 5.70 3.00 3.00

Std 5.63 × 10−15 8.54 × 10−6 2.37 × 10−6 3.71 × 10+1 8.54 5.85 × 10−5 6.58 × 10−6

Table 4. Experimental results in 100 dimensions.

Function Performance APSO WOA GJO TSA DBO CryStAl GLCryStAl

F1
Mean 2.10 × 10+1 1.58 × 10−153 2.34 × 10−60 0 1.56 × 10−235 3.43 × 10−32 0

Std 5.73 2.58 × 10−153 3.03 × 10−60 0 0 9.64 × 10−32 0

F2
Mean 4.23 × 10+1 4.67 × 10−102 2.68 × 10−37 5.23 × 10−184 2.13 × 10−124 5.41 × 10−17 0

Std 5.80 1.34 × 10−101 2.51 × 10−37 0 5.17 × 10−124 1.49 × 10−16 0

F3
Mean 2.32 × 10+2 9.68 × 10+5 1.26 × 10−10 0 3.30 × 10−97 4.59 × 10−36 0

Std 4.17 × 10+1 1.11 × 10+5 3.11 × 10−10 0 1.04 × 10−96 1.16 × 10−35 0

F4
Mean 2.29 5.70 × 10+1 1.57 4.01 × 10−170 4.17 × 10−124 8.48 × 10−18 0

Std 1.80 × 10−01 3.48 × 10+1 4.72 0 1.16 × 10−123 1.46 × 10−17 0

F5
Mean 5.84 × 10+3 9.82 × 10+1 9.81 × 10+1 9.85 × 10+1 2.49 × 10+1 9.87 × 10+1 9.81 × 10+1

Std 1.67 × 10+3 3.64 × 10−1 5.98 × 10−1 4.12 × 10−1 2.71 × 10−1 5.35 × 10−2 7.03 × 10−2

F6
Mean 5.21 × 10+2 5.58 × 10−4 4.71 × 10−4 4.82 × 10−5 7.68 × 10−4 3.42 × 10−4 1.34 × 10−5

Std 3.41 × 10+2 1.19 × 10−3 2.31 × 10−4 1.56 × 10−5 5.46 × 10−4 2.87 × 10−4 3.96 × 10−5

F7
Mean 4.49 × 10+2 1.14 × 10−14 0 3.98 × 10−1 0 0 0

Std 6.35 × 10+1 3.41 × 10−14 0 4.87 × 10−1 0 0 0

F8
Mean 3.70 4.09 × 10−15 1.12 × 10−14 5.15 × 10−15 1.24 × 10−15 1.24 × 10−15 8.88 × 10−16

Std 2.98 × 10−1 2.49 × 10−15 2.95 × 10−15 1.42 × 10−15 1.12 × 10−15 1.07 × 10−15 0

F9
Mean 4.67 × 10−1 0 0 9.86 × 10−4 0 0 0

Std 8.78 × 10−2 0 0 2.96 × 10−3 0 0 0
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Table 5. Test results of CEC2017 functions.

Function Performance APSO WOA GJO TSA DBO CryStAl GLCryStAl

F13
Mean 9.25 × 10+8 1.39 × 10+6 2.06 × 10+6 4.39 × 10+7 7.70 × 10+5 5.68 × 10+4 2.51 × 10+4

Std 1.69 × 10+1 1.73 × 10+6 6.62 × 10+5 1.20 × 10+7 5.51 × 10+5 3.24 × 10+4 4.71 × 10+4

F14
Mean 1.84 × 10+10 5.67 × 10+5 1.20 × 10+9 7.32 × 10+8 1.29 × 10+7 5.81 × 10+5 2.78 × 10+5

Std 2.72 × 10+6 5.34 × 10+5 5.02 × 10+8 2.09 × 10+9 4.05 × 10+7 3.01 × 10+5 1.72 × 10+5

F15
Mean 3.91 × 10+4 4.27 × 10+3 3.50 × 10+3 5.76 × 10+3 4.08 × 10+3 3.20 × 10+3 2.84 × 10+3

Std 3.81 × 10+2 4.90 × 10+2 4.56 × 10+2 1.76 × 10+3 4.96 × 10+2 1.76 × 10+2 2.29 × 10+2

F16
Mean 7.24 × 10+8 1.28 × 10+7 1.79 × 10+7 5.85 × 10+7 8.01 × 10+6 1.92 × 10+5 1.28 × 10+5

Std 2.90 × 10+6 5.98 × 10+6 2.15 × 10+7 6.03 × 10+7 7.21 × 10+6 7.11 × 10+4 2.10 × 10+5

F17
Mean 1.09 × 1010 3.05 × 10+6 2.43 × 10+8 1.17 × 10+9 1.63 × 10+6 7.76 × 10+5 2.35 × 10+5

Std 1.27 × 10+6 4.00 × 10+6 3.00 × 10+8 1.43 × 10+9 1.69 × 10+6 4.57 × 10+5 4.97 × 10+5

F18
Mean 3.96 × 10+3 4.34 × 10+3 3.37 × 10+3 3.96 × 10+3 3.68 × 10+3 3.23 × 10+3 3.05 × 10+3

Std 1.04 × 10+2 2.88 × 10+2 5.28 × 10+2 3.70 × 10+2 1.90 × 10+2 1.97 × 10+2 1.16 × 10+2

F19
Mean 6.11 × 10+3 3.54 × 10+3 3.34 × 10+3 4.15 × 10+3 3.39 × 10+3 3.83 × 10+3 3.34 × 10+3

Std 1.06 × 10+2 2.09 × 10+2 1.20 × 10+2 1.50 × 10+2 1.54 × 10+2 1.24 × 10+2 1.54 × 10+2

F20
Mean 1.32 × 10+4 4.76 × 10+3 3.93 × 10+3 4.84 × 10+3 3.87 × 10+3 4.84 × 10+3 3.79 × 10+3

Std 1.75 × 10+2 4.01 × 10+2 1.44 × 10+2 4.10 × 10+2 1.68 × 10+2 2.78 × 10+2 3.63 × 10+2

As can be seen from the above three tables, when the dimension is 30, GLCryStAl
can obtain the theoretical optimal values in test functions F1–F4 and F7–F9; GLCryStAl still
shows excellent performance in other functions. The solution accuracy of GLCryStAl in F5
is slightly worse than that of WOA, GJO and DBO, and the solution accuracy of GLCryStAl
in F6 is not good, but the gap between GLCryStAl and other competitive algorithms in
these two test functions is not large. The results are analyzed according to the Std value.
Among the functions other than F5 and F6, the Std value of GLCryStAl is the smallest,
which indicates that the optimization effect of GLCryStAl is very stable.

When the dimension is 100, GLCryStAl has the best solution accuracy in all benchmark
functions, and GLCryStAl can find the theoretical optimal value in all functions except
F5 and F6. All the data were analyzed according to Std value. The Std value of CL in F5 was
only ever worse than CryStAl, and the Std value of GLCryStAl in F6 was the second best,
indicating that GLCryStAl still has excellent robustness when solving high-dimensional
problems. From the data in Table 5, we can see that the optimization performance of
GLCryStAl does not decrease as the test case dimensions increase.

The experimental results of CEC2017 function indicate that all algorithms do not
obtain the theoretical optimal value. However, GLCryStAl can achieve better optimization
accuracy than other competitors in all test functions. This indicates that the GLCryStAl
algorithm modified by Levy operator and golden sine operator can get rid of the attraction
of local extreme value more efficiently when solving difficult optimization problems. At
the same time, the development and exploration ability of the algorithm are balanced to
ensure that the algorithm has a fast convergence rate.

Based on the above three tables for overall analysis, GLCryStAl has the characteristics
of high accuracy in 85% of the function optimization problems in the classical bench-
mark function. Combined with the experimental results of two different dimensions, the
Std value of GLCryStAl shows obvious advantages in 76% of the functions. It is not diffi-
cult to see that the optimization effect of GLCryStAl is not easily affected by contingency
probability, and GLCryStAl can always maintain a stable solution accuracy. In the CEC2017
experimental environment, GLCryStAl can calculate more accurate results within a limited
number of executions. None of the comparison algorithms calculate the theoretical optimal
value in eight CEC2017 experiments, but this can illustrate that the proposed Levy operator
and golden sine operator can accelerate the convergence speed of GLCryStAl and enable it
to obtain a better global exploration vision.
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Because the golden sine operator has excellent ergodicity, the optimization space
of the algorithm can be more comprehensive. The introduction of the golden section
coefficient in the iterative process further reduces the search space of the algorithm,
which greatly improves the convergence rate of GLCryStAl. Using the Levy flight
strategy to modify the candidate solution update formula expands the exploration
scope of GLCryStAl, and reduces the probability that GLCryStAl is attracted by local
optimal solution. The above data strongly prove the superiority of GLCryStAl and the
effectiveness of the proposed operator.

Figure 2 shows the convergence curves of GLCryStAl and other six comparison
algorithms on 20 test functions, where Figure 2a–i are the curves of F1–F9 in 100 dimensions,
Figure 2j–l are the curves of F10–F12 in their suitable dimension and Figure 2m–u are the
curves of eight CEC2017 functions.

The convergence curves of these algorithms indicate that GLCryStAl has more
excellent convergence performance than its competitors. For simple optimization prob-
lems, GLCryStAl can obtain theoretical optimal values within 400–700 iterations. For
complex and challenging problems, GLCryStAl can also maintain a faster convergence
rate and get rid of the influence of local attraction points, and ultimately achieve higher
optimization accuracy.

In order to further test whether GLCryStAl has an obvious enhancement advantage
compared with other algorithms, this paper uses the Wilcoxon [32] statistical method and
Friedman method to analyze the experimental data of these algorithms in 100-dimensional
benchmark functions. The data of F10–F12 are based on their respective dimensions. The
experimental data of eight CEC2017 benchmark functions are measured in 50 dimensions.
The results of Friedman and Wilcoxon tests are listed in Tables 6 and 7.

The smaller the rank mean of the algorithm, the better its performance. As can be seen
from Table 6, GLCryStAl has the smallest rank mean, CryStAl ranks second, followed by
DBO, GJO, WOA, TSA, APSO. According to the statistical analysis results, the rank mean of
the second-ranked competitive algorithm is almost twice that of GLCryStAl, and the rank
mean of APSO is more than three times that of GL, which indicates that the improvement
effect of the operator proposed in this paper is significant.

In the Wilcoxon statistical test results, if the p-value is less than 0.05 and close to 0, it
proves that the experimental results of the two algorithms are significantly different. If the
p-value exceeds 0.05, it proves that the experimental results of the two algorithms are not
significantly different. If the p-value is equal to NaN, it proves that the experimental results
of the two algorithms are not different.

As can be seen from Table 7, the p-values of GLCryStAl are basically less than 0.05
and close to 0, which means that GLCryStAl has significant advantages compared with
other algorithms. A small number of the data in Table 7 are greater than 0.05, as are a small
number for NaN. This is because the final solution accuracy of these competitive algorithms
is not much different from that of GLCryStAl, but it can be seen from the convergence
curves of all algorithms that although the solution accuracy of these competitive algorithms
is not much different from that of GLCryStAl, their convergence speed is generally much
slower than that of GLCryStAl.

Table 6. Friedman analysis results.

Algorithm Rank Mean

GLCryStAl 1.70
CryStAl 3.35

DBO 3.43
GJO 3.75

WOA 4.48
TSA 4.73

APSO 6.58
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Table 7. p-value of Wilcoxon statistical test results.

Function
GLCryStAl

vs.
APSO

GLCryStAl
vs.

WOA

GLCryStAl
vs.

GJO

GLCryStAl
vs.

TSA

GLCryStAl
vs.

DBO

GLCryStAl
vs.

CryStAl

F1 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5 NaN 6.39 × 10−5 6.39 × 10−5

F2 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5

F3 1.73 × 10−4 1.73 × 10−4 1.73 × 10−4 NaN 6.39 × 10−5 1.73 × 10−4

F4 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5 6.39 × 10−5

F5 1.83 × 10−4 7.69 × 10−4 2.57 × 10−2 2.83 × 10−3 1.83 × 10−4 1.83 × 10−4

F6 1.83 × 10−4 1.83 × 10−4 2.83 × 10−3 1.73 × 10−2 1.71 × 10−3 1.83 × 10−4

F7 6.39 × 10−5 3.68 × 10−1 NaN 3.50 × 10−2 NaN NaN
F8 6.39 × 10−5 1.98 × 10−3 3.29 × 10−5 3.29 × 10−5 3.68 × 10−1 3.68 × 10−1

F9 6.39 × 10−5 NaN NaN 3.68 × 10−1 NaN NaN
F10 1.78 × 10−4 9.10 × 10−1 4.52 × 10−2 1.83 × 10−4 2.12 × 10−2 3.45 × 10−1

F11 1.83 × 10−4 1.83 × 10−4 9.70 × 10−1 1.83 × 10−4 2.57 × 10−2 1.83 × 10−4

F12 1.79 × 10−4 6.78 × 10−1 4.40 × 10−4 7.91 × 10−1 2.71 × 10−3 3.85 × 10−1

F13 1.83 × 10−4 1.83 × 10−4 1.83 × 10−4 1.83 × 10−4 4.40 × 10−4 4.73 × 10−1

F14 1.83 × 10−4 5.71 × 10−1 1.83 × 10−4 1.83 × 10−4 2.83 × 10−3 5.21 × 10−1

F15 1.83 × 10−4 2.11 × 10−2 7.57 × 10−2 1.83 × 10−4 5.80 × 10−3 5.83 × 10−4

F16 1.83 × 10−4 1.83 × 10−4 1.83 × 10−4 1.83 × 10−4 1.83 × 10−4 2.41 × 10−1

F17 1.83 × 10−4 9.10 × 10−1 5.39 × 10−2 1.83 × 10−4 9.70 × 10−1 2.41 × 10−1

F18 1.83 × 10−4 1.01 × 10−3 4.27 × 10−1 4.40 × 10−4 5.83 × 10−4 2.73 × 10−1

F19 1.83 × 10−4 2.73 × 10−1 3.30 × 10−4 7.69 × 10−4 6.40 × 10−2 8.50 × 10−1

F20 1.83 × 10−4 1.04 × 10−1 9.70 × 10−1 9.11 × 10−3 1.71 × 10−3 1.04 × 10−1Electronics 2022, 11, 4109  11  of  18 
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5. Optimization Engineering Example Using GLCryStAl
5.1. Using GLCryStAl to Optimize Pressure Vessel Design Problem

The design of pressure vessel is a classical and important problem in practical engi-
neering projects. The structure of the pressure vessel is shown in Figure 3, which consists
of a cylindrical container and two hemispherical containers. In this optimization problem,
there are four key variables, which are Ts, Th, R and L. Ts denotes the thickness of the shell
of the cylindrical container, Th denotes the thickness of the hemispheric container lid, R is
the radius inside the hemispherical container and L is the length of the cylinder container.
These four variables can be expressed as the following equation when using algorithms to
optimize the pressure vessel design problem.

x = (x1, x2, x3, x4)
T = (Ts, Th, R, L)T (20)

Electronics 2022, 11, 4109  14  of  18 
 

 

of a cylindrical container and two hemispherical containers. In this optimization problem, 

there are four key variables, which are  sT ,  hT ,  R   and  L . sT   denotes the thickness of 

the shell of the cylindrical container,  hT   denotes the thickness of the hemispheric con‐

tainer lid,  R   is the radius inside the hemispherical container and  L   is the length of the 
cylinder container. These four variables can be expressed as the following equation when 

using algorithms to optimize the pressure vessel design problem. 

1 2 3 4( , , , ) ( , , , )T T
s hx x x x x T T R L 

  (20)

 

Figure 3. Pressure vessel structure diagram. 

In this optimization problem, we use heuristic algorithm to regulate these four vari‐

ables, so as to minimize the sum of material cost, forming cost and welding cost of the 

pressure vessel, which is transformed into the problem of finding the minimum of objec‐

tive function with constraints. 

The objective function of the pressure vessel design optimization problem is as fol‐

lows: 

  2 2 2
1 3 4 2 3 1 4 1 3

1 1 3

2 2 3

2 3
3 3 4 3

min 0.6224 1.7781 3.1661 19.84 ;  

        s.t.      g ( ) 0.0193 0;

                  g ( ) 0.00954 0;

4
                  g ( ) 1296000 0;

3
                

f x x x x x x x x x x

x x x

x x x

x x x x 

   

   

   

    



4 4

1 2 3 4

  g ( ) 240 0;

                 1 , 99,10 , 200

x x

x x x x

  
   

 

(21)

To verify the effectiveness of GLCryStAl in pressure vessel design, this paper selects 

PSO, WOA, GJO, TSA, DBO and CryStAl to compare with GLCryStAl, and runs each al‐

gorithm 10 times. The population size of all algorithms is 30, and the maximum number 

of iterations  maxt   = 1000. The specific results are listed in Tables 8 and 9. 

Table 8. Total cost of six algorithms for optimizing pressure vessel design problems. 

Algorithm  PSO  WOA  GJO  TSA  DBO  CryStAl  GLCryStAl 

Best value  6233.24  7073.26  5935.81  7016.74  5949.13  5951.03  5912.19 

Worst value  6401.17  9776.40  7051.61  7765.10  7319.00  6727.56  6745.60 

Mean  6215.85  8345.98  6359.02  7529.88  6365.51  6175.29  6142.88 

Std  112.39  853.42  537.95  269.94  618.57  241.23  204.76 

   

Figure 3. Pressure vessel structure diagram.



Electronics 2022, 11, 4109 14 of 18

In this optimization problem, we use heuristic algorithm to regulate these four vari-
ables, so as to minimize the sum of material cost, forming cost and welding cost of the
pressure vessel, which is transformed into the problem of finding the minimum of objective
function with constraints.

The objective function of the pressure vessel design optimization problem is as follows:

min f
(→

x
)
= 0.6224x1x3x4 + 1.7781x2x3

2 + 3.1661x1
2x4 + 19.84x1

2x3;
s.t. g1(x) = −x1 + 0.0193x3 ≤ 0;

g2(x) = −x2 + 0.00954x3 ≤ 0;
g3(x) = −πx3

2x4 − 4
3 πx3

3 + 1296000 ≤ 0;
g4(x) = x4 − 240 ≤ 0;
1 ≤ x1, x2 ≤ 99, 10 ≤ x3, x4 ≤ 200

(21)

To verify the effectiveness of GLCryStAl in pressure vessel design, this paper selects
PSO, WOA, GJO, TSA, DBO and CryStAl to compare with GLCryStAl, and runs each
algorithm 10 times. The population size of all algorithms is 30, and the maximum number
of iterations tmax = 1000. The specific results are listed in Tables 8 and 9.

Table 8. Total cost of six algorithms for optimizing pressure vessel design problems.

Algorithm PSO WOA GJO TSA DBO CryStAl GLCryStAl

Best value 6233.24 7073.26 5935.81 7016.74 5949.13 5951.03 5912.19
Worst value 6401.17 9776.40 7051.61 7765.10 7319.00 6727.56 6745.60
Mean 6215.85 8345.98 6359.02 7529.88 6365.51 6175.29 6142.88
Std 112.39 853.42 537.95 269.94 618.57 241.23 204.76

Table 9. The best results of six algorithms.

Algorithm Ts Th R L f(x)

PSO 0.9439015 0.466571 48.90681 107.2621 6233.24
WOA 0.8127619 0.7146932 40.51463 197.303 7073.26
GJO 0.7838487 0.3997165 40.60734 196.2115 5935.81
TSA 1.05297 0.554377 51.6783 86.8777 7016.74
DBO 0.81254 0.402322 42.098439 176.6367 5949.13
CryStAl 0.7923016 0.3923043 40.81446 193.5723 5951.03
GLCryStAl 0.7839314 0.3905878 40.6004 196.3812 5912.19

It is clear from the above two tables that the total cost calculated by GLCryStAl
is the smallest in the pressure vessel optimization design problem. In addition, the
Std of GLCryStAl is within an acceptable range, which proves from another aspect
that GLCryStAl has excellent stability when solving constrained engineering design
optimization problems.

5.2. Optimizing the Design of Tension/Compression Spring Using GLCryStAl

To fully prove the feasibility and effectiveness of the GLCryStAl algorithm in
engineering optimization problems, this paper applies the GLCryStAl algorithm to the
optimization design problem of a tension/compression spring. A schematic of the spring
is shown in Figure 4. This optimization problem is to select the most appropriate wire
diameter (D), the average coil diameter (L) and the number of effective coils (P) under a
series of specific constraints, so as to minimize the weight of the spring. In this paper, the
three variables D, L and P are represented as x1, x2 and x3. The mathematical modeling
of the optimization problem in this section is as follows:
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min f
(→

x
)
= (x3 + 2)x2x2

1;

s.t. g1(x) = 1− x3
2x3

71785x4
1
≤ 0;

g2(x) = 4x2
2−x1x2

12566(x2x3
1−x4

1)
+ 1

5108x2
1
− 1 ≤ 0;

g3(x) = 1− 140.45x1
x2

2x3
≤ 0;

g4(x) = x1+x2
1.5 − 1 ≤ 0;

0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3, 2 ≤ x3 ≤ 15

(22)
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Figure 4. Schematic diagram of tension/compression spring design.

To evaluate the effectiveness of GLCryStAl in the design of tension/compression
spring, a comparative experiment is designed. PSO, WOA, GJO, TSA, DBO and CryStAl
are selected to compare with GLCryStAl, and the results are listed in Tables 10 and 11. In
this comparison experiment, each algorithm runs 10 times independently. The population
size of each algorithm is 30, and the maximum number of iterations tmax = 1000.

Table 10. Comparison results of six algorithms in spring design problem.

Algorithm PSO WOA GJO TSA DBO CryStAl GLCryStAl

Best value 0.012773 0.012757 0.01273 0.013104 0.012703 0.012702 0.012692
Worst value 0.014331 0.017183 0.012745 0.015482 0.017773 0.012836 0.012801
Mean 0.013323 0.013703 0.012736 0.013690 0.013633 0.012783 0.012767
Std 5.774 × 10−4 1.381 × 10−3 8.093 × 10−6 7.922 × 10−4 1.721 × 10−3 5.047 × 10−5 5.135 × 10−5

Table 11. The best results of six algorithms.

Algorithm D L P f(x)

PSO 0.054129 0.41825 8.4229 0.012773
WOA 0.068001 0.89079 2.1716 0.017183
GJO 0.0503732 0.325773 13.4042 0.01273
TSA 0.055371 0.45034 7.4903 0.013104
DBO 0.0506135 0.331388 12.9636 0.012703
CryStAl 0.0523392 0.372375 10.4521 0.012702
GLCryStAl 0.0515739 0.353728 11.4895 0.012692

From the experimental results, in the optimization results of all algorithms, the mean
value obtained by GLCryStAl is second only to the mean value obtained by GJO. However,
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from another point of view, the best value of spring weight optimized by the GLCryStAl
algorithm is smaller than that of all the competitors. This proves that the GLCryStAl
algorithm proposed in this paper is feasible and effective in the optimization design
problem of a tension/compression spring.

6. Discussion of GLCryStAl

CryStAl is a heuristic algorithm with a simple structure and no need to set hyper-
parameters. This paper uses Levy operator and golden sine operator to make targeted
optimization based on some subsidies of the original CryStAl algorithm. Firstly, this
paper uses the golden sine operator to optimize the candidate solution update equation
in CryStAl. The golden sine operator has excellent ergodicity to speed up the conver-
gence of the algorithm. Secondly, this paper uses the levy flight operator to perturb the
candidate solution update method of the CryStAl algorithm. By using the method of
combining the long and short steps of the operator for optimization, the algorithm is
effectively prevented from being attracted by the local optimal value during execution.
The excellent optimization capability of GLCryStAl is demonstrated by comparison with
various competitive algorithms. A series of experiments have proved the effectiveness
of GLCryStAl from multiple viewpoints, which strongly indicates that GLCryStAl has a
wide range of engineering applications.

In a series of function test experiments, GLCryStAl has higher solution accuracy
than other competitors in 85% of classical benchmark functions. GLCryStAl has a higher
Std value than other competitors in 76% of classical functions, which proves that the
accuracy of GLCryStAl is not easily affected by random factors. In the comparison of
CEC2017 benchmark functions, although all algorithms cannot calculate the theoretical
optimal value, GLCryStAl can calculate a more accurate solution in a limited number
of executions. The comparison results of a series of functions are analyzed by statistical
methods. GLCryStAl achieved the smallest rank mean in the Friedman analysis experiment,
and the p-value in the Wilcoxon analysis experiment is basically less than 0.05 and close
to 0. These statistical analyses prove that the two operators proposed in this paper have
significant improvement effects on CryStAl. Applying GLCryStAl to the pressure vessel
design problem and the tension/compression spring design problem, compared with
other competitors, GLCryStAl can calculate the minimum cost pressure vessel design
and the minimum weight stretch/compression spring design. It can be proven from a
series of experiments in this paper that the optimization performance of GLCryStAl is
significantly improved compared with the original CryStAl algorithm, but the performance
of GLCryStAl in solving some multi-peak complex problems still needs to be improved,
which is also a major research direction in our future.

7. Conclusions

Focusing on the problem of the crystal structure algorithm being easily attracted
by local extremum and the solution accuracy not being high enough, GLCryStAl is
proposed. In GLCryStAl, the golden sine operator and Levy operator are applied to
modify the update strategy of the four candidate solutions in the crystal structure.
This improvement can effectively prevent GLCryStAl from being attracted by local
extreme values in the optimization process, and the optimization speed of GLCryStAl
is significantly accelerated. In this paper, 10 classical benchmark functions and eight
CEC2017 test functions are applied to design a series of comparison experiments with
the latest algorithms and our improved algorithm. When solving low-dimensional
functions, GLCryStAl can calculate the theoretical optimal value of the function in F1–F4
and F7–F9, and GLCryStAl can maintain the minimum standard deviation in functions
other than F5 and F6. When solving high-dimensional functions, GLCryStAl obtains
theoretical optimal values in seven functions. It can be concluded from the experimental
results that the optimization capability of GLCryStAl is obviously stronger. In addition,
the experimental data of the six algorithms were analyzed by Wilcoxon and Friedman
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method. The statistical results show that the rank mean of GL is only 1.7, which indicates
that GLCryStAl algorithm is superior to other competitors.

Finally, this paper uses GLCryStAl to optimize two practical engineering problems.
In the first engineering problem, GLCryStAl is applied to the optimal design of pressure
vessels. GLCryStAl achieved the best performance in this experiment. In the second
engineering problem, GLCryStAl is applied to optimize the stretch/compression spring
design. In this experiment, the optimal spring weight designed by GLCryStAl is second
only to that of GJO. These two design problems fully demonstrate the feasibility and
effectiveness of GLCryStAl in optimizing practical engineering problems.
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