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Abstract: Deep Learning (DL) in Medical Imaging is an emerging technology for diagnosing various
diseases, i.e., pneumonia, lung cancer, brain stroke, breast cancer, etc. In Machine Learning (ML)
and traditional data mining approaches, feature extraction is performed before building a predictive
model, which is a cumbersome task. In the case of complex data, there are a lot of challenges, such as
insufficient domain knowledge while performing feature engineering. With the advancement in the
application of Artificial Neural Networks (ANNs) and DL, ensemble learning is an essential foun-
dation for developing an automated diagnostic system. Medical Imaging with different modalities
is effective for the detailed analysis of various chronic diseases, in which the healthy and infected
scans of multiple organs are compared and analyzed. In this study, the transfer learning approach is
applied to train 15 state-of-the-art DL models on three datasets (X-ray, CT-scan and Ultrasound) for
predicting diseases. The performance of these models is evaluated and compared. Furthermore, a
two-level stack ensembling of fine-tuned DL models is proposed. The DL models having the best
performances among the 15 will be used for stacking in the first layer. Support Vector Machine (SVM)
is used in Level 2 as a meta-classifier to predict the result as one of the following: pandemic positive
(1) or negative (0). The proposed architecture has achieved 98.3%, 98.2% and 99% accuracy for D1, D2
and D3, respectively, which outperforms the performance of existing research. These experimental
results and findings can be considered helpful tools for pandemic screening on chest X-rays, CT scan
images and ultrasound images of infected patients. This architecture aims to provide clinicians with
more accurate results.

Keywords: pandemic; chest X-ray; chest CT-scan; transfer learning; CNN; stack ensembling; deep
learning

1. Introduction

The rapid growth in Deep Learning (DL) technology helps in the development of
accurate diagnostic tools by using labelled Medical Imaging data. However, results should
be trustworthy and close to manual diagnosis. The main advantage of using DL methods
is that the feature extraction is performed automatically with the help of convolutional
layers and it beats the other traditional classification systems [1,2]. Many DL methods
have been proposed such as Long Short Term Memory (LSTM) [3], Recurrent Neural
Network (RNN), Deep Belief Network (DBN) [4], Convolutional Neural Network (CNN)
and Capsule Network [5]. CNN works in the manner of the human brain and play a
significant role in pandemic detection as they do not need manual feature extraction.
The hidden layers having the power of feature learning can achieve high sensitivity and
specificity in classifying or diagnosing diseases [6].
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During the pandemic, researchers have been working on different Medical Imaging
modalities and processing these data via DL models. A CNN is an important class of DL in
which the input image as a pixel array is passed through different layers for processing.
The convolutional layers are mainly for feature extraction. The properties of input images
are learned by applying different sizes of filters, which is also called the kernel. After several
convolutional layers, a feature map is generated. At this layer, ReLU or sigmoid are
commonly used activation functions [7]. The pooling layers are used for size reduction
or down-sampling and are usually applied between two convolutional layers. The main
function of these layers is to lessen the computation power by applying down-sampling
or reducing the size of the feature map. Max pooling and average pooling are commonly
used pooling layers. The dense layer or fully connected layer is used before the output
layer, which contains the softmax function to perform classification. In a dense layer,
each input from the previous layer is connected to each neuron. Hence, it makes a fully
connected layer.

Medical Imaging plays an important role in disease diagnosis, in which healthy and
infected CT scans or X-ray are compared and analyzed by expert radiologists [8]. Various
studies show that different image modalities have their own merits and demerits regarding
health risks, cost, sensitivity, specificity and accuracy. CT scans have high sensitivity and
also high specificity, which means that they have high accuracy in terms of positive cases
while having low accuracy in other classes [9].

CT scans are 360-degree cross-sectional images generated by CAT scanners. These
scans are a series of X-rays taken from various angles, providing a more detailed visual-
ization of bones, tissues and internal organs. Moreover, it is harmful to patients having
many sessions of CT scans due to long time exposure to X-ray radiations [10]. X-rays are
more secure, efficient and cost-effective for pandemic patients and give quick diagnoses.
They are the first tool that doctors recommend for diagnosis at an initial stage and also
X-ray machines are easily available in hospitals. However, they give low accuracy in some
cases [6].

Ultrasound images are generated by a transducer, which uses high-frequency sound
waves to create images of internal organs and their movement. After reflecting these waves
from the body, the echo is recorded [11]. Unlike CT-scan and X-ray, there is no ionization
radiation, hence no cancer risk. For the diagnosis of the pandemic, lung ultrasound is a
recommended tool, as it helps in the visualization of the lung’s condition. As the disease
goes from moderate to severe infection, it is visualized by B-line artifacts in ultrasound
images and they increase as the severity of the illness increases [12]. This visualization is
also useful in the grouping of patients according to their respiratory condition.

Artificial Intelligence (AI)-based automated systems using different image modalities
help clinicians diagnose various lung organ diseases, as they give a second opinion. It is a
difficult and challenging task for radiologists and clinicians to differentiate the disorders
having similar patterns, such as pandemic patients, from other diseases, such as viral
pneumonia, bacterial pneumonia and influenza, based on the medical images [13].

However, Medical Imaging is useful for diagnosing and classifying various chronic
diseases such as diabetes, lung cancer, heart disease, brain stroke and pandemic-related
diseases. However, reading scans manually is a time-consuming and error-prone task.
Therefore, researchers are moving towards DL-based automated image analysis systems.
The emergence of ML and DL for disease detection and prediction plays a significant role
in healthcare. The rising scope of these technologies also encourages researchers to play a
major role in pandemic detection.

In this study, transfer learning-based stack ensemble architecture is proposed by using
Medical Imaging datasets of three modalities (CT-Scans, X-ray and Ultrasound) and apply-
ing various CNN architectures for an accurate and reliable diagnosis. The datasets comprise
pandemic positive and negative samples. These results might help in the early diagnosis of
pandemic patients. The contributions of this research are summarized as follows:
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• Large publicly available multimodal datasets (Lung CT-scan, Chest X-ray, Lung Ul-
trasound) for pandemic detection are considered, which are taken from multiple
online repositories.

• Fifteen state-of-the-art fine-tuned pre-trained CNN models are applied to all three
datasets and their performance is evaluated and compared.

• The Transfer-Learning-based Stack Ensembling approach is proposed using the fine-
tuned models to improve the accuracy of diagnosis on all three datasets.

The rest of the paper is organized as follows. In Section 2, the related work is discussed
in detail. Section 3 presents our proposed approach, which contains the description of the
dataset and working of the proposed architecture. Section 4 presents the experimental
results and comparative analysis. The conclusions and future dimensions of the research
are presented in Section 5.

2. Related Work

DL is a sub-branch of ML that deals with the algorithms inspired by the structure and
function of the brain called ANN. Although Medical Imaging is useful in disease prediction
and classification, reading scans manually is time-consuming. Therefore, researchers are
moving towards a DL-based automated image analysis system, which has vast applications
in the healthcare sector, particularly in disease diagnosis and severity prediction. In [14],
the authors proposed a quick automatic prediction system for pandemic patients using
X-ray images. Pre-trained models comprise InceptionV3, ResNet50, InceptionResNetV2,
ResNet151 and ResNet101.

Among these models, ResNet50 achieves high-performance accuracy, i.e., 98%. In ref-
erence [15], DL-based CNN models are applied to the dataset of 6432 X-ray scans. Three
models—InceptionV3, Xception and ResNeXt—are evaluated and compared, resulting in
high accuracy for the Xception model, i.e., 97%. However, they used an unbalanced dataset
of positive and negative samples of pandemic samples. In [16], the authors proposed a
system for early prediction of pandemics using X-ray radiographs by applying different
AI techniques. CNN is implied in two ways. First, it is used for classification by using the
softmax layer. In the second scenario, it is applied for feature extraction. These features are
then passed to other classifiers, i.e., SVM and RF.

A. Gautam proposed a novel 13-layer CNN architecture for brain stroke classification
into three categories, hemorrhagic, ischemic and normal stroke, using CT scan imaging
data [17]. Quadtree-based fusion technique is applied to improve the contrast of 2D slices
containing stroke. The proposed model comprises two convolutional layers and two dense
layers to make the model efficient and require less computation time. Transfer learning-
based DL algorithms are presented in [18] for classifying brain tumours into malignant and
benign by using an open-source brain tumour MRI dataset. Various pre-trained models are
utilized to achieve better accuracy. The TCIA dataset is used in this study, which consists
of 224 benign images and 472 malignant images. In [19], the CNN-based DL model is
proposed for classifying brain tumour types by using two publicly available MRI imaging
brain tumour datasets. The datasets comprise 73 and 233 patients, respectively. The model
classifies meningioma, glioma and pituitary tumour on D1 while multi-classification is
performed for characterizing different grades of glioma tumour on D2.

The proposed model achieves 96% and 98% test accuracy on D1 and D2, respec-
tively. Every year, about 123,000 new instances of skin cancer are detected throughout
the world, making it a serious public health issue. Melanoma is the worst form of skin
cancer, accounting for over 9000 fatalities annually in the United States. Balazs Harangi [20]
proposed a weighted average ensemble architecture based on CNNs to classify dermoscopy
images. Multiclass classification is performed for classifying seborrheic keratosis, nevus
and melanoma lesions.

The proposed fusion-based ensemble architecture achieves good results as compared
to individual CNN and achieves an AUC score of 0.89. In [21], an automated diagnosis
system is proposed to classify nevus, melanoma and atypical nevus lesions. The concept of
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transfer learning is applied by utilizing AlexNet architecture and appending the dense layer
with a softmax function. The Ph2 dataset is used for training and testing AlexNet-based
architecture. The proposed model achieves 98% test accuracy.

Lung cancer is the most dreadful cancer that result in a large number of deaths globally.
The only approach to increasing a patient’s probability of life is to discover lung cancer
early. A new automated diagnostic classification system for CT scans of the lungs was
developed in [22].

CT scans of lungs were evaluated using an Optimal Deep Neural Network (ODNN).
The LDR approach was performed for dimensionality reduction of deep features to classify
items into the categories malignant and benign lung nodules. The deep neural network
is enhanced by using the (MGSA) algorithm. The suggested classifier has a sensitivity of
96.2%, a specificity of 94.2% and an accuracy of 94.56%.

Many custom DL models and architectures have been proposed to achieve more
accurate and reliable results as they are designed according to the specific purpose of
interest. They are evolved by using the existing DL models to develop a novel neural
network or by combining the current DL models. For example, in reference [23], CoroNet
architecture is proposed based on the Xception DL model for the detection of a pandemic.
The model is applied on two publicly available datasets and achieves 89% and 95% accuracy,
respectively. In [24], the authors proposed Bayesian CNN and discussed how drop-weight-
based CNN predicts the uncertainty in DL models.

A new DL framework COVIDX-Net is proposed in [25] for automatically detecting
a pandemic. This framework consists of seven different architectures applied on X-ray
scans of 50 patients, achieving 91% accuracy and 89% f1-score. In [26], SqeezeNet with
Bayesian optimization is proposed for pandemic detection. This study used a lightweight
network design, a non-public augmented X-ray dataset and fine-tuned hyper-parameters
to achieve good performance. In [27], authors worked on early detection of a pandemic by
using X-ray images by applying different pre-trained models. VGG18 achieves the highest
accuracy, i.e., 80%.

In [28], authors worked on patients’ CT images and their clinical reports. CNN models
are applied to CT scans and ML models are applied to the clinical data of patients. A joint
AI model is proposed for integrating CT scans and clinical data and achieves 0.84 AUC.
In [9], the authors implement sixteen pre-trained CNN models on large chest CT-scan
datasets. This study achieves high performance with DenseNet121 and discusses that
better classification results can be achieved without augmentation and by inputting whole
slices of CT scans. The pre-trained Densenet model is applied for classification purposes.
Another study [29] used the transfer learning concept using CT slices. Ten well-known
pre-trained models are implemented, among which ResNet101 and Xception achieved the
best performance. However, they have used small train and test datasets.

Pathak et al. proposed a deep bidirectional LSTM network [30]. The Mixture Density
Network (MDN) [31] is embedded along with LSTM which contains the output layer and
hidden layers to perform classification. They achieved 98% accuracy. However, their
dataset size was small. In reference [32], the disease detection and severity classification
method is proposed using CT scans. The model classifies the severity as mild, severe
and moderate. UNet, deep Encoder–Decoder CNN [33] and Feature Pyramid Network
(FPN) [34] are applied for lung segmentation and detection of disease.

U. Özkaya et al. [35] proposed an automated system for early diagnosis of the pan-
demic in which CNN architecture is utilized for feature-extraction from CT images. Fea-
tures are combined with the data fusion technique and then two subsets of data containing
16 × 16 and 32 × 32 patches are obtained. SVM is applied to perform the final classifica-
tion from the patch datasets containing 3000 positive examples. In [36], an early screening
method is proposed in which ResNet18 architecture is enhanced by embedding the location-
attention mechanism in the dense layer of CNN; this achieves 86% accuracy. Ten layer
CTnet-10 architecture is proposed [37] using CT scan samples and achieves 81% accuracy.
DL architecture using the concept of transfer learning is proposed in [38]. Multiclass class
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classification is performed by classifying normal, pneumonia and pandemic cases with
an accuracy of 96% They also claimed that the proposed model has more sensitivity than
the radiologists perform screening and prediction. However, they have used a small and
unbalanced dataset that contains only 140 pandemic-infected samples.

EfficientCovidNet is proposed in [39] by appending six new blocks in existing Effiecient-
NetB0 architecture and achieving 87% accuracy. They also performed cross-data testing,
which reduced the classification accuracy to 56%. Various ensemble approaches are applied
to enhance the performance of DL models. This allows the combination of the contribution
of each base learner to give more accurate results and low variance in prediction errors.
Multiple kernel ELM-based DL architecture is proposed in [40], in which DenseNet201
is applied for feature extraction and the final result is obtained from the majority voting
ensembling of multiple ELM classifiers. In [41], a majority voting ensembling of five DL
model architectures is proposed to enhance the performance of pre-trained models. This
approach achieves 85% on test data of CT-Scan samples.

Five-block multi-scale Deep Neural Network (DNN) is proposed in [42] for the de-
tection of COVID-19 using chest radiographs. The proposed research presented an IoT
framework to remotely provide a fast diagnosis to COVID-19 patients. The multi-scale
sampling presented efficient feature learning using different-size convolutional filters and
achieved remarkable results. However, they considered a single mode of dataset, i.e., chest
X-ray. Vyas et al. [43] presented a comparison of different feature extraction techniques and
performed classification using state-of-the-art ML models to predict COVID-19 positive or
negative status. Their findings illustrate that Local Binary Pattern (LBP) feature extraction
along with Gradient Boosting (GB) classifier achieve the best results, i.e., 94% accuracy.
However, they considered small training samples and their effects can be improved further.

Image preprocessing is an essential step in DL as the performance of DL models highly
depends on it. Many segmentation and Region of Interest (ROI) extraction techniques
have been proposed. In reference [44], a hybrid image enhancement based on guided
and matched filtering techniques is applied on fundas images to extract blood vessels and
outperforms state-of-the-art techniques. Seal et al. [45] applied three different probabilistic
and predictive models for the detection of liver cancer. They first applied the segmen-
tation of lesions using the fuzzy C-mean clustering technique. Their findings conclude
that Logistic Regression (LR) has identified more significant features and achieved good
accuracy as compared to Linear Discriminant Analysis (LDA) and Multilayer Perceptron
(MLP). A novel DL architecture based on a correlation mechanism is proposed by [46]
for the detection of brain tumours using brain CT scans. The authors combine traditional
CNN with a supporting neural network that helps in finding the most suitable filters for
convolutional and pooling layers. Their findings show that the proposed neural classifier is
faster and achieves good accuracy.

Lung ultrasound (LUS) is a convenient, easy-to-sterilize and low-cost imaging modal-
ity that can be used to diagnose various lung diseases [47]. Very few studies, until this
research, have used LUS for pandemic screening. In reference [48], four pre-trained models
are utilized for the detection of pandemic and pandemic/pneumonia classification using
publicly available ultrasound frames. They achieve a highest accuracy of 89%. A fine-tuned
VGG model is used in [13] by using all three modalities. They achieve good results with
LUS images. However, they did not achieve good results for X-ray and CT scans. CNN
with a multi-layer fusion approach is proposed for pandemic screening from LUS images
in [49]. In [50], a novel DL network based on Spatial Transformer Networks (STNs) is
proposed, which predicts the severity score for the pandemic and also performs pixel-level
identification of regions.

A lot of research has been conducted so far in pandemic diagnoses and various studies
have achieve good results. However, many of them use small datasets for training their
models which affects the overall performance and leads to overfitting. Moreover, there are
very few studies that have utilized lung ultrasound data for pandemic diagnosis to the
best of our knowledge. This is a cheap and more secure solution for patients with severe
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lung conditions. So, in this research, we used the largest publicly available dataset for three
modalities (X-ray, CT-scan, Ultrasound) and applied various models to find out the more
accurate solution. The unique features of this research are presented in Table 1.

Table 1. Unique features in Proposed Approach.

Author(s) CNN Transfer Learning Multimodal datasets Ensembling Transfer Learning Stacking

Shah et al. [37] 3 3 7 7 7

Gifani et al. [41] 3 3 7 3 7

Khan et al. [23] 3 7 7 7 7

Das et al. [51] 3 3 7 3 7

Escobar et al. [48] 3 3 7 7 7

Horry et al. [13] 3 3 3 7 7

Proposed 3 3 3 3 3

3. Transfer Learning Stack Ensembling-Based Approach

In this section, the devised methodology is introduced; it was trained and tested on
three datasets and the subsequent results are reported and discussed in the results section.
The proposed method outperformed other similar available methods, in terms of model
accuracy, in the number of images used in experiments and using more than one image
data modality. The overall workflow for pandemic detection from Medical Imaging is
depicted in Figure 1 and described in this section.

Figure 1. Proposed Methodology.

3.1. Datasets

In this research, Medical Imaging datasets of three different modalities are used that
contain the samples of pandemic-infected patients and non-infected patients. The details
are discussed in this section and summarized in Table 2.
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Table 2. Dataset Description.

Datasets Source Total Samples Infected Samples Non-Infected Samples

Chest X-ray [52–54] 7236 4583 4600

Lung CT scan [55] 2482 1252 1230

Lung Ultrasound [56] 1811 566 1245

3.1.1. Chest X-ray Dataset (D1)

The chest X-ray dataset is prepared from three different sources [52–54]. It is the largest
publicly available open-source chest X-ray dataset prepared by a team of researchers from
various universities in cooperation with medical doctors and is constantly updating. At the
time of this study, it contains 3616 pandemic-positive cases of X-ray images, 1345 viral
pneumonia and 10,192 normal chest X-ray images. A total of 4600 images are taken
from normal chest X-ray images to make the data balanced. All images are in Portable
Network Graphic (png) format, having a resolution of 299 × 299 pixels. The total number
of pandemic-infected X-ray images used in this research is 4583. We did not use pneumonia
images. The samples of both normal and pandemic-infected chest X-rays are shown in
Figure 2.

Figure 2. Covid-infected and Normal Chest X-ray Data Samples.

3.1.2. Lung CT Scan Dataset (D2)

The public CT scan dataset for pandemic diagnosis and classification used in this
research is SARS-CoV-2 CT-scan, prepared by Soares et al. These data were collected
from hospitals in Sao Paulo, Brazil, and are publicly available on Kaggle Repository [55].
This dataset contains 2482 CT scans (1252 infected lung CT-scan images and 1230 non-
infected lung scan images). The dataset consists of CT scans of 62 male patients and
58 female patients. This dataset comprises 2D slices of CT scans with no standard-size
images. The smallest image in the dataset is 104 × 153 while the largest one is 484 × 416.
The samples of both normal and pandemic-infected CT scans are shown in Figure 3.
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Figure 3. Covid-infected and Normal Lung CT scan Data Samples.

3.1.3. Lung Ultrasound Dataset (D3)

The Public LUS dataset (POCUS) is used in this research; it is compiled by Born et al. [56].
POCUS dataset contains videos and images of two types, convex and linear. Convex and
linear are two types of transducers, which are used to generate ultrasound. At the time
of this study, it contained in total 162 videos of convex probe (46 pandemic-infected,
46 bacterial pneumonia, 64 healthy and three viral pneumonia). It had twenty videos of
linear probe (6 pandemic-infected, 2 bacterial, 9 healthy, 3 viral pneumonia). The butterfly
dataset was not considered in this study. The total number of images of the convex probe
is 53, including 18 pandemic-infected, 20 pneumonia and 15 healthy LUS images. There
are 6 images of the linear probe, with 4 pandemic-infected and 2 pneumonia images.
The samples of both normal and pandemic-infected lung ultrasounds are shown in Figure 4.

Figure 4. Covid-infected and Normal Lung Ultrasound Data Samples.

3.2. Data Preprocessing and Augmentation

Data pre-processing is the first and an important step in DL and machine ML frame-
work. For Medical Imaging datasets, pixel intensity normalization of medical images is
performed to make them in a range of 0 and 1. This step is important for training a neural
network. This can be done by setting the rescale argument of ImageDataGenerator class.
ImageDataGenerator is the class of Keras DL library. Images are also resized according to
the CNN architecture requirement which is usually 224 × 224. Data Augmentation is the
technique of enhancing the number of training data by applying certain transformations.
DL models require a large amount of training data to achieve good performance. In Medical
Imaging, collecting a large number of images is difficult. Therefore, new data are generated
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by applying zoom, shift, rotate, flip, shear and brightness transformations. These transfor-
mations are also achieved with the ImageDataGenerator class, which provides real-time
augmentation while training the CNN architecture.

3.3. Transfer Learning and Deep Learning Models

DL technology has vast scope in disease detection, segmentation and classification
by using Medical Imaging. It is used in many studies for the diagnosis of diseases such
as brain tumours, diabetes, breast cancer, lung cancer, brain stroke, etc. Using complex
DL models from scratch with lots of parameters requires lots of training time and efficient
machines, so this is the point from where transfer learning comes. It is a process of reusing
the model trained on some large datasets with new scenarios and data. This technique
achieves high performance with low computation cost [57].

In this research, 15 well-known DL models are applied, which are provided by Keras
Applications and are available with pre-trained weights. These models can be utilized
for different scenarios, e.g., classification, prediction, segmentation and feature extraction.
The various characteristics of these architectures are described in Table 3. In CNN architec-
ture, the first layer, or base layer, is a convolutional layer from which the input image is
passed through a filter. This layer is used for feature extraction and gives output as a feature
map. The second layer is the pooling layer, which is used to lessen the size of the feature
map. For applying transfer learning, the starting layers containing the parameters remain
unchanged and are reused for newer scenarios and datasets. The last layer is removed and
embedded in a fully connected (dense) layer according to our scenario. This process is also
called fine-tuning. The fully connected layer in CNN is an important layer containing the
softmax activation function, which is used for final prediction.

Table 3. CNN Architecture Characteristics.

CNN Architecture Size (MB) Total
Parameters

Trainable
Parameters Depth Input Size

InceptionResNetV2 215 54,392,033 55,297 164 299 × 299

ResNet50V2 98 31,431,041 7,866,241 50 224 × 224

ResNet50 98 31,453,953 7,866,241 50 224 × 224

ResNet101 171 50,524,417 7,866,241 101 224 × 224

ResNet152 232 66,237,185 7,866,241 152 224 × 224

DenseNet121 33 10,971,585 3,934,081 121 224 × 224

DenseNet169 57 19,034,561 6,391,681 169 224 × 224

DenseNet201 80 25,696,705 7,374,721 201 224 × 224

MobileNet 16 7,162,945 3,934,081 88 224 × 224

VGG16 528 16,682,689 1,968,001 16 224 × 224

VGG19 549 21,992,385 1,968,001 19 224 × 224

MobileNetV2 14 7,175,105 4,917,121 53 224 × 224

Xception 88 28,727,721 7,866,241 71 224 × 224

InceptionV3 92 26,228,385 4,425,601 159 299 × 299

EfficientNetB0 29 8,966,692 4,917,121 237 224 × 224

3.4. Deep Stack Ensembling

The process of combining the contribution of homogeneous or heterogeneous ML/DL
models to improve the overall performance results is known as ensembling [58]. It is also
common practice in the medical field that opinions from multiple expert doctors about
diagnosis are taken for greater reliability; ensemble learning involves the same concept. It
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allows the combination of the contribution of each base learner to give more accurate results
and low variance in prediction errors. Different ensemble methods are used in different
studies, including boosting, bagging and stacking [59]. In boosting, the misclassified
samples from the first base learner are passed to another learner for training, which
increases the problem of overfitting [60]. In bagging ensembling, the training dataset is
divided into N numbers according to base learners and each model is trained on a sub-part
of data. Hence it also increases the overfitting problem when there is a smaller number of
training samples. The idea of stack ensembling is to train several heterogeneous models
and combine them by using a meta classifier or meta learner using the predictions returned
by base learners to give results. The basic idea of stack ensembling is illustrated in Figure 5.

Figure 5. Basic Idea of Stack Ensembling Approach.

Two-level deep stack ensembling is proposed in this research for accurate diagnosis
of the pandemic. The proposed model is illustrated in Figure 6. In the first level, five
CNN architectures out of fifteen, having the best performances, are picked as base learners.
Base learners for each dataset (CT-scan, Xray, LUS) have to be different according to the
performances on an individual dataset. Each CNN will give the predictions 0 or 1 (0 for
pandemic negative, 1 for pandemic positive) on test data, which offers five arrays. These
arrays are combined to form a prediction matrix using the dstack() function of the Numpy
library. This prediction matrix acts as a training set for a meta-classifier. Finally, the meta
classifier predicts the test dataset, which is the final result of ensembling. The overall
workflow and calculations are depicted from Algorithm 1.

Algorithm 1: Deep Stack Ensembling.

Input: Datasets (D1, D2, D3) where each data contains (Xi, yi)
n
i=1

Output: Final Classifier C
Split Data as traindi, testdi for D3

i=1
Normalize Data← Xi/255
Load T pretrained models mi
for i← 1 to T do

Freez feature extraction Layers
Append Dropout, Dense Layers
Train mi
Save Weights

end
Load k Base learners Bk

i=1
for i← 1 to k do

Generate Pred matrix Pm
i=1

Stack the Pm
i=1 using dstack

end
Train C on Pm

i=1
return C(X) = H(B1(X), B2(X), . . . , Bk(X))
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Figure 6. Proposed Stack Ensembling Architecture.

3.5. SVM Meta Classifier

Supervised ML algorithms deal with the learning of hypotheses with input features
and output variables. In this study, SVM is used as a meta classifier which is used to predict
the outcome. SVM is used in the second level, which accepts the prediction sets from
different DL architectures as training data on which it will train. This prediction dataset
will be in the form of 0 or 1 and its dimension will be according to the size of the test dataset
and the Number of CNN used for ensembling. Let us suppose there is a test dataset of
300 images and five best-performing base learners; then, the prediction dataset will be
300 × 5. After training on the prediction dataset, the model will be evaluated on test data.
SVM is mainly used for classification tasks. This model works by plotting the data samples
in the n-dimensional plane and finding the decision boundary between the classes, which is
called a hyperplane. The number of features determines the dimension of a plane. The best
hyperplane is selected by calculating the distance between support vectors and boundary
lines. This distance is called the margin. Therefore, the plane with the highest margin is
declared the final decision boundary [12]. Linear kernel SVM is used in this study which is
used for linearly separable problems defined by Equations (1) and (2).

(x̄1, y1) . . . . . . . . . (x̄n, yn) (1)

f (x) = ωT ∗ x + b (2)

where x1, y1 is the data sample, ω is the weight to be minimized and b is the linear coefficient
learned from the training data.

4. Results and Discussion

This section represents the experimentation results of multiple datasets. The perfor-
mance metrics to evaluate the CNN models are envisioned with discussion. Our findings
are presented in this section. The results are obtained by training 15 CNN architectures
then further stacking is performed on the predictions of best-performing models. The final
results obtained from the meta classifier on all three datasets are illustrated and compared
with pre-trained CNN models.
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4.1. Experimental Setting

All the experiments are performed on Google Colaboratory. Windows 10 operating
system is used in this study with 8 GB RAM and Intel(R) Core (TM) i5-7200U CPU @
2.50 GHz 2.71 GHz processors. DL library Keras with TensorFlow backend is used for
DL, while Scikit learns library is used for ML models. The train test ratio for all models is
80% and 20%. Fifteen fine-tuned pre-trained models are applied, i.e., InceptionResNetV2,
ResNet50V2, ResNet50, ResNet101, ResNet152, DenseNet121, DenseNet169, DenseNet201,
MobileNet, VGG16, VGG19, MobileNetV2, Xception, InceptionV3, EfficientNetB0. Five
base learners are selected out of 15 according to the performance on all three datasets.
This exhaustive approach is adopted so that the best combinations for ensembling can be
determined with regard to which will give more accurate and reliable results. The system
and hyperparameter details are presented in Table 4.

Table 4. Summary of Experimental Details.

Parameters Value

Base Learners

InceptionResNetV2, ResNet50V2, ResNet50, ResNet101,
ResNet152, DenseNet121, DenseNet169, DenseNet201,
MobileNet,VGG16, VGG19, MobileNetV2,Xception, InceptionV3,
EfficientNetB0, Meta Classifier, Support Vector Machine

Environment Google Colab Pro

RAM 25 GB

GPU TeslaP100

Programming language Python (v3.7)

Libraries Tensorflow 2.6, Keras, Scikitlearn

No of Epochs 50

Learning Rate 0.001

Optimizer Adams

Loss Function Binary Cross Entropy

Evaluation Metrics used Accuracy, Precision, Recall, F1 Score

4.2. Evaluation Criteria

In ML/DL, model evaluation is essential for knowing about the results of trained
models. It helps in the understanding of the model’s performance and simplifies the
presentation of the model. Models need to be evaluated using several measures to improve
its performance, fine-tune it and to achieve better results. There are various evaluation
metrics available. For evaluating our proposed model, confusion-matrix based performance
metrics are used. These metrics show the classification performance of a model. In the
confusion matrix, True positives (tp) are samples that model correctly predicted positives.
True negative (tn) is the test data that are correctly classified as negative, whereas false
positives ( fp) are the values incorrectly classified as positive and false negatives ( fn) are
the samples that incorrectly predict the negative class [61]. The details of these metrics are
explained below with formulas:

4.2.1. Accuracy

A model’s accuracy is determined by dividing the total predicted samples by the
number of correct predictions. It is only an acceptable metric if the different classes in the
dataset are substantially evenly distributed. It can be calculated as in Equation (3).

Accuracy = (tp + tn)/(tp + tn + fp + fn) (3)
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4.2.2. Precision

Precision is the ratio of positive samples that are correctly predicted to the total number
of samples that are predicted positive. Precision can be computed using Equation (4).

Precision = tp/(tp + fp) (4)

4.2.3. Recall

Recall, or sometimes sensitivity, implies the ratio of total samples correctly classified
as positive to all the samples that are in the actual positive class. The recall measure can be
computed using Equation (5).

Recall = tp/(tp + fn) (5)

4.2.4. F1-Score

F1-score measures the harmonic mean of precision and recall. It is a strong measure
in the case of unbalanced data. Equation (6) shows the computation mechanism of the
F1-score.

F1-score = 2∗(Precision∗Recall)/(Precision + Recall) (6)

4.2.5. AUC Score

AUC score is a very good metric; it evaluates the performance of a binary classifier
with varying thresholds. It represents the ability of a classifier to successfully distinguish
the classes. It is calculated from the ROC curve, which shows the trade-off of sensitivity
(TPR) and specificity (FPR). A model has the best performance in distinguishing the classes
if it has an AUC near to 1. Similarly, its performance is worst if its AUC score is near 0.

4.3. X-ray Dataset Results

The Keras DL models are employed to perform stacking and various matrices are
calculated for each model as well as proposed architecture as illustrated in Table 5 and
Figure 7. Training and validation batch size is kept at 90 with 7256 training and 1812 vali-
dation samples with an image size of 224. The Keras DL neural network library is used to
fit the models using image data augmentation via the ImageDataGenerator class. The re-
sults highlighted in red are the models with the best performances out of the 15 models.
The weights of these models are utilized in the deep stack ensembling approach to achieve
98.2% accuracy, outperforming the approaches in the literature.

Figure 7. X-ray Dataset Results.
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Table 5. X-ray Dataset Results. The red color is highlighting the best performing models among 15.
Those models are basically picked as base learners. The bold is highlighting that after ensembling we
are getting improved results.

Models Accuracy (%) Precision (%) Recall (%) F1-Score (%)

InceptionResNetV2 91.8 91.2 92.9 92

ResNet50V2 94 94.3 93.7 94

ResNet50 75.6 77.4 72.3 74.8

ResNet101 76 80.7 68.2 73.9

ResNet152 76.1 78.6 72.6 75.5

MobileNetV2 94.9 96.5 93.4 95

MobileNet 96.3 95.5 97.3 96.4

VGG19 94.4 94.5 94.3 94.4

VGG16 95.9 93.5 98.6 96

DenseNet121 95.3 94.6 96.3 95.4

DenseNet201 93.3 91.6 95.3 93.4

DenseNet169 96 95 97.3 96.1

EfficientNetB0 77.2 79 77.3 78.1

Xception 90.6 91.4 89.7 90.5

InceptionV3 90.8 89.8 92.1 90.9

Proposed 98.2 98 98.3 98.2

4.4. Lung CT Scan Dataset Results

The performance results for the lung CT scan dataset (D2) for pandemic detection are
depicted in Table 6. Training and validation batch size is kept at 32 with 1984 training and
497 validation samples with an image size of 224. ResNet50V2, MobileNet, DenseNet121,
DenseNet201 and VGG16 achieve good results among the 15 models, which are highlighted
in red and are used for stacking. The proposed approach achieved 98% accuracy as
illustrated in Figure 8.

Figure 8. Lung CT Scan Dataset Results.
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Table 6. Lung CT Scan Dataset Results. The red color is highlighting the best performing models
among 15. Those models are basically picked as base learners. The bold is highlighting that after
ensembling we are getting improved results.

Models Accuracy (%) Precision (%) Recall (%) F1-Score (%)

InceptionResNetV2 91.9 89.9 94.3 92

ResNet50V2 94.3 93.9 94.7 94.3

ResNet50 84.9 81.5 89.8 85.4

ResNet101 78.4 79.8 75.6 77.6

ResNet152 81.6 78.5 86.5 82.3

MobileNetV2 92.5 93.7 91 92.3

MobileNet 95.9 95.9 95.9 95.9

VGG19 92.3 91.2 93.4 92.3

VGG16 93.7 93.5 93.9 93.7

DenseNet121 96.1 95.2 97.1 96.1

DenseNet201 96.5 97.5 95.5 96.5

DenseNet169 93.7 94.6 92.6 93.6

EfficientNetB0 83.1 86.3 82.5 84.4

Xception 90.7 85.9 97.1 91.2

InceptionV3 91.5 90.8 92.2 91.5

Proposed 98.39 98.37 98.37 98.37

4.5. Lung Ultrasound Dataset Results

For ultrasound data (D3), the training and validation batch size is kept at 32 with
1448 training and 363 validation samples with an image size of 256 × 265. Table 7 depicts
that DenseNet family and ResNet architectures achieve good results, which are further
used as base learners for stack ensembling. The proposed architecture achieved 99% test
accuracy as illustrated in Figure 9.

Figure 9. Lung Ultrasound Dataset Results.
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Table 7. Lung Ultrasound Dataset Results. The red color is highlighting the best performing models
among 15. Those models are basically picked as base learners. The bold is highlighting that after
ensembling we are getting improved results.

Models Accuracy (%) Precision (%) Recall (%) F1-Score (%)

InceptionResNetV2 88.1 91.3 91 91.2

ResNet50V2 93.3 92 98.1 95

ResNet50 94.2 99 91.4 95.1

ResNet101 94.4 98.3 93.7 95.9

ResNet152 97.2 96 99.1 98

MobileNetV2 92.5 98.1 89.3 94.1

MobileNet 88.1 86.3 97.9 91.7

VGG19 93.3 97.4 92.6 94.9

VGG16 88.7 85.6 99 92.2

DenseNet121 94.3 98.2 93.6 95.8

DenseNet201 94.7 98.1 93 96

DenseNet169 95 97.7 93.8 95.3

EfficientNetB0 82.6 80.5 97.9 88.3

Xception 83.4 83 96 89

InceptionV3 92.5 90 98.1 93.8

Proposed 99 99.5 98.7 99.1

4.6. Proposed Ensembler Results for D1, D2, D3

The SVM is used as a meta classifier in the second level of ensembling. The base
learners are selected in level 1 according to the performances on all three datasets. Table 8
presents the results of deep ensemble architecture on all three datasets. It is shown that after
combining the predictions of CNN models, the proposed architecture achieved surprising
results as depicted in Figure 10.

Table 8. Proposed Architecture Results.

Datasets Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC Score

D1 (X-ray) 98.2 98 98.3 98.2 0.99

D2 CT Scan) 98.39 98.37 98.37 98.37 0.99

D3 (Ultrasound) 99 99.5 98.7 99.1 0.99

ROC curve plots are depicted in Figures 11–13. The figure shows a graphical repre-
sentation of proposed architecture performance. The True Positive Rate (TPR) and False
Positive Rate (FPR) are plotted to generate the ROC curve. TPR displays the proportion
of all positive samples with true positive predictions. The FPR displays the proportion
of all negative samples that include false positive findings. The capacity of a classifier to
correctly distinguish between classes is shown by the area under the curve, or AUC. An
AUC score of 0.99 is achieved for all three datasets.
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Figure 10. Proposed Ensembler Results for D1, D2, D3.

Figure 11. ROC Curve D1.

The confusion matrices for all three datasets are displayed in Figures 14–16. It is
shown that for the chest X-ray dataset, the proposed model correctly predicts 908 sam-
ples as positive while it correctly predicts 872 samples as normal out of 1812 total test
samples. For the CT scan dataset, the model correctly predicts 242 positive samples and
247 negative samples from the total test samples, i.e., 497. Similarly, the proposed model
correctly predicts 242 positive ultrasound samples and 117 negative samples from the total
363 ultrasound test samples.
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Figure 12. ROC Curve D2.

Figure 13. ROC Curve D3.
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Figure 14. Confusion Matrix D1.

Transfer Learning Stack Ensembling architecture is proposed by using multimodal
imaging data to differentiate between patients who are either positive or negative for SARS-
CoV-2, the pandemic disease. The proposed architecture finds out the 5 best performing
CNN architectures among 15 for all three datasets. More accurate and reliable results are
achieved by stacking these 5 models. This exhaustive approach is adopted so that the best
possible combinations of models can be discovered for ensembling.

Figure 15. Confusion Matrix D2.

From the evaluation, it is shown that the proposed approach achieved good results for
all three datasets, i.e., 99% test accuracy is achieved on the Ultrasound dataset, whereas
98.3% and 98.2% are achieved on X-ray and CT scan datasets. It is clear from these results
that the proposed architecture performs best for both small and large datasets, as there are
2482 X-ray samples and 1811 ultrasound samples. This study also shows the importance
of using DL technologies and Medical Imaging modalities in the prediction of pandemics,
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which can help in reducing the huge burden on the limited healthcare systems in most
nations around the world.

Figure 16. Confusion Matrix D3.

4.7. Comparative Analysis

The performance comparison with state-of-the-art models is depicted in Table 9. The re-
sults for the X-ray, CT scan and ultrasound dataset of the proposed ensemble architecture
are also mentioned. There are multiple works by different authors for the classification
or prediction of pandemics using Medical Imaging modalities. In the literature, authors
consider only one modality for pandemic diagnosis with a small number of training and
testing images, which affects the performance of models. The accuracy, precision, recall
and F1-score of different approaches and the proposed architecture are shown, which
shows that the proposed solution outperforms the existing studies. Three different Medical
Imaging modalities with large publicly available data samples are considered and a transfer
learning stacking approach is applied to achieve the best results.

Table 9. Comparison with the Literature (Text in bold represents the contributions and improvements
of our work).

Methods Modality Total Samples Accuracy Precision Recall F1-Score

Shah et al. [37] CT-scan 738 94.50% 94.10% 94.10% 94.10%

Gifani et al. [41] CT-scan 748 85.20% 85.70% 85.40% 85.20%

Das et al. [51] X-ray 1006 91.60% - 95.00% 91.70%

Khan et al. [23] X-ray 600 95% 95% 96.90% 95.60%

Escobar et al. [48] Ultrasound 1811 89.10% 90.1 86.40% 88.00%

Muhammad et al. [62] Ultrasound 1811 91.8 92.5 93.2 -

Proposed

CT-scan 2482 98.39 98.37 98.37 98.37

X-ray 7236 98.20 98.0 98.30 98.20

Ultrasound 1811 99.0 99.50 98.70 99.10

5. Conclusions

During the period of the pandemic, the load on radiologists has increased. The manual
examination of radiographic images takes a lot of time and can be prone to human error.
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Therefore, an automatic decision support system for diagnoses of pandemics with high
accuracy is needed. This research presented a Transfer Learning Stack Ensembling approach
for pandemic detection using multimodal datasets to improve the results in existing studies.
It uses the concept of transfer learning in which models already trained on the ImageNet
dataset are re-trained on desired data to achieve the best results. Fifteen state-of-the-art
DL models on three datasets (CT-scan, X-ray, Ultrasound) are trained. The performance of
these models on three different datasets is evaluated and compared.

Further, a two-level stack ensembling of fine-tuned DL is performed to achieve more
accurate results. These DL models are used as base learners in level 1, while SVM is
used in level 2 of stacking to predict the result of pandemic positive (1) or negative (0).
Accuracies of 98.3%, 98.2% and 99.0% for D1, D2 and D3, respectively, were achieved,
outperforming existing research. These experimental results are considered a helpful tool
for pandemic screening on chest X-ray, CT scan images and ultrasound images of infected
patients. Future work will focus on the detection of various other diseases along with the
pandemic for patients with respiratory problems, i.e., the detection of pneumonia, lung
cancer and tuberculosis, to name a few.
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