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Abstract: Wireless Sensor Networks (WSNs) represent an interesting technology for designing early
warning systems for landslides as they can ensure real-time and continuous monitoring. Through
accurate localization techniques, changes in the position of installed nodes can be detected even
during the early stage of field instability. This is through an accurate detection of nodes position
changes independently from systematic deviations resulting from outdoor environmental conditions.
In this study, we propose an accurate measurement system for distance measurement between
wireless sensor nodes based on an ultra-wideband (UWB) localization method. In particular, distance
measurements at different real weather conditions were performed to identify the impact of weather
changes on distance measurement deviations. A prototype for a landslide warning system has been
developed realizing a localization accuracy of 98%.

Keywords: WSN; localization; ultra-wideband; two-way ranging; environment changes; early warning;
landslide; SVM; internet of things

1. Introduction

Various fields have been promoting Wireless Sensor Networks (WSNs) in recent years,
including industrial, environmental, and natural hazard monitoring [1,2]. In particular,
WSNs have been actively introduced for risk management and natural hazard monitoring
and prevention, where more attention is required to develop innovative and autonomous
solutions to counteract life-threatening natural disasters [3–5]. In this regard, continuous
field monitoring systems for early warning detection is highly needed to enable hazard
assessments and risk management. Along with the use of WSNs, integrating the Internet
of Things (IoT) concept ensures the remote monitoring of large areas in real-time [6–8].
Several Early Warning Systems (EWSs) are being developed to maintain control of vul-
nerable regions and facilitate immediate intervention in natural disasters. In particular,
EWSs integrate WSNs to collect sensor data information, i.e., soil moisture, water level,
soil inclination, and temperature, which are indicators of environmental changes. Fur-
thermore, WSNs enable flexible and remote data collection, and analysis from distributed
sensors [3,9,10]. In landslide applications, critical requirements, such as real-time and con-
tinuous measurements, should be considered for designing and implementing the wireless
network. A landslide early warning system (LEWS) must ensure flexible and remote access
to the monitored area. Furthermore, LEWS provides accurate and precise information
allowing the real detection of the landslide. Moreover, the LEWS needs to distinguish
between normal weather change (e.g., temperature change between day and night) and
landslide triggers (e.g., inclination of soil, severe change in water drop level). Therefore,
the LEWS should be weather dependent for the identification of weather influence on
collected data.

2. Related Works

In [11], the authors developed a landslide monitoring system based on WSNs. Their
sensor nodes integrated a pore water pressure sensor and strain gauges to measure the
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water pressure and soil displacement, respectively. However, the developed system de-
pends only on the change of the sensor data information, which could trigger a false alarm.
In [12], a WSN architecture for real-time ground displacement monitoring was developed.
However, the system is based on small-range communication only with a range of about
10 m. It is also highly energy-consuming since it uses the GPRS module to communicate the
location data. In [13], the authors proposed a WSN-based system for detecting the location
of miners and identifying possible roof falls. Their system utilizes smart data gathering
mechanisms using spatial and temporal correlation to detect disasters and earthquakes
in mining areas. However, the system’s energy data transmission cost and sustainability
are still limited. Another typical solution is to monitor the rainfall levels using WSN and
water level sensors since rainfall is a major trigger of slope movement [14–16]. In these
systems, slope movement prediction is deduced by correlating the water levels and slope
inclination. Hence, the slope information is also critical because it is more prone to false
measurements. This could not satisfy the requirements of an acceptable margin of error.
The use of specific sensors enables the supervision of landslides’ triggering parameters.
However, the results cannot characterize the current situation in real-time and with re-
duced installation and maintenance costs. An interesting alternative is to perform ranging
measurements using the transmission signals of the installed node, which bypasses the
cost related to implementing specific sensors [17–19]. Moreover, different works in the
literature investigated the influence of weather changes on signal transmission [20–22].
In [22], meteorological parameters (i.g., humidity, atmospheric pressure, and temperature)
proved to have a major influence on LoRa data transmission. Their work ensures accurate
data transmission; however, correction related to weather influence is required for long-
distance communication. Furthermore, their proposed system is expensive in terms of
system and communication costs. In other works, the main focus was to provide accurate
data collection and communication for dynamic nodes [23]. The mobility of nodes provides
an overview of the dynamic of the installation environment; however, it remains unsuitable
for landslide detection. The complete network is dynamic in these scenarios and has no
static references. In another study, the authors provide an interesting dynamic environment
and surveillance solution [24]. However, in their work, only simulations are carried out
without considering external influences such as weather changes.

To conclude, the available works in the literature on WSN-based landslide early warn-
ing and prediction focus mainly on sensor information, location information, and weather
forecasting. Most of them use GPRS data to identify affected regions, which is highly ex-
pensive. Moreover, short-range communication is used to collect sensor information, which
requires the installation of additional nodes to ensure the coverage of the monitored area.
Furthermore, sensor-based systems are prone to error, which affects prediction accuracy.
Considering these aspects, a LEWS is developed, where the distance between installed
wireless nodes is observed and used to identify the landslide occurrence. This definition
helps to build a proactive risk management system based on weather conditions. In this
study, the main focus is the design and installation phase of the LEWS and the monitoring
activity. Furthermore, we present a preliminary analysis of slow-moving (cm/s) surface
slide through wireless technologies. The main contributions of this work are summarized
in the following points:

• Design of an accurate ranging system to identify the node’s stability in terms of
distance variation;

• Investigation of the weather impact on the distance measurement with a focus on the
temperature influence;

• Use of Support Vector Machine (SVM) to classify the origin of obtained distance
variation as a way for early landslide warning.

The paper is organized as follows. The proposed WSN system for landslide early
warning is detailed in Section 3. In Section 4, experimental evaluation based on laboratory
and field tests is provided. The collected measurement data is evaluated regarding system
resolution and sensitivity to changes. The investigation related to weather changes is given
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and discussed in Section 5. Later, a case study of landslide early warning is provided in
Section 6, where details on the deployed SVM model are provided and studied. A summary
of the main characteristics of the WSN-based system is provided in Section 7. Section 8
concludes the presented work and opens new perspectives for future research.

3. Developed WSN for Landslide Early Warning Based UWB

In this work, a landslide early warning system is developed using WSNs. It is based
on the connectivity and ranging information between installed nodes in the field of interest.
In particular, a ranging system is introduced to measure the distance between the deployed
nodes and monitor the nodes’ current position and displacements. Distance information is
collected via a raspberry gateway to ensure real-time and continuous data storage. The
weather forecast is collected from a weather station connected to a cloud server where
weather information is dynamically stored and foreseen. Later, the correlation between
the weather parameters and distance variation is investigated at the processing unit (see
Figure 1).

Figure 1. General architecture for the proposed wireless network for landslide early warning.

The main novelty of the developed LEWS is to explore the ultra-wideband technology
(UWB) to ensure accurate distance estimation between connected nodes. The investigation
related to weather influence is introduced to ensure the stability and robustness of the
LEWS. More emphasis on the UWB technology is highlighted in Section 3.1. The distance
measurement technique is presented in Section 3.2.

3.1. UWB Technology for Distance Measurement

Ultra-wideband technology is a wireless communication protocol that uses electro-
magnetic radiation and wave propagation for communication and data transfer. It ensures
high data rate transfer with high-ranging accuracy, low power consumption, and simple
implementation. The UWB technology is known for its good performance, as it offers a
good time-domain resolution allowing a precise location and tracking application with
low power and low-cost on-chip implementation [25]. In particular, Decawave (DW1000)
sensor nodes are selected [26], which use signals with a bandwidth of 500 MHz resulting
in 0.16 ns-wide pulses. They have a fully integrated single chip, low-power, and low-cost
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transceiver following to IEEE 802.15.4-2011 standards. The main advantage of the selected
UWB transceiver is its high data rate, as it can transmit pulses with a bandwidth of 500
to 900 MHz over a frequency of 3.5 GHz. This high temporal resolution allows for a theo-
retical accuracy of the ranging measurements approximated by ±10 centimeters in LOS
conditions as in [27,28]. Due to its high bandwidth and spectrum usage, the transmission
power density of the UWB transceiver is limited to −41.3 dBm/MHz to avoid inter-system
interference. The technical specification of the chosen Decawave ranging module is summa-
rized in Table 1. The accuracy and resolution of the UWB ranging are provided in Section 4,
with results from laboratory and test field experiments.

Table 1. Technical specifications of Decawave ranging system.

Parameters Values

Communication standard IEEE 802.15.4-2011 UWB compliant
Working frequency 3.5 GHz

Supply voltage 2.8 to 3.6 V
Communication range Up to 75 m at 0 dBm

Power consumption 154 mA (RX), 111 mA (TX)
Average distance deviation 10 cm to 1 m

3.2. Two-Way Ranging Technique (TWR)

Two-Way Ranging technique (TWR) uses two delays related to signal transmission
to determine the range between two communicating nodes. It determines the Time of
Flight (ToF) of the UWB RF signal and then calculates the distance between nodes by
multiplying the time by the speed of light. In Decawave module, the TWR technique
measures the distance between two nodes by exchanging three messages. The tag (this
refers to the mobile node) initializes TWR measurements by sending a Poll message to
the known address of the anchor (this refers to the fixed node) in a time frame referred to
TSP (Time of Sending Poll). The anchor records the time of the Poll reception (TRP) and
replies with the response message at time TSR. The tag records the time TRR when receiving
the response message and composes a Final message, where its address, TSP, TRR and
TSF information are included. Based on the time reception of the final message TRF and
the information provided in the final message, the anchor can determine the ToF of UWB
signal. The TWR implemented in Decawave is illustrated in Figure 2, where two nodes are
communicating. The ToF is calculated using the timestamps of communicated signals as
presented in Equation 1. Later, the distance between the tag and anchor nodes is calculated
by multiplying the ToF of the UWB signal by the speed of light c as depicted in Equation (2).

ToF =
(TRR − TSP)− (TSR − TRP) + (TRF − TSR)− (TSF − TRR)

4
(1)

distancetag/anchor = c× ToF (2)

The distance between installed nodes is calculated and estimated based on the TWR.
Later, the ranging system is explored in order to identify the effective time and space
resolution of the Decawave system. The distance-ranging system is tested under different
conditions. In the first part, it is evaluated in terms of stability and correctness. Then,
the ranging system is observed with consideration of different weather changes. These
evaluations help to build knowledge of the system’s resolution under normal and variable
weather conditions.
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Figure 2. Average distance measurement based on the TWR technique for Decawave nodes.

4. Laboratory and Test Fields Investigations

This section describes the procedures adopted to validate the proposed system in
a real environment. The prototype of the WSN system is designed and implemented to
satisfy the requirements of high flexibility, rapid installation time, and limited investment
costs. The test and evaluation of the WSN prototype include the following:

• Laboratory tests: To prove the nominal performance of the prototype.
• Early calibration tests and sensitivity analyses: To highlight the system’s dependency

on environmental and physical parameters (e.g., temperature and humidity).
• Landslide tests: The landslide tests are carried out with the use of a ready database.

All measurements are realized under the LOS, enabling precise characterization of the
system performance in free space and outdoor environments. Sampled results provide an
experimental observation of the UWB-ranging system efficiency in an outdoor field. Two
nodes are considered: one anchor and one tag node, where the anchor is fixed, and the
tag node changes its position by translation with no change in the angular between both
nodes. The distance in-between is varied manually to study the accuracy and stability of
the ranging system, as depicted in Figure 3.

Tag nodeAnchor node

≈ 10 m ± ∆ d

Figure 3. Schematic presentation of the experimental setup using the Decawave ranging system.

The following quantifies the sensitivity and resolution of the ranging system. The
measurement protocol is as follows: A new ranging session starts every 200 ms and runs
for about 30 s. The data packet is composed of 32 bytes of Decawave information, which
refers to the sensor data, for example, if existing, or the information about the location
and signal quantity. The measurements were performed with the positioning of the nodes
placed 15 cm above the ground to ensure the line of sight. In all our experiments discussed
in this paper, we consider that the nodes are in LOS, i.e., without obstacles.
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4.1. Experimental System Resolution Analysis

The ranging system is evaluated in terms of sensitivity and robustness for both large
and small distance changes. In scenario 1 (see Figure 4), one tag and three anchor nodes
were installed in the network, and continuous measurement of the distance between them
was achieved to identify the system stability over long experiments. Both nodes are fixed
in the beginning, then a displacement is applied manually with increments of 5 to 10 m
and a step size of 60 cm to 1 m for large and small variations, respectively. The obtained
results are illustrated in Figure 5.

Figure 4. Decawave nodes at the inner courtyard of the university (Scenario 1).

In the first experiment (Figure 5a), the two nodes are placed at a distance of 10 m in
the beginning. Later, the tag node was moved over a δd, which is in the range of [0.1 m, . . . ,
2 m]. Each measurement trial was carried out over 50 min, and the distance was calculated
from the Decawave anchor module. Collected results show that the system is able to act for
both large and small distance variations. The estimated distance deviation is in the range
of 3 to 13 cm for all stored samples. In the second experiment (Figure 5b), the nodes were
placed at a 10 m distance, and later the tag was moved with a step size of 5 m and 10 m.
For a small distance variation, the average deviation is approximately 5.3 cm. For a large
distance variation, the average deviation is approximately 8.8 cm. The accuracy is defined
as how close the estimated distance obtained by the two-way ranging algorithm is to the
known ground truth distance between the nodes. A good ranging accuracy should provide
the match as closely as possible. With regard to this, the mean error of the collected data
needs to be calculated based on Equation (3).

meanerror =
∑Nmeas

i=1

∣∣∣d̂− dReal

∣∣∣
Nmeas

(3)

where, Nmeas, d̂ and dReal are the total number of samples, the estimated distance using the
two-way range system and the real distance, respectively.

In Table 2, samples of the obtained accuracy are presented, where the lowest achieved
accuracy is estimated by 89.83% for 30 m, and the highest accuracy was noted at 10.6 m
with 98.68%. The experimental accuracy is in the range of ≈94% for both small and large
distances. This makes the Decawave ranging system reliable and accurate to be used for
node displacement identification.
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Figure 5. Experimental investigation on the Decawave measuring stability, representation of mea-
surement series over a fixed distance: (a) small distance variation and (b) large distance variation.

Table 2. Decawave measurement accuracy under LoS.

Small Variation Large Variation
(60 cm ≤ ∆d ≤ 2 m) (∆d = 5, 10 m)

Fixed distance in m 10.6 8.6 3.3 3 1.8 10 15 20 30 40

Measured accuracy in% 98.20 98.86 96.90 92.48 93.84 92.13 94.68 90.05 89.83 94.35

The Decawave module achieves a ranging resolution of 5 cm in LOS conditions.
However, the accuracy of the UWB ranging measurements is also vulnerable to external
factors, such as multi-path fading and receiver noise [19]. The temperature variation is
directly related to the crystal frequency stability of the Decawave, as the ToF is based
on the speed of light and time synchronization. Thus, when subject to different weather
variations, the system may have an additional deviation in the distance measurement.
In the following, experimental characterization of the weather impact on the Decawave
ranging system is provided. Experimental results show a deviation in the order of 5 cm. In
fact, the average distance deviation is 0.0667, 0.0719, 0.0571, and 0.0236 for anchor0, anchor1,
anchor2, and anchor3, respectively (see Figure 6). In practice, the nodes were not moved
from their initial geographical positions. In this way, the distance deviation observed in the
experimental data might result from external factors related to the deployment environment.
For example, the presence of obstacles or objects in the deployment environment may cause
shadows and interference with the signal, causing some noise in distance measurements.
Additionally, changes in certain weather parameters could affect the electronic component
of the ranging system, thus impacting both the system’s sensitivity and resolution, such as
the humidity and temperature. Hence, the distance deviation can be triggered either due to
signal interference or weather changes.
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Figure 6. Cont.
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Figure 6. Experimental distance measurement in scenario 1 with one tag node and four anchor nodes
anchor0, anchor1, anchor2, and anchor3. (red point: meaured distance, blue line: distance deviation).

4.2. Energy Consumption Analysis

The energy consumption measurement of a wireless sensor node is carried out using
the white box-based energy model, which considers the distance between the sender and
the receiver and the number of sent bits. The energy of transmission and reception depends
on the number of transmitted data bits over a distance d. The energy consumption is
calculated based on Equation (4).

ETx = VITx∆tTx,
ERx = VIRx∆tRx

(4)

The current estimation of the wireless node is carried out using the four-wire energy
measurement method. An efficient measurement instrument is used in this direction,
Keysight Technologies E5270 8-channel Precision Measurement Mainframe [29]. The
instrument uses the four-wire method to estimate the consumed current for each state. The
system relies on low resistance measurements by minimizing the influence of the electronic
components’ resistance load on the measurements. In Figure 7, the current consumption of
the Decawave module is reported for each status. In Figure 7a, the current consumption
of the tag node is represented for each defined status, whereas in Figure 7b the current
profile of the anchor node is reported. The initialization of each node is similar and equal
to 16.16 mA. During the ranging request, the tag node consumes around 142.17 mA to
send the request to the anchor node. The anchor uses around 161.65 mA to receive the
ranging request.
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Figure 7. Current consumption over node’s status change in case of (a) tag and (b) anchor.
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5. Analysis of the Influence of Weather Effects on Distance Estimation
5.1. Evaluation of Weather Influence on Distance Measurement

Distance ranging is performed to have an overview of the stability of the nodes
in the network. Continuous measurements are required to build a stable and reliable
monitoring system. In this direction, further experiments were realized to study the
system’s sustainability for a long period [1]. In this work, different experimental tests were
realized to explore the effect of weather changes on distance measurements. Three nodes
were installed and maintained at fixed positions to examine the impact of weather changes
on the Decawave ranging system. Two scenarios were realized to observe the distance
variation between nodes at different weather conditions. In scenario 2 (see Figure 8), the
weather forecast system was placed between the installed nodes. In this case, the effects of
the weather changes on the distance range are investigated.

Figure 8. Investigation of weather influence in real-world (Scenario 2).

Further investigations related to the node’s environment are necessary to identify
the source of the variation, such as weather changes or obstacles (Scenario 2). Only
two Decawave nodes are installed in the field at a fixed distance of 23.4 m, illustrated
as node 1 and node 3 in Figure 8. Node 2 is used to collect the data, as a base station.
Continuous distance ranging by Decawave is performed for two consecutive months. The
obtained distance measurement data is filtered using a moving average filter to reduce
the measurement variation related to systematic errors and the results are presented in
Figure 9a. These results show a variable deviation in the distance measurement with some
sudden peaks. During this experiment, the field test environment has not been changed at
any time; however, the obtained results are not stable, as illustrated in Figure 9b.
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Figure 9. Experimental distance measurement between two stable nodes at a distance of 23.4 m:
(a) corrected distance measurement considering average variation and (b) measurement peaks.
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Weather values are associated with the measured distance between deployed nodes
during these investigations. As seen in Figure 10, each considered weather variation is
plotted versus the distance, to identify the relationship between each weather parameter
and the distance variation. The obtained results prove that the distance variation strongly
depends on temperature, humidity, and solar radiation. Both the temperature and sun
radiation present a strong positive correlation with the distance. The humidity is negatively
correlated because the temperature and humidity are inversely proportional.
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Figure 10. Presentation of measured distance variation with consideration of different weather parame-
ters: (a) temperature, (b) humidity, (c) air pressure, (d) dew point, (e) wind speed, and (f) UV-Index.

5.2. Weather Influence on Distance Correction

In order to define the dependency between weather parameters and distance variation,
a correlation system is presented, where the mathematical correlation of two quantities x
and y is considered [29]. Considering the distance and temperature as two mathematical
characteristics, the empirical correlation can be defined as in Equation (5).

Sxy =
1

n− 1

n

∑
i=1

(xi − x̄)(yi − ȳ) (5)

where, n, x̄, and ȳ are the number of samples and the average values of both quantities x
and y, respectively.
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In order to verify whether there is a linear dependence between x and y, a measure of
their direct dependence of both characteristics is needed. Mathematically, it measures how
closely the measuring points of two straight lines approach each other when placed in a
coordinate system. A general correlation coefficient is formulated in Equation (6).

r =
Sxy

SxSy
=

∑n
i=1(xi − x̄)(yi − ȳ)√

∑n
i=1 (xi − x̄)2 ∑n

i=1 (yi − ȳ)2
(6)

By applying Equation (6), the correlation between the temperature and distance and
the solar radiation is estimated. The temperature presents a strong correlation equal to
approximately 0.76, and the solar radiation presents a correlation of 0.6. The humidity is
negatively correlated with the distance at 0.52. In the following, the temperature regression
model is evaluated and tested.

A linear regression model based on the temperature variation is proposed to organize
the obtained result, presented by Equation (7), where h is the regression hypothesis and θ
is the regression parameter to be estimated for the warning model (see Figure 11).

d̃ = hθ(T) = θ0 + θ1 × T (7)

θ0 = 23.39 m, θ1 = 0.39 ◦C

The regression model shows that the retrieved data from the ranging system is closer
to the proposed fitting system with a cost function defined as in Equation (8).

J(θ0, θ1) =
1

2m

m

∑
i=1

(
d̂i − di

)2
=

1
2m

m

∑
i=1

(hθ(Ti)− di)
2 (8)

Temperature correlation models can be used to correct distances between tags and
anchor nodes, and the impact of temperature on actual distance variation can be eliminated.
A comparison between the raw and the temperature-corrected data is illustrated in Figure 11.
A series of measurements are carried out to identify the impact of the regression model on
the distance measurement correction. The obtained results are illustrated in Table 3.
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Figure 11. Raw and temperature-corrected measured values in comparison.

The summarized values in Table 3 illustrate that the improvements are mainly in the
standard deviation. They show an improvement with 33% and 29%, respectively, compared
to the raw values. The fluctuation in the first quarter of the distance measurement series
has a negative effect. The temperature values of the weather station can not explain this. It
is remarkable, however, that this curve occurs reproducibly over several days at midday.
Nodes are installed at the rooftop of the building. Once a day, sensor nodes are in the
shadow of the antenna, while the weather station is exposed to full sunlight. This can
explain this anomaly in the fitting temperature-distance response. To this end, experimental
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investigations on the distance-ranging system are realized. Various meteorological variables
are associated with the distance ranging system to identify any correlation and dependency
of the distance ranging deviation with the weather change. Results show that the distance
measurement variation is strongly related to temperature and solar radiation changes.

Table 3. Properties of the measured value series before and after deviation correction.

Sample Correction Minimum
Value

Maximum
Value Mean Value Standard

Deviation
in m in m in m in cm

1 without 23.35 23.46 23.39 2.4
1 with 23.32 23.43 23.39 1.6
2 without 23.36 23.44 23.39 2.11
2 with 23.33 23.43 23.39 1.5

6. Warning System for Landslide

During this study, we examine an early warning system for landslide detection. The
proposed system consists of sensor nodes installed in a specific area and can communicate
their ranging information through the WSN. The distances among installed nodes are
continuously observed. In addition, a weather station is used to monitor the weather
condition. Typically, the distance variation between stable nodes could be due either to
systematic or random errors. In the first case, the distance variation is resultant of the
ranging system capabilities, resolution, and calibration. In the second case, the distance
variation can occur due to random and unpredictable effects, such as severe weather
changes, node failure, obstacles, or movement. In this case, the obtained estimated distance
may present various random deviations; however, estimated distance values still cluster
around the true value. In this direction, it is essential to efficiently study the range system’s
performance and define the normal working condition so that an early warning could be
triggered in case of dramatic change.

The proposed landslide warning system comprises two main blocks: Distance mea-
surement and validation, data analysis, and classification. In the first block, distances
between installed nodes are continuously estimated and compared to the real true values.
Based on the obtained results and considering the respective weather information, the
classification of the dataset is carried-out to generate a landslide warning alarm or not.
Hence, special thresholds are needed to quantify the distance variation. In Figure 12, an
illustration of the proposed landslide early warning system is depicted. In the following,
Thrsys and Thrl are defined as the distance variation thresholds for the system and weather
changes and for possible landslide occurrence, respectively. The determination of both
thresholds should be performed carefully as it will serve later to identify possible landslide
occurrence.

Figure 12. Schematic representation of the landslide early warning system.
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We estimate that the error obtained on the estimated distance measurements is related
to the ranging system resolution and calibration, some weather changes, or actual node
displacement. As a first step toward finding the cause of the error, it is essential to analyze
and compare the measurement system’s performance in normal working conditions and
during climatic changes. Accordingly, the variation is categorized into three categories:
deviations caused by system malfunction, deviations caused by weather impacts, and
deviations caused by node displacement, which results in landslide alarms.

6.1. Machine Learning Using SVM

The Machine Learning (ML) method provides an accurate and efficient solution to
either predict or alert of a landslide occurrence. It provides an overview of the area of
interest based on the collected data, which has a significant advantage over traditional
data classification algorithms. Different techniques can be used as machine learning tools
to classify and identify the collected data. The most common is the Support Vector Ma-
chine system (SVM) [30], since it provides a simple and non-complex warning model. The
SVM uses statistical data to create a classification model of the available information. It
mainly implements two principles: The optimal classification hyperplane and the use of a
kernel mathematical function. The hyperplanes serve to organize the collected samples
into separate classes efficiently. As a definition, the distance between each hyperplane is
called the classification margin, which represents the extreme border between classes. The
kernel function helps transform the input samples into a dimensional space so they can
be separated into classes [31]. In practice, the classification hyperplane definition can be
expressed as wφ(x) + b = 0, where w, b need to be determined for the classifier. Hereafter,
the classification problem is solved by maximizing the margin distance between hyper-
planes 2

||w|| . This problem can be solved by Lagrange multiplier method [32]. For the case
of only one constraint and only two choice variables, consider the optimization problem:

Minimize Wp(α) =
‖w‖2

2
−

l

∑
i=1

αiyi(xiw + b) +
l

∑
i=1

αi (9)

By applying a simple quadratic transformation on the optimization problem, the
system is formulated as follows:

Maximize W(α) =
l

∑
i=1

αi −
1
2

l

∑
i,j=1

αiαjyiyj(xixj) (10)

The proposed logic is that the variance of each weather parameter and distance
deviation will be compared to the difference of every two consecutive values of distance
and weather forecast and will only set logic 0 (landslide occur) when the difference of
deviation value starts increasing from its variance, otherwise, in all other conditions the
logic will remain 1, which means movement of the sensor is due to the weather changes
or an NLOS condition. In the following, the main focus is attributed to the influence
of temperature on distance measurement. The proposed logic is defined based on the
temperature dependency model. The relative landslide indicator “INDLand” is presented
in Equation (11). It considers the change in the temperature variation with the change in
the distance range.

INDLand = (Di f f dist < Distvar)&((Di f f temp < Tempvar)|(Di f f temp > Tempvar)) (11)

where Diffdist is the difference of the distance values, Distvar is the distance vector vari-
ance, Difftemp is the difference of temperature values, and Tempvar is the temperature
vector variance.

Statistical data of the position estimation of installed nodes with the weather forecast
are continuously collected and organized to build the classification model. Based on the
distance variation margin the classifier is updated. Generally, the mean or average is the
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most common statistical tool used in various scientific experiments, but in our case, after
analyzing the relation of climate with Decawave sensor deviations, variance analysis offers
better results because the variance is more effective while sudden changes appear. In
raw data, there is a pattern in the deviation values, which is varying continuously. As an
assumption, the sensor node breaks down due to heavy wind, heavy rainfall, or because of
the collision of wild inhabitants with the metal rod with which the node is connected. The
distance increases immediately with a small difference. In this case, the comparison with
the mean value starts showing a warning of a landslide, which is not the actual case.

6.2. Data Preparation and Measurement Procedure

The SVM model offers a more flexible method with a clear margin of separation be-
tween classes. Real movements have been excluded, and only the sensor nodes are moved
manually if needed. In this work, the overall system contains three wireless sensor nodes,
the tag node is continuously communicating with the anchor nodes, and their calculated
distances are received at the control point simultaneously with climate forecasting parame-
ters. At this point, the collecting system combines both data for pre-processing and makes
timestamps for each measurement, then determines their variances and difference to design
the logic of the SVM. The classification model description, as well as the system realization,
are provided in the following sections. A detailed description of the SVM-based system
offers insights into the working process of early landslide warning systems.

6.3. Results and Evaluation
6.3.1. Accuracy Assessment

The accuracy assessment method used is the confusion matrix, which enables the
evaluation of the results of the SVM method. In particular, the confusion matrix pro-
vides assessment methods for accuracy (AC), true positives (TP), false positives (FP), true
negatives (TN), false negatives (FN), and precision (P). The accuracy AC is the overall
performance of the warning method; in other words, how often does the algorithm cor-
rectly identify landslide and non-landslide warnings. The positive/negative portion of
the labels refers to the identification of the warning: Positive for landslide warnings and
negative for non-landslide warnings. The true/false nomenclature indicates whether the
parameters correctly identified the evaluated area: true for correct identification and false
for incorrect identification.

Figure 13 illustrates the confusion matrix of trained model warnings. In the given
data set, out of 543 samples, only one data point belongs to the 0 class, but the classifier
predicts it as a class 1 member because its input pattern is the same as class 1. Here, 0
means negative while 1 is represented as positive. The first box of the extreme left corner
represents a true negative (TN) ratio, which means there is a landslide in the tested data
and the model predicts it accurately. The first box of the second column shows that samples
contain landslide data, but the model predicts it as no landslide, which is a false positive
(FP). The first box of the second row shows that there is no landslide while the model
predicts it as a landslide, which is a false negative (FN). The fourth and last box, which
explains the ratio of the true positive (TP) shows that there is no landslide in the data
set and the model predicts it accurately. There are two types of errors presented in the
confusion matrix. Type 1 error is defined as FP and type 2 error is introduced as FN. The
type 1 error is more dangerous because, in the FP condition, there is a landslide in the
data set, but the model predicts it as no landslide and there will be no alarm warning. To
determine the model accuracy, Equation (12) can be derived from the confusion matrix:

accuracyML =
TP + TN

TP + TN + FP + FN
(12)

The false positive type of error, which occurs in the results, can be negligible.
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Figure 13. Investigation on the Receiver Operating Characteristic (ROC): (a) confusion matrix of the
classifier and (b) evaluation of the system performance.

6.3.2. Receiver Operating Response

The Receiver Operating Characteristic (ROC) curve comprehensively assesses response
sensitivity and specific features. When assessing landslide risk, the X-axis of the ROC curve
shows the probability of the incorrect prediction of non-landslide points. Y-axis represents
the prediction success rate of the disaster point, represented by the sensitivity. The accuracy
of a prediction is expressed as the size of the area bounded by the curve and the abscissa.
Accuracy increases as the curve moves closer to the upper left corner. The area under the
curve (AUC) ranges from 0 to 1. The closer the AUC is to 1, the better the model is. Figure 13
outlines the ROC model, in which the area under the curve shows the True positive class.
The graph points out that as the model’s specificity increases, the model’s sensitivity
also increases. In total, the warning model is achieved with an accuracy of 98%. The
simulation time is 12.213 s, where the warning speed is approximately 3300 obs/s. To this
end, a warning model based on corrected temperature distance data is provided. Further,
implementations are required to include more weather parameters in the warning model.
Indeed, the development and validation of a landslide early warning system are complex
tasks that are never conclusively achieved on any single occasion but instead require robust
and consistent support and investment over time for progressive improvements, periodic
updates, and adaptations of the technology.

7. Discussion

The proposed LEW-WSN system can rapidly characterize a landslide early warning
system in an emergency. Along with the portability and ease of deployment, the system can
monitor the affected area and issue warnings. This section discusses the achieved results to
examine the benefits and limitations of the LEW-WSN system and the UWB technology
in general.

The main benefits of the LEW-WSN system for ground deformation monitoring are:

• Easy and quick installation: The set up time of the system is very short. Only the
anchors need to be placed in specific known locations in the stable area surrounding
the unstable area, and the monitored anchor needs to be selected.

• Flexibility: With LEW-WSN, different kinds of landslide, subsidence cases, or other
ground deformation can be monitored without requiring specific adaptation.

• Cost effective: LEW-WSN features low operating costs, making it possible to monitor
a large area cost-effectively.

• Accuracy: LEW-WSN’s integrated technologies provide the accuracy necessary to
analyze different types of ground movements.
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• Scalability: It is possible to monitor movements in a network containing a large
number of nodes.

8. Conclusions

In this paper, a landslide early warning system based on WSNs is designed, which
take into account, the distance variation and weather changes. The TWR-based positioning
algorithm for the UWB localization technique is used to measure the distance between
nodes and have an overview of the nodes’ stability. After that, a weather forecast is gath-
ered from an installed weather station. Measured distances and weather information are
transmitted to the base station. A regression model is developed to identify the relation be-
tween the distance measurement variation and weather changes. A temperature correction
is applied to the data. The developed polynomial model enables to predict the distance
measurements and, increases the localization accuracy for temperautre correction. The
proposed temperature correction method of distance measuremen enables reducing the
standard deviation of the distance variation by 21%. In addition, the energy profile of the
proposed system is reported for both the tag and anchor nodes. Later, a landslide early
warning module is presented, where the weather impacts are identified and eliminated for
an accurate landslide warning. A preliminary evaluation of the proposed early warning
system is reported. In this evaluation, the system was tested by simulating some statistical
data. Obtained results confirm that the proposed concept is suitable as an early warning
system for landslide. Real measurement and validation of the prototype are initiated with
an exploration of both the region- and site-specific parameters to improve the accuracy of
the landslide system using wireless sensor networks.
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