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Abstract: In recent years, video identification within encrypted network traffic has gained popularity
for many reasons. For example, a government may want to track what content is being watched by its
citizens, or businesses may want to block certain content for productivity. Many such reasons advocate
for the need to track users on the internet. However, with the introduction of the secure socket layer
(SSL) and transport layer security (TLS), it has become difficult to analyze traffic. In addition, dynamic
adaptive streaming over HTTP (DASH), which creates abnormalities due to the variable-bitrate (VBR)
encoding, makes it difficult for researchers to identify videos in internet traffic. The default quality
settings in browsers automatically adjust the quality of streaming videos depending on the network
load. These auto-quality settings also increase the challenge in video detection. This paper presents a
novel ensemble classifier, E-Ensemble, which overcomes the abnormalities in video identification
in encrypted network traffic. To achieve this, three different classifiers are combined by using
two different combinations of classifiers: the hard-level and soft-level combinations. To verify the
performance of the proposed classifier, the classifiers were trained on a video dataset collected over
one month and tested on a separate video dataset captured over 20 days at a different date and time.
The soft-level combination of classifiers showed more stable results in handling abnormalities in the
dataset than those of the hard-level combination. Furthermore, the soft-level classifier combination
technique outperformed the hard-level combination with a high accuracy of 81.81%, even in the
auto-quality mode.

Keywords: video identification; ensemble learning; encrypted video traffic

1. Introduction

With the increase in the connectivity and availability of the internet, video traffic
is consistently on the rise. According to the CISCO Annual Internet Report, more than
70% of the world’s population will have a mobile internet connection by 2023 (https://
newsroom.cisco.com/press-release-content?type=webcontent&articleId=2055169 (accessed
on 1 November 2022)). According to YouTube, people watch billions of hours on YouTube
every single day (https://blog.youtube/news-and-events/you-know-whats-cool-billion-
hours (accessed on 1 November 2022)). This is all possible due to the common availability
of the internet and the popularity of video service providers. Regardless of the mentioned
popularity and its huge following, YouTube is a source of the quick spread of false
information and hate speech, which can cause security concerns. In addition, studies
have shown that the YouTube platform is radicalizing people [1–6]—for example, the
investigative report of the shooting at the Christchurch Mosque discussed how video streaming
websites can cause radicalization and the spread of hate speech against communities. Therefore,
it is necessary to keep track of people with an extremist mindset by analyzing their
watching history.
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Video identification is an important aspect of grouping people according to their quality of
experience (QoE) requirements. Moreover, intelligence agencies use the identification of users’
behavior for their surveillance purposes. Much research has been presented in the past on
video identification in network traffic. However, with the proliferation of secure socket
layer (SSL) and transport layer security (TLS) methods, such as deep packet inspection
(DPI) [7], video identification in network traffic became ineffective. In recent years, the
convolutional neural network (CNN) has shown an advantage over traditional machine
learning algorithms. A CNN is a probabilistic classifier that predicts the name of a class, as
well as the probability of that class in a given set of classes. CNNs are actively used in almost
all domains, such as image processing, pattern recognition, human activity detection [8,9],
graph classification [10,11], data mining [12–15], and natural language processing [16–19].
Many studies have also utilized CNNs for video identification in internet traffic [20–22].

Video streaming utilizes the dynamic streaming over HTTP (DASH) technique to send
video data to clients. The DASH technique follows a specific streaming pattern that can be
exploited to identify a video in network traffic. In DASH, each video is divided into smaller
segments and delivered to clients according to their network conditions. This technique
is effectively utilized to enhance the quality of experience (QoE) of the clients. However,
DASH uses the variable-bitrate (VBR) encoding, which creates inconsistencies in streaming
patterns. As shown in Figure 1, the same video that was captured three times shows
different streaming patterns due to its irregular network conditions and VBR encoding. For
example, in this figure, from the 70th second to the 120th second, almost the same amount
of data was transferred. However, in Run 1, the data did not arrive until the 116th second
and reached the maximum at the 117th second. In Run 2, the same amount of data arrived
in small amounts at different time intervals, while in Run 3, the data arrived late again,
but this time, they formed two medium-sized peaks instead of one large peak and two
small peaks, as in Run 1. This irregular arrival of data makes it difficult for classifiers to
learn patterns.

Figure 1. Abnormalities in streaming patterns.

The aforementioned challenges make it difficult for researchers to identify videos in
internet traffic. Secondly, these irregularities also create problems in the prediction of video
titles, which also affects the accuracy of previously trained models. For instance, Figure 2
shows the results of a test of accuracy for different classifiers on different datasets captured
on different days in the auto-quality mode. The auto-quality mode makes detection even
more difficult, as the quality of a video changes with changes in the available bandwidth.
The classifiers with different input features that were used for evaluation purposes were
bytes per second (BPS), the fingerprint of the packet size per arrival time (F-PAT), and the
fingerprint of the BPS (F-BPS). The details of the preparation of the video dataset and the
classifiers are presented in Section 4 and Section 5, respectively. The aforementioned
classifiers were trained on a dataset collected over a month, and their accuracy was
evaluated on a dataset collected on different days in the following month. It can be
seen from the results that the model showed inconsistency in accuracy due to irregularities



Electronics 2022, 11, 4076 3 of 13

in the dataset. For example, F-PAT showed better prediction results on Day 3 and Day 7
and worse results on Day 12. Similarly, the same inconsistent results were observed for
the other techniques. The maximum accuracies achieved by BPS, F-PAT, and F-BPS were
73.07%, 75.88%, and 63.05%, respectively.

Figure 2. Abnormalities in accuracy due to VBR encoding.

Many techniques are used in machine learning for prediction tasks. However, a single
classifier will show a deficiency in performance and stability compared with ensemble
learning [23]. Ensemble learning aims to classify input data into classes/labels with the help
of two or more classifiers. The final prediction depends on the output of these classifiers.
An ensemble performs better than a single classifier alone [24–26]. Moreover, studies have
also shown that an ensemble produces more accurate and stable results than those of its
component classifiers [27–29].

The main research issue or objective of this work is to find a methodology that can
provide stable results for video identification in network traffic even if the videos are being
played in auto-quality mode. This paper aims to present a novel E-Ensemble classifier
for video identification in network traffic in order to handle inconsistencies that occur
due to VBR encoding. The E-Ensemble classifier is composed of the three aforementioned
classifiers: BPS, F-PAT, and F-BPS. The details of the mentioned classifiers are presented in
Section 5. The main contributions of this paper are given below:

• A novel E-Ensemble classifier for video identification in network traffic that can detect
videos with 82% accuracy in auto-quality mode.

• Evidence that the soft-level classifier combination technique is more stable for video
identification in comparison with the hard-level classifier combination technique.

The rest of this paper is organized as follows: Section 2 presents a study of the
background literature. The background of ensemble classifiers is presented in Section 3.
Section 4 presents the details of the preparation of the dataset and the experimental setup.
Details of the classifiers involved in the construction of the the E-Ensemble classifier used
in this study are presented in Section 5. The results are discussed in Section 6, and Section 7
concludes the paper.

2. Related Work

Recently, neural networks (NNs) have been used almost everywhere to solve a wide
variety of distinct problems, such as facial recognition, object detection, pattern recognition,
image interpretation, network traffic classification, and video identification [30–33]. However,
most problems rely on a single classifier, which is prone to a decrease in performance and
stability over time. This is because they forget the problem of the model, and this is called
concept drift [34]. Therefore, ensemble learning is a reliable solution. Ensemble learning
improves upon the efficiency and stability of traditional machine learning algorithms, and
it can be applied to a wide range of problems [35–38].

In the field of network traffic classification, most of the work is limited to the use of the same
baseline classifiers [39] and voting or stacking techniques [40,41]. He et al. [40] presented a novel
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machine learning technique that combined semi-supervised and meta-learning techniques
for the classification of the traffic within a network. The proposed technique worked on
the flow characteristics of network traffic and overcame shortcomings such as the low
adaptability of machine learning models and the limited flow precision rate.

Similarly, the work of Wang et al. [41] proposed a traffic classification technique
that worked on the sub-flow characteristic of network traffic by using meta-learning. The
authors proposed a flow interception method for real-time processing and an ensemble
method by using the accuracy of individual classifiers for different internet applications.
The results showed the effectiveness of their proposed technique. A novel ensemble
classifier in the field of network traffic classification was presented by Gmez et al. [39]. The
authors used seven popular decision-tree-based algorithms for a performance comparison.
The results showed that in some cases, the algorithm that was used, such as a random forest
or extremely randomized trees, showed better performance than the ensemble algorithms
in terms of accuracy.

Many similar works were also presented in the literature regarding video traffic
classification [20–22,42–44]. For instance, Khan et al. [20,21] presented a sequential
convolutional neural network (SCNN) for video title prediction in encrypted network
traffic. Similarly, Dvir et al. [42] presented the clustering of videos in known video titles.
However, in contrast to previous work, this paper aims to classify internet streaming traffic
by using a CNN in an ensemble classifier. For this purpose, features were extracted from a
dataset, and three different classifiers with different hyper-parameter settings were trained
on the features to construct the ensemble classifier. In addition, two different classifier
combination techniques—the details of which are provided in Section 3—were utilized to
combine the classifiers, and their performance was compared. To the best of the authors’
knowledge, this is the first study to utilize three different CNNs in the field of video
identification in internet traffic.

3. Ensemble Classifier

An ensemble is a machine learning approach in which two or more classifiers are
combined to obtain better predictions and more stable results than those of individual
classifiers. Generally, an ensemble classifier obtains a result from each classifier that
competes in its construction, and it produces a class label as the final result, as shown in
Figure 3. Therefore, the problem seems to be that of finding a combination function that
accepts m inputs from M classifiers and predicts the final class label and score.

Figure 3. General architecture of an ensemble classifier.

The M classifiers used to construct the ensemble classifier can be of the same type,
but they are trained on different input features or tuned on different hyper-parameter
settings. Conversely, the classifiers can be different, but can be trained on the same input
data. However, the main purpose of combining the classifiers is that an individual classifier
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should not make the same mistake on the same input instance. A successful combination
of classifiers should improve the overall accuracy.

In the literature, different strategies, such as the soft and hard levels of combination,
adaptive combination, non-adaptive combination, and combination based on the number
of classifiers, were discussed [45]. However, this paper mainly focuses on two combination
techniques: hard-level and soft-level combination.

3.1. Hard-Level Combination

Hard-level combination uses the output of an individual classifier to predict the label
of a class. In hard-level combination, the classifiers competing in the ensemble vote for the
class that will be the final prediction of the ensemble classifier, as shown in Figure 4. A
typical example of a hard-level combination is majority voting. In majority voting, if the
predicted label of the classifier matches with the true label, then the vote of that classifier
is considered as 1, or 0 otherwise. After the vote, the result is calculated based on the
maximum number of votes for an individual class.

Figure 4. An ensemble classifier based on a hard-level combination.

Consider a list of N classes given as C = {c1, c2, . . . , cn} and a list of M classifiers given
as L = {l1, l2, . . . , lm}. Each classifier produces an output label vector for a given input
sequence as Rm = {rm,1, rm,2, · · · , rm,n}. The result of rm,n = 1 is that the classifier lm labels
the given output as class n, and 0 otherwise. In this scenario, for any input k, the result of
the decision is given as

Pk = arg max
j∈N

m

∑
i=1

ri,j (1)

The majority vote gives an accurate prediction when at least m
2 + 1 classifiers give the

correct prediction [46].

Example of Majority Voting

Consider an ensemble composed of three different classifiers, that is, l1, l2, and l3, and
five different classes: C1, C2, C3, C4, and C5. Each classifier produces a vector of votes
for each class on a given set of inputs. The result of the classifier is 1 when the classifier
predicts the true label of the class, and 0 otherwise, as shown in Figure 5. The final result
of the ensemble is calculated by adding the votes of each classifier for every class. In our
example, the classifiers l1 and l2 voted for C3, and only l3 voted for C2. After adding the
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votes of each class, we can see that class C3 had the maximum number of votes. Therefore,
the final class label predicted by the ensemble classifier was C3.

Figure 5. Example of hard-level voting.

3.2. Soft-Level Combination

A soft-level combination uses the posterior probabilities of a classifier as the output.
These results are then used to predict the final class label for the applied rules, as shown
in Figure 6. In a soft-level combination, there are multiple rules for combining classifiers
for an ensemble model, such as the sum, min, max, median, product, and average [47]. The
average rule is considered to be the strongest rule from the point of view of prediction. As
a natural competitor of majority voting, the average rule shows almost similar results [48].
Therefore, this study used the average rule in soft-level classifier combinations. In the
average rule, the probabilities of each classifier for an individual class are summed up, and
the average of the final result is calculated. The class that has the highest probability is
selected as the final result of the average rule.

Figure 6. Ensemble classifier based on a soft-level combination.

Consider a classifier that provides an output vector of posterior probabilities of the
classifier, which is given as Rm = {rm,1, rm,2, · · · , rm,n}. The result of the average rule can be
calculated as:

Pk = arg max
j∈N

1
M

m

∑
i=1

ri,j (2)

Example of the Average Rule

As discussed earlier, to convert the example of majority voting into an example of
the average rule, in this example, we use three classifiers and five classes. The classifiers
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produce the posterior probabilities of the classes when the input data are provided to the
classifiers. The average probabilities of all classes are calculated, as shown in Figure 7. The
final result is calculated as the highest probability of the result. In this example, class C1 is
the result of the ensemble classifier with the highest probability.

Figure 7. Example of a soft-level combination in which the average rule is applied.

4. Experimental Setup

This section presents the experimental details, traffic capture details, and dataset
preparation details. The whole experiment was set up in Google Colaboratory with an
Nvidia Tesla K80 GPU in a Jupyter Notebook environment. WireShark was used to capture
video streaming traffic, and selenium was used for automation. Scapy (https://scapy.net/
(accessed on 1 November 2022)) was used to remove unnecessary information and extract
packet information from the captured traffic.

4.1. Traffic Capture Details

To capture the traffic of the video stream, a dummy client was set up, which played
YouTube videos as a real person would. To represent the behavior of a real person, selenium
was used in Python. The links to the videos were stored in a CSV file with the number
of times that each video was played. The dummy client read the links and played the
videos as a real person would. Wireshark was used to capture the streaming traffic of the
videos. As the entire setup was deployed in a command-line environment, Tshark was used
to capture the traffic. The captured traffic was then stored in the form of packet capture
(PCAP) files.

4.2. Dataset Details

The dataset used in this paper consisted of 43 videos that were captured at different
dates and times. The captured dataset was divided into two types according to the capture
dates: a month-wise dataset and a day-wise dataset. For the month-wise dataset, video
streams of the 43 videos were played and captured in the auto-quality mode for a whole
month. The total video streams of a single video in the month-wise dataset amounted to
155, making a total of 6665 PCAP files. Similarly, the day-wise dataset also consisted of
43 videos that were captured in auto-quality mode. The difference between the month-wise
and day-wise dataset was that in the day-wise dataset, the video streams of each video
were captured five times each day for 20 days.

The month-wise dataset was split into 75 and 25%, with 75% data for training and 25%
for testing and validation of the classifiers. Different types of features were extracted from
the PCAP files for each classifier competing in the E-Ensemble classifier. The classifiers
were trained on the datasets to evaluate the accuracy. After evaluating the performance,
each classifier was trained on 100% of the month-wise dataset and tested on the day-wise
dataset to check the accuracy for consistency.

5. E-Ensemble for Video Identification

This section presents the proposed E-Ensemble classifier for video identification in
encrypted network traffic. For the video identification, two types of information were
extracted from the captured video streams. The information contained (a) the bytes per
second (BPS) and (b) the packet size per arrival time (PAT). The BPS and PAT fingerprints
were created and provided as input to the three neural network models. The outputs of
the three models were then passed to the E-Ensemble method to calculate the final output

https://scapy.net/
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prediction, depending on the classifier combination rule. Figure 8 presents a pictorial
representation of the E-Ensemble classifier. The details of the classifiers competing in
E-Ensemble are presented in the following subsections.

Figure 8. A detailed overview of the E-Ensemble classifier.

5.1. Bytes per Second (BPS)

Khan et al. [20,21] utilized this feature for video label prediction in encrypted network
traffic for the first time. For the construction of the BPS, the network traffic was captured
in the form of a packet capture file (PCAP), and the bytes received at every second were
extracted as the the network traffic was captured. For a video spanning n seconds, the
BPS sequence is defined as B = (bt1, bt2, . . . , btn), where b is the number of bytes received
at time t. The CNN model presented in [21] was used to train on the BPS dataset. The
model achieved an accuracy of 73.07% over 100 epochs. The details of the CNN model are
provided in Table 1.

Table 1. Summary of the BPS classifier.

Layer ID Layer (Type) Output Shape Param #
1 Conv1D (None, 120, 1024) 7168
2 MaxPooling1D (None, 60, 1024) 0
3 Conv1D (None, 60, 512) 2097664
4 MaxPooling1D (None, 30, 512) 0
5 Conv1D (None, 30, 512) 1311232
6 MaxPooling1D (None, 15, 512) 0
7 Dropout (None, 15, 512) 0
8 Flatten (None, 7680) 0
9 Dense (None, Number of videos) 337964

Total parameters: 3,754,028; Trainable parameters: 3,754,028; Non-trainable parameters: 0.

5.2. Fingerprint of the Packet Size per Arrival Time (F-PAT)

In this technique, the packet sizes per arrival time was extracted from the dataset
of PCAP files. For this purpose, Scapy was used to extract the packet information from
the files. Similarly to the BPS, for any video v, the size of the packet per arrival time is
indicated as P = (pktt1, pktt2, . . . , pkttn), where pkt is the size of the packet at any time t.
To eliminate abnormalities in the captured stream, a stable fingerprint can be created to
overcome the problem [49]. For this purpose, the packet size of each segment was added
separately. In this paper, the segment size of 6 s was selected, as discussed in [49]. The
fingerprint of any consecutive segment of the PAT, that is, sgt and sgt−1, can be created
with the following formula.

f pt = |sgt − sgt−1| (3)

The created fingerprints were used to train the CNN model. Through rigorous
experiments in which the hyper-parameter settings of the CNN were varied, the model
achieved an accuracy of 75.88% with 300 epochs and with the ReLu activation function in
all convolutional layers. The details of the CNN model used to train on the F-PAT dataset
are provided in Table 2.
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Table 2. Summary of the F-PAT classifier.

Layer ID Layer (Type) Output Shape Param #
1 Conv1D (None, 21, 300) 1800
2 MaxPooling1D (None, 21, 300) 0
3 Conv1D (None, 21, 512) 461312
4 MaxPooling1D (None, 10, 512) 0
5 Conv1D (None, 10, 512) 262656
6 MaxPooling1D (None, 10, 512) 0
7 Conv1D (None, 10, 300) 153900
8 MaxPooling1D (None, 10, 300) 0
9 Dropout (None, 10, 300) 0

10 Flatten (None, 3000) 0
11 Dense (None, Number of videos) 129043

Total parameters: 1,008,711; Trainable parameters: 1,008,711; Non-trainable parameters: 0.

5.3. Fingerprint of the BPS (F-BPS)

To eliminate abnormalities in the BPS, a stable fingerprint of the BPS can be created by
using the aforementioned technique. For this purpose, the BPS values of the segments were
added, and a fingerprint of the segments of the BPS was created. Any two consecutive
segments of the BPS bst and bst−1 can be created with the following formula.

b ft = (bst − bst−1)
2 (4)

The only difference between the fingerprint of the PAT and BPS is that for F-BPS, the
square of the difference between the two consecutive segments is taken. However, F-PAT
is created by taking the absolute value of the difference. This is due to the elimination
of the negative sign from the values. A CNN model with the same configuration used
for the F-PAT was utilized to train on the F-BPS dataset. The only difference was that the
Tanh activation function was used in the convolutional layers instead of ReLU. The model
achieved an accuracy of 63.05%.

6. Results and Discussion

This section presents the results for the three aforementioned classifiers and the
proposed E-Ensemble classifier. The classifiers were trained on the one-month dataset,
and the 20-day datasets were tested for accuracy. After that, the classifier combination
techniques discussed earlier were compared in order to obtain more accurate and stable
results. Finally, the proposed classifier was compared with the individual classifiers
competing in the construction of E-Ensemble.

6.1. Accuracy of Individual Classifiers on the 20-Day Dataset

This section presents the results of the individual classifiers trained on the month-wise
dataset and tested on the day-wise dataset. From the results, it was observed that the
standard deviation of the accuracy of the BPS classifier with respect to the F-PAT and F-BPS
was 3.7. It is clear from the results that the BPS classifier showed more stable results than
those of its counterparts. Moreover, the maximum variation in accuracy was observed on
Day -20. Similarly, the standard deviations of the F-PAT and F-BPS were 6.61 and 4.17,
respectively. The maximum differences between the F-PAT and F-BPS were 29.55% and
12.35%, respectively. The day-wise accuracy of the individual models is shown in Table 3.
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Table 3. Accuracy in % for the BPS, F-PAT, and F-BPS classifiers.

Dataset BPS F-PAT F-BPS
Month 73.07 75.88 63.05
Day1 62.79 62.33 56.74
Day2 66.05 67.44 60.47
Day3 70.87 76.28 67.27
Day4 73.38 72.08 57.47
Day5 69.47 65.61 57.54
Day6 70.97 72.81 63.13
Day7 71.83 77.46 64.79
Day8 68.84 68.84 55.81
Day9 64.19 68.37 59.53
Day10 65.12 61.86 50.7
Day11 69.77 64.19 57.67
Day12 70 46.33 57.8
Day13 69.3 65.12 54.88
Day14 69.3 68.37 61.86
Day15 63.72 71.16 59.53
Day16 69.77 74.42 64.65
Day17 67.44 71.63 63.26
Day18 63.26 72.09 53.95
Day19 64.65 72.09 55.35
Day20 59.07 68.37 54.42

6.2. Comparison of Different Classifier Combination Techniques

This section presents the results of the proposed classifier, E-Ensemble, with different
techniques for combining the classifiers. This experiment was performed to check which classifier
combination technique showed more stable results. For this purpose, the aforementioned
techniques, that is, the hard-level combination (majority voting) and soft-level combination
(average voting), were utilized. The same method was used for evaluation purposes. The
classifier was trained on the month-wise dataset and tested on the day-wise dataset. From
the results, it was observed that the average voting technique outperformed the majority
voting technique in all day-wise datasets, as shown in Figure 9. Furthermore, the results
also showed that the average voting technique was more stable, since it had the lowest
standard deviation of 2.96, unlike the majority voting, which had a standard deviation of
4.17. Furthermore, average voting showed a high accuracy of 81.81% in comparison with
majority voting, which had an accuracy of 75.58%.

Figure 9. Accuracy in % of for majority voting and average voting.
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6.3. Comparison of the Individual Classifiers with the Average Voting Technique

In this section, we present a comparison of the accuracy of the individual classifiers
with the averaging voting technique. From the results, it was observed that the average
voting technique outperformed all classifiers. Moreover, it was also observed that even if
the component classifiers’ accuracy was lower, the average voting technique identified the
videos with a high accuracy, as shown in Figure 10 on Day-10 and Day-12.

Figure 10. Accuracy in % of the individual classifiers and the average voting technique.

We conclude this section on the results with the following observations. The soft-level
classifier combination technique performed better than the hard-level classifier combination
technique for video identification in network traffic. Individually, the BPS classifier
showed better performance than that of the F-PAT and F-BPS classifiers. However, the
E-Ensemble classifier that was a soft-level combination of the BPS, F-PAT, and F-BPS
classifiers performed even better than the individual classifiers.

7. Conclusions

An ensemble classifier has superior classification performance to that of an individual
classifier. Taking advantage of an ensemble classifier, this paper presents a novel E-Ensemble
classifier that predicts videos in encrypted network traffic. For this purpose, two classifier
combination techniques were used to determine which technique provided the most
stable results. The datasets used in this paper were created at two different dates and
times. For the first dataset, the video streams were captured over a whole month. For the
second dataset, the video streams were captured over 20 days. E-Ensemble was trained
on the dataset of the month, and its accuracy was tested on the other dataset. The results
showed that E-Ensemble outperformed the individual classifiers, even if the accuracy of
its component classifiers was lower. Moreover, the results also showed that the soft-level
classifier combination technique displayed more accurate and stable results, with a high
accuracy of 81.81%.
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