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Abstract: In mid-2020, the new international video coding standard, namely versatile video coding
(VVC), was officially released by the Joint Video Expert Team (JVET). As its name indicates, the
VVC enables a higher level of versatility with better compression performance compared to its
predecessor, high-efficiency video coding (HEVC). VVC introduces several new coding tools like
multiple reference lines (MRL) and matrix-weighted intra-prediction (MIP), along with several
improvements on the block-based hybrid video coding scheme such as quatree with nested multi-
type tree (QTMT) and finer-granularity intra-prediction modes (IPMs). Because finding the best
encoding decisions is usually preceded by optimizing the rate distortion (RD) cost, introducing new
coding tools or enhancing existing ones requires additional computations. In fact, the VVC is 31 times
more complex than the HEVC. Therefore, this paper aims to reduce the computational complexity
of the VVC. It establishes a large database for intra-prediction and proposes a multitask learning
(MTL)-based intra-mode decision framework. Experimental results show that our proposal enables
up to 30% of complexity reduction while slightly increasing the Bjontegaard bit rate (BD-BR).

Keywords: versatile video coding; intra-prediction; rate distortion; fast intra-prediction decision;
multitask learning

1. Introduction

It is undeniable that video technology is moving into a new era. From the streaming
of digitized content to the use of sophisticated Augmented Reality (AR), the video industry
is evolving quickly [1]. In fact, many key concepts have been introduced into the mar-
ket, such as overlaying of digital content in the life environment, shooting, sharing, and
streaming 360◦ videos, and, certainly, the inclusive access to streaming platforms. Amid
these revolutionary changes, video traffic over the Internet has quadrupled in only a few
years, reaching roughly 82% of global IP traffic [1]. This rapid growth in video demand
has made it crucial for organizations, such as International Telecommunications Union
(ITU) and ISO/IEC Motion Picture Experts Group (MPEG), to urgently tackle the poten-
tial need for a more efficient video coding standard than High Efficiency Video Coding
(HEVC). Thus, in July 2020, the new video coding standard, namely Versatile Video Coding
(VVC), was released by the Joint Video Experts Team (JVET). Typically, versatile stands
for various coding tools, that allow VVC to deliver high-quality videos at low bit rate
cost and support a wide variety of media services. In fact, the VVC is able to encode
Ultra-High Definition (UHD) and immersive video contents at nearly 40% of the bit rate
saving compared to its predecessor, HEVC [2]. This outstanding compression performance,
as mentioned, is essentially based on several improvements of the block-based hybrid
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video coding scheme. The new Quadtree with Nested Multi-type Tree (QTMT) struc-
ture [3], for example, supports wide homogeneous regions in high spatial resolutions as
well as rectangular narrow texture blocks. As for intra-prediction, 65 finer-granularity
angular Intra Prediction Modes (IPMs) [3] with DC and planar features were introduced
alongside several novelty coding tools. These latter tools include Multi-Reference Lines
(MRL), low-complexity neural network-based intra-prediction features, also known as
Matrix weighted Intra Prediction (MIP) and Intra Sub-Partitions (ISP). In addition, VVC
supports new motion compensation techniques, such as affine motion compensation [4],
from different control points. It also enhances transformation, quantization, and entropy
coding with several tools, such as Low-Frequency Non-Separable Transform (LFNST),
Multiple Transform Selection (MTS), dependent scalar quantization, and Context Adaptive
Binary Arithmetic Coding (CABAC) [5].

Despite achieving substantial coding efficiency and wide coding support, the com-
putational complexity remains a key challenge, especially when looking toward real-time
implementation of the VVC codec on streaming or embedded devices. According to [2], the
VVC Test Model (VTM), in All Intra (AI) configuration, is 31 times more complex than the
HEVC Test Model (HM), which is technically beyond most streaming or embedded device
capabilities. Under these circumstances, several works, such as [6,7], proposed a fast en-
coding decision algorithm to alleviate the computational complexity of the VVC. Although
these works have helped reduce the computational complexity of the VVC, they are still
unable to deal effectively with the high diversity of block shapes in the QTMT partitioning
structure and the different intra-coding tools. To this end, this paper proposes a multitask
learning-based intra-mode decision framework for VVC. It establish a large database for
the new intra-coding tools and train a multitask learning Convolutional Neural Network
(CNN) to reduce the number of tested IPMs based on the inferred top-2 intra-coding tools.
Indeed, this framework has many advantages. It deals effectively with the high diversity
of block shapes and can open up additional hardware optimizations, such as parallelism
and GPU acceleration. Furthermore, our intra-mode decision framework simultaneously
predicts the probability vectors for all the intra-coding tools, which reduces the model
inference time.

The remainder of this paper is organized as follow. Section 2 highlights the key
intra-coding tools of VVC, while reviewing the different steps of the intra-mode decision.
Section 3 gives an overview of related works on fast encoding decision. Then, the proposed
Multi-task Learning (MTL) based intra-mode decision framework is presented in Section 4.
Finally, Section 5 concludes this paper.

2. Intra-Prediction

Intra-prediction is the step of video coding that deals with spatial redundancy [8]. It
encountered several enhancements in VVC, such as the introduction of finer granularity
IPMs. In this section, the key intra-coding tools and the intra-mode decision steps are
reviewed.

2.1. New Intra-Coding Tools

In contrast to HEVC, which defines 33 angular IPMs, finer granularity intra-prediction
is proposed in VVC to accommodate the directional structures more efficiently. Hence,
angular IPMs were extended up to 65. However, DC and planar features remain in use.
Figure 1 illustrates the new IPMs with green dotted arrows.



Electronics 2022, 11, 4001 3 of 14

V (50)

66

2

34

H (18)

0: Planar 
1: DC

Original IPM of HEVC
 New IPM of VVC

Figure 1. Illustration of the 67 IPMs. V and H are vertical and horizontal modes, respectively.

In addition to extending the number of angular IPMs, intra-prediction from nonad-
jacent reference samples, so-called Multi-Reference Lines (MRL) can be used to exploit
farther regions in predicting sharp contents [3]. As shown in Figure 2, the nearest reference
line is denoted with reference line 0 and farther reference lines with reference line 1 or 3. For
instance, the used IPM, for MRL, is restricted to the list of nonplanar Most Probable Modes
(MPMs) [3]. Moreover, Intra Sub-Partitions (ISP) can be used to adapt the intra-prediction
to narrow texture structures by dividing the intra-predicted block horizontally or vertically
into 2 or 4 sub-blocks, which share the same IPM [5].

Reference_line 3
Reference_line 1
Reference_line 0

Current CU

Figure 2. Reference lines neighbouring to an intra-predicted block.

In typical intra-prediction, samples are interpolated from reference samples according
to the prediction direction [9]. However, the new Matrix weighted Intra Prediction (MIP)
can use downsampled reference samples to generate a reduced prediction signal throughout
a matrix-vector multiplication. Then, it interpolates the remaining samples by using the
left and above reference samples to form the final prediction [5]. Indeed, the used matrix
and offset vector can be selected from a set of 32 pretrained matrices and vectors, denoted
as MIP modes.

2.2. IntraModeDecision

Similar to HEVC, the Rate-Distortion Optimization (RDO) of the cost J, computed in
Equation (1) is used to infer the best IPM. For instance, the RDO reports for each encoding
decision the tradeoff between distortion D and rate (number of required bits) R, where λ is
the Lagrangian multiplier.

J = D + λ R (1)

Because VVC enhances intra-prediction with several intra-coding tools, the intra-mode
decision was also extended to handle the new intra-coding tools decision. Therefore, three
main steps are required, as shown in Figure 3.
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Figure 3. VVC intra-mode decision; uiRdModeList is the list of N candidates; 6 MPMs MRL 1 and 3
are the lists of 6 MPMs of farther reference lines 1 and 3, respectively.

First, the Rough Mode Decision (RMD) is applied to the 67 regular IPMs to select a
set of N candidates (uiRdModeList), where N depends on whether the MIP is enabled for
the current block or not. In essence, RMD usually selects 2 to 3 candidates, but when the
MIP is used, it can refine the number of candidates by adding log2(min(H, W))− 1, where
H and W are the height and width of the current block, respectively. To get the J cost, the
Sum of Absolute Transform Difference (SATD), given by Equation (2) and the Truncated
Binary Coding (TBC) [5] are used as the distortion and bit rate metrics, respectively.

SATD = ∑
i,j
|A(i, j)|. (2)

The matrix A is defined by Equation (3). It represents a matrix multiplication of the
residual with the Hadamard transform H,

A = H · (Y− Ŷ) · HT , (3)

where, Y is the original block, Ŷ is the intra-predicted block, and HT refers to the matrix
transpose of H.

Secondly, the intra-coding tools have undergone RDO to update the set of N candi-
dates by using three main steps, namely Multi-Reference Lines Decision (MRLD), Matrix
weighted Intra Prediction Decision (MIPD), and Most Probable Modes Decision (MPMD).
For instance, the MPMs are of 6 variable length IPMs derived according to the IPMs of
left and above neighbouring blocks [5]. Hence, the MRLD tests the two lists of 6 MPMs:
MRL1 and MRL3 using CABAC to infer the number of required bits R [5], and SATD as the
distortion metric D. Then, the MIPD carries out the RDO on MIP modes with TBC and the
Sum of Absolute Difference (SAD), given by Equation (4). The last step, so called, MPMD
adds the 6 regular MPMs to the N candidates if they are not already included [5].

SAD = ∑
i,j
|Y(i, j)− Ŷ(i, j)| (4)
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Finally, the Final Intra Prediction Mode Decision (FIPMD) tests the N best candidates
along with the ISP candidates to infer the best IPM. It uses the Sum of Squared Difference
(SSD), calculated by Equation (6), as the distortion metric D and CABAC to get the required
number of bits R. Unlike the aforementioned steps of the intra-mode decision, the cost
J here is computed by using the reconstructed block instead of the intra-predicted block.
Consequently, Ŷ in Equation (5) is obtained following an overall encoding process. Addi-
tionally, bit rate is no longer determined from an entropy coding of the selected IPM but an
entropy coding of the residual block (Y− Ŷ).

SSD = ∑
i,j
|Y(i, j)− Ŷ(i, j)|2 (5)

3. Related Works

Since the H.264/Advanced Video Coding (AVC), RDO [10] has been a core building
block of video encoders. It managed to provide significant coding capabilities through
minimization of the cost J, expressed by Equation (1). Considering that the addition
of new coding tools would necessarily incorporate new decisions to be made, the RDO
should have become much slower and more complicated. Consequently, several works
have been proposed to reduce the RDO overhead. Some were relying on video texture
characteristics or Statistical Learning (SL) to decrease the decision set, whereas others
have taken advantage of the recent advances on Machine Learning (ML) to terminate the
decision process early. This section presents complexity reduction techniques from the state
of the art focusing on the intra-mode decision and the Coding Tree Unit (CTU) partitioning.
The reviewed works are summarized in Table 1.

In [11], Y. Chen et al. investigated several correlations in the intra-mode decision
of VVC. Consequently, two strategies were proposed in [11]. The first strategy uses the
correlation between the 6 MPMs and the best IPM in RMD in order to reduce the decision
set. For the second strategy, early termination of the intra-mode decision is evoked based
on the difference between the best cost in RMD and the cost of the best IPM. Simulations
show that the combination of these two strategies can reduce, on average, 30.59% of
computational complexity with a slight increase in bit rate. J. Park et al. [6] made full use
of block shape to infer a preprunable range of IPMs, that can be skipped during the test of
ISP. Experimental results show that this method can save up to 12% of encoding time with
almost no effect on the coding efficiency. The prediction distortion also plays a major role
in reducing the RDO overhead. It has been exploited in [12] to terminate the Multi-type
Tree (MT) partitioning early while providing a tunable decision framework. Simulations
showed that the speed up may vary between 22.6% and 67.6% with birate loss ranging
from 0.56% to 2.61%. Texture characteristics were also as useful as correlations in video
content. It has been explored in many ways in order to accelerate the encoding decisions.
For example, in [13] the number of candidates for the QTMT structure and the intra-mode
decision are reduced according to texture characteristics. Basically, gradient difference is
used to skip unlikely splits. However, the number of IPMs is reduced according to Coding
Unit (CU) Texture Complexity (TC). This method can offer nearly 49% of speedup with a
negligible loss on coding efficiency. Lui et al. [7] also proposed a fast-decision algorithm for
the ISP by using the CU TC. They first classify the CUs into homogeneous and textured
categories. Then, they terminate the ISP tests for homogeneous CUs. This solution can
accelerate RDO by 7% with minimal loss on coding efficiency.

As for ML algorithms, they were able to achieve a significant tradeoff between compu-
tational complexity and coding efficiency, especially when trained on massive video data.
In [14], for example, a ML approach based on Random Forest Classifier (RFC) was used to
reduce the computational complexity of the intra-mode decision for both HEVC and VVC.
In essence, Ryu et al. replace the best IPM in RMD with the IPM predicted by the RFC.
Experimental results show that this algorithm allows 18% to 30% of complexity reduction
at the cost of 0.70% of bit rate loss. Another fast-decision algorithm based on RFC was
designed in [15]. It includes the RFC-based CU size decision and texture-based intra-mode
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decision. The first algorithm relies essentially on the CU TC to decide whether to split
the current CU or not. Then, the IPMs to be tested are selected according to the texture
direction of the CU. These two algorithms offered nearly 54.91% of complexity reduction.
As RFC presents a combination of several dependent Decision Trees (DT), it reveals that
DT could also be convenient in speeding up the encoding process. Consequently, H. Yang,
et al. proposed in [16] two main strategies to select the CU size and the best IPM. The
first strategy consists of ignoring some splitting modes based on the DT predictions. The
second approach is introduced to get the best IPM. This latter uses the well-known Gradient
Descent Search (GDS). Hence, if all neighbouring blocks of the current CU exist, the GDS is
performed to find the best IPM.

Table 1. Previous proposals.

Proposal SL ML/DL Intra Partitioning
Achieved Results

∆T(%) BD-BR (%)

[11] × × 30.59 0.86
[6] × × 12.00 0.40
[12] × × 22.60–67.60 0.56–2.61
[13] × × × 46.00 0.91
[7] × × 7.00 0.09
[14] × × 18.00–30.00 0.70
[15] × × × × 54.91 0.93
[16] × × × × 70.00 1.93
[17] × × 46.60–69.80 0.86–2.57

Experimental results show that these two proposals can accomplish about 70% of time
saving while slightly affecting the coding efficiency. Previous work [17] introduces a two-
stage learning-based QTMT framework. This latter includes a CNN to predict the spatial
features of an entire 64× 64 luma block and a DT to infer the most likely splits at each
sub-block. Simulations show that this framework can achieve up to 69.8% of complexity
reduction with a small decrease in coding efficiency.

To conclude, all the previous proposals proved their efficiency in alleviating the com-
plexity overhead of the VVC. However, our method has more advantages. First, it deals
effectively with the high diversity of block shapes in the QTMT structure through predict-
ing the probability at each 4× 4 sub-block. Second, it opens up hardware optimization
opportunities, like parallelism and GPU acceleration, by carrying out the prediction once
for an entire 64× 64 CU. Finally, it reduces the model inferring time by simultaneously
predicting the probability vectors of all the intra-coding tools.

4. Multitask Learning-Based Intra-Mode Decision Framework

As detailed in Section 2, VVC proposes several intra-coding tools to enhance the intra-
prediction. These tools have undergone RDO in order to decide the best coding tool and
the Intra Prediction Mode (IPM) for each CU. The proposed method deals with deciding
the best IPM during the FIPMD, which represents the most time consuming part of the
intra-mode decision [11]. It introduces a MTL CNN to skip unlikely IPMs based on the
inferred top-2 intra-coding tools.

4.1. Overall Presentation of the Proposed Framework

Multi-task Learning (MTL) has recently made it possible to predict several related
tasks simultaneously by using a shared model, that leverages common acknowledge among
all tasks [18].

As shown in Figure 4, our proposed method takes advantage of this learning paradigm
to reduce the number of candidates for the FIPMD according to the inferred top-2 intra-
coding tools. It feeds the original luma block, denoted as B, to MTL CNN in order to
simultaneously predict whether to skip Matrix weighted Intra Prediction (MIP), regular,
Multi-Reference Lines (MRL) and/or planar, DC. To accommodate the high diversity of
block shapes in the QTMT partitioning structure, the CNN processes an entire 64× 64 CU,
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padded with the four MRL references lines, to output a probability vector p̂t of usage at the
4× 4 sub-blocks, for each intra-coding tool t ∈ {MIP, regular, MRL, DC, planar}. We have

p̂t = fθ(B), (6)

where fθ is a parametric function, with learnable parameters θ, used to approximate the
output vector p̂t for each coding tool t. The length of the output vector p̂t is defined as

L = (
SB
4
)2, (7)

where S is the block size. Hence, for a 64× 64 luma block Lp would be equal to 256. Figure 5
explains the representation of output vectors p̂t.

64 + 4

64 + 4

Multi-task classifier based on 

CNN

Infer the top-2 

intra coding tools

Skip unlikely 

IPMs

MIP regular

MRL DC
planar

DC

Planar

Tested 

IPMs 

during the 

FIPMD

CU

MRL reference lines 

ෝ𝒑𝑴𝑰𝑷𝟎

…
…
…
…
…
…
…
…

ෝ𝒑𝑴𝑰𝑷𝑳

ෝ𝒑𝒑𝒍𝒓𝟎

…
…
…
…
…
…
…

ෝ𝒑𝒑𝒍𝒓𝑳

….

Probability vectors ෝ𝒑𝒕

…. ISP 

Figure 4. Workflow of MTL-based intra-mode decision framework. First, the luma block is fed to the
MTL CNN to predict the probability vectors p̂MIP, p̂Reg, p̂MRL, p̂DC and p̂Plr. Then, the top-2 most
likely intra-coding tools are inferred with the maximums of mean probabilities at each block. Finally,
the FIPMD is performed only on IPMs of the top-2 intra-coding tools in order to decide the best IPM.

Ƹ𝑝𝑡0

…
…
…
…
…
…

Ƹ𝑝𝑡𝐿

64

64

Figure 5. Representation of MTL CNN output vector, L is length of probability vector p̂t, and t is the
intra-coding tool.

As shown in this figure, p̂t0 is the probability of using an intra-coding tool t at the
first 4× 4 sub-block of the 64× 64 luma block and p̂tL is the probability for the last 4× 4
sub-block. These probability vectors are then used to skip unlikely IPMs as follows. First
the probability of using MIP, regular IPMs, MRL, DC, and planar features are computed as
the mean probabilities at each CU, denoted as µmip, µReg, µmrl , µDC, and µplr, respectively.
Then, these latter are used to infer the top-2 intra-coding tools in each CU. As defined in
Equation (8), the top-1 intra-coding tool is inferred as the maximum of mean probabilities
in each CU. Then, a second-best intra-coding tool is deduced also as the maximum of mean
probabilities, when excluding the top-1 intra-coding tool. We have

ptop1 = max(µmip, µReg, µmrl , µDC, µPlr). (8)

Finally, the FIPMD is performed only on IPMs of the inferred top-2 intra-coding tools
in order to decide the best IPM. For instance, the model was integrated under the VTM10.2
throughout the process illustrated in Figure 6.
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Figure 6. Process of integrating the MTL CNN under VTM10.2 to skip unlikely IPMs.

First, the model prediction is considered only when two top intra-coding tools are
inferred at the current CU. Therefore, if these tools are regular IPMs and DC or planar,
the number of tested IPMs for the FIPMD is reduced to 2. Therefore, only DC and planar
with the ISP candidates are tested. Secondly, if DC and planar are not among the inferred
top-2 intra-coding tools, then ISP tests can be skipped. In fact, the ISP usually reproduce
2 or 4 homogeneous regions, which will probably be coded with nonangular modes as
demonstrated in [19]. Finally, the IPMs other than the top-2 inferred intra-tools are skipped.
It worth mentioning that the MRL was excluded from the model prediction, because it does
not allow a significant complexity reduction [20].

4.2. Dataset and Training Process

In this section, our dataset representations are given. Then, the proposed MTL CNN
with its training process are detailed.

4.2.1. Training Dataset

Due to the lack of public datasets for our classification tasks, a dataset that yields
encoded CUs with the best intra-mode information is established. Because the proposed
method focuses on AI configuration, the image public dataset Div2k [21] was selected to
derive the training samples.

In order to be encoded by using VTM [22], the images of this latter were concatenated
as a pseudo video. Hence, they were encoded under the AI configuration for 4 Quantization
Parameter (QP) (e.g., 22, 27, 32 and 37). Considering that the VTM includes several fast-
decision techniques for the partitioning [23] and the intra-coding tools as well [24,25], these
latter were disabled in order to build our training dataset. Disabling these techniques
would ensure sufficiently diverse data for more accurate predictions.

The best intra-modes were first extracted from VTM encoder as trees, where each leaf
node has its best intra-mode information, including the used intra-coding tool and IPM.
Then, these latter were converted, as illustrated in Figure 5, into 256 probability vectors
p̂t, that depict whether MIP, MRL, regular, and/or DC or planar are used for each 4× 4
sub-block in the 64× 64 luma block. Our dataset has 1.2 million samples distributed as
given in Figure 7. As shown in this figure, the regular IPMs represent the majority of
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training samples, with at least 77%, whereas MRL samples are under-represented, which is
due to the fact that the VTM encoder tends to usually select regular IPMs [19].

Figure 7. Distribution of training dataset.

4.2.2. Training Process

The MTL CNN, as illustrated in Figure 8 was inspired by the well-known ResNet [26].

16 68

conv 3 × 3

16 34

maxpool
24 24 34

24 34
conv
1 × 1

+

24 24 34

+

24 17 32 32 17

32 17

+

32 32 17

+
32 9 4848 9

48 9

+
4848 9

+
48 5 512 1

flatten

qp

concat

512 1 512 1 512 1 512 1 256 1

512 1 512 1 512 1 512 1 256 1

512 1 512 1 512 1 512 1 256 1

512 1 512 1 512 1 512 1 256 1

512 1

dense
512 1

dropout
512 1

dense
512 1

dropout
256 1

output

Figure 8. The MTL CNN architecture. Convolution layers are in orange and yellow, max-pooling
layers in red, dropout in purple, and fully connected layers in cyan.

In addition, hard sharing of feature extraction layers [27] is adopted to ensure feature
space sharing and performance across all tasks. The network was trained from scratch
on the aforementioned dataset by using the Adam optimizer [28] to learn the optimum
weights θ and minimize the sum of loss functions lt defined in Equation (9),

lt = pt(log( p̂t) + α(1− pt)(− log(1− p̂t)), (9)

where t is the intra-coding tool and α is the weight assigned to the positive class. This latter
is equal to: 3.5 for MIP, 1 for MRL and regular, 11.5 for DC, and 4.5 for planar.

This loss function was chosen due the highly skewed dataset we are dealing with, as
explained in Section 4.2.1. Early stopping regularization was also used to ensure model
convergence. Thus, our MTL CNN was trained for 14 epochs with a batch size of 128 and a
learning rate of 10−3.

4.3. Experimental Setup

To assess the performance of our method, simulations are conducted on the reference
software VTM10.2 [22] with the Common Test Conditions (CTC) [29] video sequences.
Indeed, a set of 26 videos from classes A1, A2, B, C, D, E, and F are encoded under the AI
configuration for 4 QP, which are 22, 27, 32 and 37. The number of encoded frames in each
video is set to one Group of Pictures (GOP), which is equivalent to one second.



Electronics 2022, 11, 4001 10 of 14

The effectiveness of our method is assessed by using both complexity reduction and
coding efficiency. Hence, the Bjontegaard bit rate (BD-BR) [30] is used to measure the
coding efficiency; then the average of run-time difference ∆T, defined by Equation (10) is
used to give the achieved complexity reduction. We have

∆T =
1
4 ∑

QPi=22,27,32,37

To(QPi)− Tr(QPi)

To
, (10)

where To and Tr represent the total encoder runtimes of the VTM anchor and the VTM
when using the MTL CNN, respectively.

The MTL CNN was built and trained under the Keras framework, then converted
with the frugally deep library [31] to C++ code, in order to be used in the VTM encoder.

4.3.1. Performance of the MTL CNN

Because our dataset is highly skewed, our model performance was evaluated with
recall, precision, and F1 score in order to get a more informative picture of its performance,
instead of using accuracy and loss metrics.

First, our model was evaluated under the default classification threshold, which is
equal to 0.5. Then recall-precision curves, shown in Figure 9, were used to infer the best
classification thresholds, which maximize the F1 score. For instance, the precision vs. recall
curves of our model are illustrated as orange curves. The dashed blue curves give the
precision vs. the recall of a no-skill model that outputs random guesses or predictions.
Hence, the higher is the area under the curve of precision vs. recall, the higher is the
tradeoff between precision and recall (e.g., F1 score).

Table 2 reports the aforementioned metrics for the default threshold and the best
thresholds, which were inferred as 0.23 for MIP, 0.41 for regular, 0.13 for MRL, 0.46 for
DC, and 0.42 for planar. As shown in this table, regular IPMs present the highest F1 score,
which indicates that the model can generalize well in this classification task. For instance,
the regular IPMs are highly presented in the training dataset, which is due to the encoder
behavior. Indeed, the encoder tends usually to select the regular IPM, and this is clearly
illustrated in Figure 7. However, for the remaining intra-coding tools, the MTL CNN
prediction is quietly closer to the random guess or the no skill predictions, which is due to
remaining tools being underrepresented in the training dataset. As mentioned, the encoder
relies essentially on the 67 regular IPMs to perform the intra-prediction. Then, additional
intra-coding tools may be considered to further enhance the coding efficiency, which is not
always the case, as explained in [19]. For instance, under the default threshold the model
has a low precision for DC, planar with a good recall. However, for MRL, it tends to have
good precision and very low recall. This latter can be improved by varying the classification
thresholds. However, the precision would become lower, which may introduce some loss
in the coding efficiency. For this reason, the flowchart introduced in Figure 6 has been
adopted to integrate the model under the VTM10.2 with minimum coding loss.

Table 2. Performance of the MTL CNN.

Coding Tool Default Threshold Best Threshold
Precision Recall F1-Score Precision Recall F1-Score

Regular 0.72 0.97 0.82 0.71 0.99 0.83
MIP 0.41 0.56 0.48 0.38 0.67 0.49
MRL 0.64 0.00 0.01 0.22 0.39 0.28
DC 0.19 0.39 0.26 0.19 0.40 0.26

planar 0.35 0.61 0.45 0.33 0.73 0.45
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MTL
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MTL
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(e)
Figure 9. Precision vs recall curves: (a) for MIP; (b) for DC; (c) for MRL; (d) for regular; (e) for planar.

4.3.2. Complexity Reduction under VTM

Table 3 gives the performance of our MTL-based intra-mode decision framework in
comparison with the state-of-the-art techniques. Indeed, all the native speed-up techniques
included in VTM10.2 are activated to ensure fair comparison. As reported in Table 3,
our MTL intra-mode decision framework can achieve on average 25.21% of complexity
reduction for only 1.33% of BD-BR increase. Compared to the state of the art, our method
outperforms [6,7] with about 13% and 19% of complexity reduction on average for a BD-BR
increase of 0.9% and 1.02, which is considered as tolerated because our method can achieve
2 to 3 times more speedup. The method closest in performance to our own is [11], which
enables 30.10% of complexity reduction on average. Indeed, this method picks in advance
the best IPM and it is implemented under the VTM2.0, This is an old version of the VTM,
which does not use either MIP, MRL, or ISP. However, our method is able to achieve closer
performance for a more complex encoder when only predicting the set of IPMs to be tested
during the FIPMD. For instance, the use of MIP and ISP enhanced the coding efficiency
with about 2% [32] at the expense of 10% and 15% [33] of complexity overhead, respectively.
The best performance of our method is presented for the video RaceHorsesC with about
30% of complexity reduction for only 1.03% of BD-BR increase. However, the worst case is
presented for the video SlideEditting, which is a screen content. Indeed, the performance
of our method, especially in term of BD-BR, decreases with the video resolution and this is
directly related to the training dataset. In essence, the model is trained only with 4K fixed
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images, which reduce its performance for lower video resolution. Moreover, no screen
contents were used to train the model, which makes it not optimized for this type of content.
However, our method allows a good trade off between complexity reduction and coding
efficiency. Hence, varying video resolution and content may improve further our model
performance under the VTM10.2.

Table 3. Performance of the MT based intra-mode decision framework in comparison with the
state-of-the-art techniques.

Class Video Chen, Y. et al. [11],
VTM2.0

Park, J. et al. [6],
VTM9.0

Li, Y. et al. [7],
VTM8.0

Our Proposal,
VTM10.2

∆T
(%)

BD-BR (%) ∆T
(%)

BD-BR (%) ∆T
(%)

BD-BR (%) ∆T
(%)

BD-BR (%)

A1
Campfire 28.06 0.92 12.00 0.09 - - 24.54 0.78
Tango2 23.39 0.93 11.00 0.09 - - 23.13 0.98
FoodMarket4 20.13 0.64 10.00 0.09 - - 22.43 0.91

Average 23.86 0.83 11.00 0.09 - - 23.37 0.89

A2
CatRobot1 26.89 0.94 12.00 0.30 - - 23.43 1.13
DaylighRoad2 32.99 0.98 11.00 0.49 - - 24.64 1.59
ParkRunning3 20.32 0.67 9.00 0.07 - - 20.63 0.59

Average 26.73 0.86 10.67 0.29 - - 22.89 1.10

B

MarketPlace - - 12.00 0.13 - - 25.99 1.02
RitualDance - - 12.00 0.32 - - 22.98 1.25
Cactus 29.47 0.54 13.00 0.49 6.00 0.14 27.11 1.36
BasketBallDrive 34.69 0.51 11.00 0.64 9.00 0.24 24.70 1.82
BQTerrace 37.17 0.44 12.00 0.48 4.00 0.01 26.94 0.49

Average 33.78 0.50 12.00 0.41 6.33 0.13 25.54 1.19

C

RaceHorses 43.69 0.56 12.00 0.37 6.00 0.07 29.87 1.03
BasketBallDrill 41.28 0.36 16.00 1.02 11.00 0.30 28.12 1.52
BQMall 27.64 0.61 12.00 0.88 6.00 0.10 26.13 1.74
PartyScene 43.69 0.56 13.00 0.49 4.00 0.01 27.97 1.24

Average 39.34 0.50 13.25 0.69 6.75 0.48 28.02 1.38

D

RaceHorses 28.05 0.73 14.00 0.39 5.00 0.12 28.74 2.04
BQSquare 30.08 0.61 12.00 0.57 8.00 0.18 27.82 1.45
BlowingBubbles 29.09 0.70 14.00 0.65 6.00 0.00 26.53 1.56
BasketBallPass 26.49 0.49 12.00 0.66 8.00 0.04 22.96 1.42

Average 28.43 0.90 13.00 0.57 6.75 0.085 26.51 1.62

E
FourPeople 26.32 0.66 - - 7.00 0.17 23.63 1.73
Johny 25.85 0.59 - - 8.00 0.22 22.95 1.72
KristenAndSara 26.77 0.59 - - 8.00 0.10 23.50 1.95

Average 26.31 0.61 - - 7.67 0.16 23.36 1.80

Average 30.10 0.65 12.10 0.43 6.86 0.12 25.21 1.33

F

ArenaOfValor - - - - - - 24.09 1.61
BasketBallDrillText 24.96 0.44 - - - - 24.24 1.66
SlideEditting 32.33 0.84 - - - - 17.67 1.89
SlideShow 32.50 0.66 - - - - 20.78 1.92

Average 29.93 0.65 - - - 21.69 1.77

5. Conclusions

In this paper, a MTL-based intra-mode decision framework for VVC is proposed. It
deals with deciding the best IPM by reducing the set of FIPMD candidates according to
the top-2 inferred intra-coding tools. Simulations proved that our method can achieve up
to 30% of complexity reduction with a slight increase of BD-BR. As future work, we will
consider improving further our method performance for low video resolutions and screen
content. In addition, we will develop a complexity-reduction technique for Random Access
(RA) configuration and interprediction.
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