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Abstract: The integral equation method is one of the most successful computational models for
microwave devices or integrated circuits in planar layered media. However, the efficient and accurate
evaluation of the associated Green’s function consisting of Sommerfeld integrals (SIs) is still a
remaining challenge. To mitigate this difficulty, this work proposes a spatial domain rational function
fitting technique (RFFT) for SIs so that the approximation accuracy is controllable. In conjunction
with an adaptive sampling strategy, the proposed RFFT minimizes the orders of rational functions,
and the resultant SI evaluation efficiency is optimized. In addition, we investigate the semi-analytical
singularity treatment for the rational expression of SIs in method of moment (MoM) implementation.
Extensive simulation of representative planar devices validates the correctness of the proposed
method and demonstrates its superior performance over conventional SI approximation methods.

Keywords: Sommerfeld integral; method of moment; integral equation; rational function fitting;
planar layered medium

1. Introduction

Since their invention in the last century, microstrip circuits and antennas have be-
come some of the most popular types of devices delivering electromagnetic energy and
signals [1–3]. Operating from 100 MHz to 100 GHz, the original microstrip structure has
now evolved into multiple layered planar configurations where thin metallization lies
between the interface between two dielectric substrates [4]. In the era of 5G communication,
such planar devices become more ubiquitous due to the inherent nature of integration and
minimization for stratified structures [5].

Compared with volumetric discretization schemes such as the finite-difference time-
domain (FDTD) [6] and finite element method (FEM) [7], the integral equation method
discretizing only the metallization surfaces has had great success in modeling these planar
microwave device because of its accuracy and efficiency [8–11]. With Green’s function
consisting of Sommerfeld integrals (SIs) in planar layered media available, the integral
equations are established for the true or equivalent currents on metallization patterns only,
and the approximated truncation boundary condition is avoided. In the past decades,
considerable efforts have been made to improve the accuracy and efficiency of the method
of moment (MoM) that solves these integral equations numerically. Generally, the efforts to
fasciate the popularity of integral equations methods can be categorized into three kinds:
(a) the integral equation formulations with higher accuracy or lower complexity in nu-
merical implementation, (b) dedicated strategies to accelerate numerical discretization
of integral equation, i.e., filling the impedance matrix, and (c) fast solvers for the matrix
equation so electrically large or complicated structures can be efficiently simulated.

Unlike the free-space case, the optimal formulation for the integral equation in the
planar layered medium is not unique because the scalar potential caused by horizontal
and vertical dipoles are different [12]. To avoid the hypersingular behavior in the integral
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equation that cause difficulties in numerical implementation, three mixed-potential inte-
gral equation (MPIE) formulations (noted as A, B, and C) with singular weakly kernels
were proposed [13], and formulation C was widely used in later studies because of its
convenience in modeling targets penetrating dielectric interface. Later on, modified or
extended MPIE formulations with improved numerical performance were developed for
various applications at hand [9,14]. For instance, to overcome the low-frequency breakdown
problem and support wideband simulation, the argument electric field integral equation
(A-EFIE) [14] and current and charge integral equation (CCIE) [15] were developed. Most
recently, a non-Galkerin quasi-MPIE formulation was proposed for efficient scattering
analysis of homogeneous dielectric targets in a layered medium [16].

In a layered medium, Green’s function does not have a closed-form expression and is
written as a tensor consisting of infinite integrals, also known as Sommerfeld integrals (SIs).
Due to the slow decaying and oscillating kernel of SIs, the partition and then summation
numerical integration for SIs is time-consuming. This causes the discretization of integral
equations (i.e., the efficient filling of impedance matrix) has been a long-term numerical
challenge that limits the performance of MoM when simulating planar circuits or antennas.
To accelerate the convergence of numerical integration, extrapolation techniques such as
weighted averages methods and double exponent quadrature were developed [17,18]. On
the other hand, the closed-form approximation to SIs provides a faster solution in terms of
calculation efficiency, and representative methods of this kind include the discrete complex
image methods [19,20] and rational function fitting technique [21]. With improved robust-
ness and accuracy in recent years, the unpredictable accuracy and numerical instability
issue of closed-form approximation methods still remain to be addressed [5]. Compro-
mise strategies between evaluation efficiency and the accuracy of SIs include the use of
interpolation techniques [22] and the tailored DCIM method [23], where the accuracy of SI
evaluation is firstly refined before the MoM procedure. However, due to the singularities
in the layered Green’s function changing dramatically in the near-field region, a robust
interpolation scheme with moderate sampling density is still challenging.

Besides the efforts with SI evaluation, another kind of approach to accelerate the
filling of the impedance matrix is to adopt proper basis functions or integration methods
to reduce the computational overload when evaluating the relevant reaction integrals.
For example, based on DCIM, the analytical expression for evaluating double integrals
for planar microstrip geometries is derived in [24] to avoid the double 2D integration.
Furthermore, studies show that the double 2D integration can be transformed into a quasi-
1D integration in a more general multilayer medium, which further decreases simulation
time [10]. With the development of modern computation architecture, parallel computation
techniques such as graphic processing units (GPU) are also considered to accelerate the
MPIE simulations in recent years [11].

As any progress in SI evaluation techniques will directly result in faster and more
accurate simulation tools for circuits and antennas in layered medium, in this work, we
consider a closed-form rational function fitting technique (RFFT) for SIs. To minimize the
order’s RFFT expression with a controllable accuracy, an adaptive sampling procedure is
proposed for a given spatial region of interest. In addition, a semi-analytical scheme to
evaluate impedance matrix elements with a nearly singular kernel is presented to alleviate
calculation difficulties in numerical integration.

The rest of the paper is organized as follows. In Section 2, after a brief introduction to
MPIE formulation, the adaptive RFFT for SIs in Green’s function is presented and verified.
The Duffy transform to handle near-singular integration based on the rational expression is
derived in the second subsection. Numerical results and comparisons for planar circuits and
antennas in multilayer medium are presented in Section 3 to demonstrate the effectiveness
of the proposed methods. Finally, conclusions and some remarks are given in Section 4.
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2. Theory and Formulations

Before beginning the discussion of the proposed methods in this work, we first briefly
introduce the problem addressed in this work, the associated MPIE formulation, and its
MoM discretization. In this work, the efficient electromagnetic analysis of RF circuits or
devices in a multilayer planar medium is considered, as illustrated in Figure 1, where the
material discontinuity lies only in z axis of the Cartesian (x, y, z)-coordinate system. The
dielectric layers from up to down are denoted as layer i = 1, 2, ..., N with a permittivity and
permeability of (εi, µi). Here, we assume the ejωt time dependence, and that the metallic
circuit or devices are thin perfectly conducting sheets lying between the interface between
different media. Such structures can be found in various modern radio frequency devices
such as antennas, filters, and couplers because of the inherent nature of the integration of
planar structures.

Figure 1. Illustration of the electromagnetic problem in multilayered media.

Simplifying the metallization patterns in the planar layered medium as perfectly
conducting sheets and following the most popular MPIE formulation [13], the unknown
electric current J on the metallic surfaces satisfy the following equation:

n̂m ×∑
i

[
jωAmi(r) +∇φmi(r)

]
= n̂m × Einc

m (r),

r ∈ Sm, m = 1, 2, ..., N
(1)

where Sm denotes the surface of S in the mth layer, and n̂m is the unit vector normal to Sm.
The magnetic vector potential Ami(r) and scalar potential φmi(r) in mth layer caused by
electrical currents or charges in ith layer are expressed as

Ami(r) =
ˆ

Si

K̄mi
A (r, r) · J(r′)ds′ (2)

φmi(r) =
ˆ

Si

Kmi
φ (r, r′)qds′ (3)

where q is the surface charge density and ∇′ · J = −jωq. The vector potential Green’s
function K̄mi

A takes the form

K̄mi
A =

 Kmi
xx 0 Kmi

xz
0 Kmi

xx Kmi
yz

Kmi
zx Kmi

zy Kmi
zz

 (4)
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The entries of K̄mi
A and scalar potential Green’s function Kmi

φ are all Sommerfeld
integrals and have a general form of

Kmi(r, r′) = S0

(
K̃mi(kρ, z, z′)

)
=

1
2π

ˆ ∞

0
K̃mi(kρ, z, z′)J0(kρρ)kρdkρ

(5)

where J0(·) is the zero-order Bessel function, and ρ is the horizontal distance between
source point r′ and field point r. In (5), K̃mi is denoted as the spectral domain Green’s
function, and is calculated by using the transmission line theory [13].

Applying the Galerkin testing procedure, the MPIE can be discretized into a matrix
equation ZI = V, V is the right-hand-side vector based on the excitation on circuit, and I is
the unknown vector relating to the unknown currents by basis functions. The entries of
impedance matrix Z are given by

zmn = zv
mn − zs

mn/(jω) (6a)

zv
mn = jω

ˆ
sm

ˆ
sn

gm(r) ·Kmi
A (r, r′)gn(r′)ds′ds (6b)

zs
mn =

ˆ
sm

ˆ
sn

gm · ∇
(

Kmi
φ (r, r′)∇′ · gn

)
ds′ds (6c)

where gm and gn are the basis and testing functions defined in mesh unit sm and sn,
respectively.

2.1. Proposed Adaptive RFFT

In the previous studies, the RFF methods are usually first performed in the spectral
domain to approximate the SI integrands, i.e., K̃mi in Equation (5), then the closed-form
expressions using integral identities are obtained. Unfortunately, spatial accuracy of such
treatment is somehow difficult to evaluate or control in practical applications [25].

To achieve an accuracy-controllable closed-form approximation, we considered the
rational fitting function (RFF) directly in the spatial domain. After extracting poles and
quasi-static terms in original SIs, for a given z′ and z, the remaining SI Kmi

p is approximated
by a piecewise rational function, and given as

Kmi
p (ρ) =

{
Kmi,near

pr (ρ) ρ ≤ ρ0

Kmi, f ar
pr (ρ) ρ > ρ0

(7)

and ρ0 is a threshold horizontal distance separating the singular and regular behavior of SIs,
and it takes the value of one dielectric wavelength from our empirical studies. The reason
for choosing RFF here is based on the following considerations. First, the RF approximation
is well known for producing an excellent local approximation to arbitrary functions. Sec-
ondly, evaluating rational functions is generally more efficient than the existing closed-form
approximation scheme to a Sommerfeld integral that contains the Hankel function or other
special functions. In addition, we find that RFF expression facilitates the efficient evaluation
of MoM impedance entries, as explained later in this paper.

Although an unified RFF model can be established to approximate Kmi
p with satisfying

accuracy, we found that the piecewise approximation in (7) is much faster in terms of
numerical calculation. As the metallization pattern lies only on the interface between
different dielectric layers, only a finite amount of discrete z and z′ values need to be
evaluated in MoM simulations.

Both Kmi,near
pr and Kmi,far

pr in (7) are written by the rational function as follows:

Kpr(ρ) =
Pn(ρ)

ρPm(ρ) + 1
(8)
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where Pn is a polynomial function with order n. Here, superscript in the above notation
is omitted for simplicity. To find the lowest order of polynomials and their associated
unknown coefficients in (8) with a preset accuracy, an iterative procedure is illustrated
in Algorithm 1, shown below. The fundamental idea here is to use two RFF models to
approximate the SI in the spatial domain, and the additional sampling point ρnext for
improving the approximation accuracy is determined by the discrepancy between these
two models

ρnext = arg max
ρ

||K1
pr(ρ)− K2

pr(ρ)||
||K1

pr(ρ)||
(9)

This iterative procedure continues until the relative error between these two models is
lower than the preset threshold ε0. The proposed algorithm is summarized in Algorithm 1,
and the rational function orders updating paths for the two models are presented in Figure 2.
Clearly, the order updating paths shown in this diagram cover larger subsets of m, n
combinations and hence yields a better fitting performance. In this algorithm, the Bulirsch–
Stoer (BS) algorithm [26] is recommended for the robust and efficient evaluating or updating
of unknown coefficients in an RFF model (8). Combing the Richardson extrapolation and
modified midpoint method, the BS algorithm finds the numerical solution of RFF or
ordinary differential equations with a high accuracy and relatively low computational
complexity, and its numerical implementation can be found in the well-known literature
(chapter 3.4) [27].

Algorithm 1: Adaptive RFF for SIs
input :preset accuracy ε0, maximum iteration number Iitr,

spatial region z, z′, and ρ ∈ [ρ1, ρ2]
output :RFF model Kpr

calculate Kmi
p with randomly selected samples

evaluate model 1 K1
pr with order m1,n1

evaluate model 2 K2
pr with order m2,n2

Icnt = 0
while ||K1

pr − K2
pr||/||K1

pr|| ≥ ε0 and Icnt < Iitr do
find next sample point ρnext based on (7)
evaluate Kmi

p (ρnext) using numerical integration
Icnt = Icnt + 1
increase m1, n1 and m2, n2 according to the diagram shown in Figure 2
update model 1 K1

pr or model 2 K2
pr

re-evaluate model 1 K1
pr and model 2 K2

pr
end
Kpr = K1

pr

To verify the performance of the proposed adaptive RFFT, the CPU time to obtain
approximation parameters, SIs evaluation time, and the approximation accuracy are pre-
sented in Tables 1 and 2 for two configurations of layered media. Although there are
more advanced DCIM schemes available [25], here we use the classic two-level DCIM
scheme [20] as the benchmark for comparison as the resultant number of complex images
is moderate and approximation accuracy is decent for the examined spatial region after
removing quasi-static terms. The approximation accuracy here is calculated by comparing
the results between closed-form schemes and the numerical integration method [17].
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Figure 2. Order updating path of different RFF models in Algorithm 1.

In Table 1, the SIs in K11
xx and K11

φ are evaluated and compared for a microstrip structure
with a dielectric constant of 9.6 and a thickness of 0.00254 λ0, while in Table 2, a two-layer
PEC-backed dielectric substrate with a thickness of 0.05 λ0, 0.1 λ0 is considered, and their
dielectric constants are 10− 0.1 j and 2.2− 0.2 j, respectively. From these two tables, we
can see that the calculation time to establish closed-form expressions is a few times larger
than the counterpart of DCIM. Nevertheless, it is still a neglectable portion compared to
the numerical evaluation of SIs. The typical convergence history of the proposed adaptive
RFFT is shown in Figure 3, where the preset accuracy ε0 is set to be 0.0001. Although
the orders of polynomials in RFFs are comparable to the number of complex images in
two-level DCIM, the proposed method provides a speed increase of ten to twenty times,
and more importantly it has a higher approximation accuracy.

Figure 3. Typical convergence behavior of the proposed adaptive RFFT.
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Table 1. Performance comparison for different SI approximation methods for a microstrip structure.

Spatial Region
Proposed Method DCIM

Kxx Kφ Kxx Kφ

Execution
CPU time (ms)

0 < ρ < λ 0.53 0.53 0.18 0.16
λ < ρ < 2λ 0.62 0.66

Number of terms 0 < ρ < λ 9 8 13 10
λ < ρ < 2λ 11 11

CPU time (ms)
for SI evaluation

0 < ρ < λ 4.34 4.40 37.6 29.0
λ < ρ < 2λ 4.87 5.32 37.4 28.4

Relative error 1 0 < ρ < λ 9.9 × 10−4 1.4 × 10−4 1.0 × 10−3 2.6 × 10−4

λ < ρ < 2λ 2.8 × 10−5 2.5 × 10−5 6.7 × 10−5 6.5 × 10−5

1 Compared to numerical integration with Euler transformation [17].

Table 2. Performance comparison for different SI approximation methods for a four-layer
stacked medium.

Spatial Region
Proposed Method DCIM

Kxx Kφ Kxx Kφ

Execution
CPU time (ms)

0 < ρ < λ 0.55 0.56 0.15 0.16
λ < ρ < 2λ 0.35 0.36

Number of terms 0 < ρ < λ 8 10 45 45
λ < ρ < 2λ 5 5

CPU time (ms)
for SI evaluation

0 < ρ < λ 4.18 4.47 95.4 101.0
λ < ρ < 2λ 4.05 4.01 99.2 102.9

Relative error 1 0 < ρ < λ 2.6 × 10−3 3.8 × 10−3 2.7 × 10−3 3.8 × 10−3

λ < ρ < 2λ 4.9 × 10−4 6.9 × 10−6 7.2 × 10−3 8.9 × 10−5

1 Compared to numerical integration with Euler transformation [17].

2.2. Singularity Treatment

Besides the efficient SI evaluation, the fast calculation of the impedance matrix ele-
ments based on the proposed closed-form expression is also considered. For the sake of
efficient calculation and convenience of singularity analysis, by finding the roots of the
denominator, the rational function expression in (7) is rewritten as the sum of the simple
rational functions that follow:

Kmi,near/far
pr (ρ) = ∑

i

ai
ρ + bi

, ai, bi ∈ C (10)

Substituting (10) into (6), there are two elementary integrals to be evaluated

I1 =

ˆ
sn

ai
ρ + bi

(r′ − r′0)ds′ (11a)

I2 =

ˆ
sn

ai
ρ + bi

ds′ (11b)

where r′0 is the free vertex of the RWG basis function. Clearly, the magnitude bi is nearly
zero when the associated SI is nearly singular, hence the numerical integration of (6) can be
time-consuming when the horizontal distance ρ between r and r′ is close to zero.

To overcome this difficulty in numerical integration, we consider the Duffy transfor-
mation technique [28]. Let sn be a triangle associated with a basis function gn with tree
vertices r′1, r′2, and r′3, as shown in Figure 4a, and rp is the vector of field point r project to
plane sn. The integration domain sn can be divided into three sub-triangles s1, s2 and s3
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using the addition vertex rp. In the Duffy transformation, take s1 as an example. It can be
mapped into a transformed domain, as shown in Figure 4b,c, and given by

r′ = rp + α(rp − r′1) + β(rp − r′2) (12)

where scalars α and β are

α = uv, β = u(1− v), u, v ∈ [0, 1] (13)

In this way, the integrals in (11) can be rewritten as the summation of three singularity-
free integrals on s1, s2 and s3, i.e., I1 = Is1

1 + Is2
1 + Is3

1 and I2 = Is1
2 + Is2

2 + Is3
2 . For the

integral on s1 we have

Is1
1 = 2A1

ˆ 1

0

ˆ 1

0

ai[ul0 + u2vl1 + u2l2]

u|l2 + vl1|+ bi
dudv (14a)

Is1
2 = 2A1

ˆ 1

0

ˆ 1

0

aiu2

u|l2 + vl1|+ bi
dudv (14b)

where l0 = rp − r0, l1 = r′2 − r′1, l2 = rp − r′2, and A1 is the area of s1. The rest of
the integrals on s2 and s3 have identical forms except for the different vector definition
li, i = 0, 1, 2 and their expressions are omitted here for brevity.

Figure 4. Duffy transformation for triangles, (a) coordinates of the integration triangle, (b) mapping
s1 to a standard triangle and (c) mapping s1 to a standard rectangle.

Observing the integrals on sub-triangles shown in (14), we find that only three types
of integration are required to be evaluated here.

I(1) ,
ˆ 1

0

ˆ 1

0

u
u|l2 + vl1|+ bi

dudv (15a)

I(2) ,
ˆ 1

0

ˆ 1

0

u2v
u|l2 + vl1|+ bi

dudv (15b)

I(3) ,
ˆ 1

0

ˆ 1

0

u2

u|l2 + vl1|+ bi
dudv (15c)

Fortunately, analytical expressions are available for double integral (15b) and (15c)
and given in Appendix A. The integral in (15a) can be converted to a one-dimensional
integral by eliminating u

I(1) =
ˆ 1

0

1
|l2 + vl1|

dv +

ˆ 1

0

bi ln(bi)

|l2 + vl1|2
dv

+

ˆ 1

0

−bi ln(bi + |l2 + vl1|)
|l2 + vl1|2

dv
(16)
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The first two terms in (16) also have analytical expressions and are presented in
Appendix A. The third term in (16) generally does not have an analytical expression,
depends on the position of rp, and the evaluation strategy may differ.

• If rp lies on the direction vector l1, i.e., l1 × l2 = 0, we can define scalar p , l2/l1,
and the integral I(1) can be analytically evaluated. The detailed expressions given in
Appendix B depend on the value of p.

• If rp is far from vector l1, the above integral has to be evaluated numerically using
adaptive Gaussian integration.

• If rp is close to vector l1 but not lies on it, to avoid the numerical integration for almost
singular integrand as |l2 + vl1| approx to zero, here we use the approximated condition

p =
(l2 · l1)|l2|
|l2 · l1||l1|

(17)

then derive the approximated analytical expression for I(1) as shown in Appendix B.

In addition, for the special case where rp coincide with r′1 or r′2, the analytical expres-
sions for above three integrals in (15) are derived in Appendix C.

To verify the validity of the semi-analytical strategy to evaluate integral (15a), here
we examined the performance of the proposed method in two extreme cases. As shown in
Figure 5, the required number of Gaussian quadrature points to achieve the relative error is
less than 10−5. In this figure, lengths are normalized by the average length of the source
triangle edge length, and the triangle edges are illustrated by black lines in xy−plane. The
vector rp relating to the field point varies in the range x ∈ [−1, 1] and y ∈ [−1, 1], and the
number of required points are represented by the color of each pixel. Obviously, around
two or three Gaussian points are sufficient to achieve good accuracy when rp is far from
the source triangle, even though bi is quite small. More Gaussian points are required when
rp is located near the triangle edges. Nevertheless, the use of approximation (17) makes the
maximum number of Gaussian points still below 20.

Figure 5. Number of Gaussian quadrature points required for evaluation (15a) in extreme cases
(a) bi = 10−5, (b) bi = 10−5 − j10−4.

3. Numerical Validation

In this section, based on the MoM analysis of planar structures in microwave engineer-
ing, numerical examples to demonstrate the calculation efficiency of the proposed method
are presented through comparisons.

3.1. A Microstrip Low-Pass Filter

We first considered an MoM simulation of a microstrip-design low-pass filter to verify
the correctness and efficiency of the proposed SI evaluation technique and the singularity
treatment strategy. The microstrip structure is identical to the aforementioned one whose
SIs evaluation performance is compared in Table 1. The metallization pattern is printed
on top of the substrate surface and shown in Figure 6, with two ports at the front and



Electronics 2022, 11, 3940 10 of 15

end of this structure, the simulated S11 and S12 parameters are presented in Figure 7a,b,
respectively. This low-pass filter has a length of around 46 mm, a width of around
16.93 mm, and the dielectric substrate length is 0.254 mm. Due to the reciprocity of this
device, S22 and S21 parameters are omitted here for simplicity. In addition, here we also
presented the S-parameter results evaluated by MoM using DCIM and by a commercial
MoM tool FEKO in the same plot. In Figure 7, a good agreement between these three
methods can be observed, except for S12 at the stopband where the value is lower than
−50 dB, which is extremely sensitive to round-off errors in numerical calculation. To verify
this point, at 2.9 GHz where the S12 has around 10 dB discrepancy between different
methods, the surface current intensity of the LPF circuit by excitation port 2 with a voltage
source is presented in Figure 8. The current intensity near port 1 almost vanished to zero in
all three simulations, as the operation frequency is located in the stopband of this LPF. The
electric current intensity plots are also almost identical and indicate the correctness and
accuracy of the proposed method, despite the fact that the S21 error is large here.

Figure 6. Metallization pattern of a microstrip two−port low−pass filter.

Figure 7. S−parameter of the two-port low-pass filter evaluated by different methods, (a) S11, and
(b) S12.
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Figure 8. Surface current intensity of LPF at 2.9 GHz for voltage excitation on port 2 at 2.9 GHz
calculated by different methods, (a) FEKO, (b) 2−Level DCIM and (c) the proposed method.

In addition to the S-parameter curves, the MoM calculation CPU time using different
SI evaluation schemes is presented in Table 3 for comparison. In particular, we also provide
the CPU time for filling the impedance matrix in the MoM procedure in the second and
fourth columns of this table. Clearly, without losing simulation accuracy, compared to two-
level DCIM, the proposed method has an increase in speed of approximately in terms of
total calculation time and a larger increase in speed in terms of filling the impedance matrix.

Table 3. Calculation CPU Time (s) for different planar structures using MoM.

Proposed Method DCIM

Fill Matrix Total Time Fill Matrix Total Time

Low-Pass Filter 1445 1599 9659 9818

Stacked Antenna 1104 1227 7056 7161

3.2. A Stacked Antenna

The following example considers a stacked planar antenna simulation using MoM
and layered Green’s function. The layered medium configuration is shown in Figure 9a,
where an additional infinite thin metallization (shown in blue) sheet is inserted into the
dielectric substrate and connected to the feeding pin; we treated this layered medium as
a four-layered structure. The layout of this antenna design is shown in Figure 9b, where
the four rectangular sheets shown in red in this figure are printed on top of the dielectric
substrate and act as radiation elements in this antenna design so that an omnidirectional
radiation pattern can be achieved. Using the microstrip edge port as excitation, the input
impedance and radiation pattern of this antenna with infinitely large ground and substrate
can be efficiently simulated.
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Figure 9. A stacked antenna, (a) layered medium configuration, (b) antenna metallization geometry.

Similar to the previous numerical example, the input impedance of this antenna
is calculated by MoM with different SI evaluation schemes, i.e., the proposed methods
and the conventional two-level DCIM. The input impedance values in the frequency
band from 1.6 GHz to 3.2 GHz with 50 MHz interval are presented in Figure 10, where
the resistance and reactance are plotted in Figure 10a,b. Again, a very good agreement
between the different methods in calculating the input impedance of this antenna can
be observed in the examined frequency band. The CPU time comparisons for total
computational time and time taken for filling the impedance matrix are also provided
in Table 3. Again, an approximately seven times increase in speed of can be seen in
this example.

Figure 10. Input impedance of the stacked antenna simulated by different methods (a) resistance,
(b) reactance.

4. Conclusions

Aiming for a more efficient MoM simulation for planar circuits and antennas, the fast
closed-form evaluation of SIs in the layered medium is considered in this work. Using the
rational function approximation to SIs directly in the spatial domain, the proposed adaptive
RFFT achieves fast evaluation of SIs with a preset approximation accuracy. In addition, the
semi-analytical expressions for the near-singular SIs in MoM implementation are derived
and verified based on the proposed RFFT. Representative MoM simulations for planar
devices in microwave engineering are studied to demonstrate the correctness and efficiency
of the proposed methods and an increase in speed of several times can be achieved when
compared to classic DCIM. As an adaptive fitting technique for SIs, the proposed method
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is robust and flexible in the approximation of Green’s function in an arbitrary layered
medium without considering the vertical location of source and field points. Hence, it can
be integrated into existing MoM tools easily to accelerate the electromagnetic analysis of
planar circuits and antennas.
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Appendix A

The analytical expression for integrals in (15) are given as follow

I(2) =
1

2C4

{
2biC0C6

l2
1

f1(C6) + 4b2
i ln biC7 +

l0 − l2
l2
1

C4 +
C0(8b2

i l2
1 − C4)

2l3
1

C8

+
biC4

l2
1

ln

(
l2
1 − b2

i
l2
0 − b2

i

)
+ 8b2

i l2 ln(bi + l2)

−
4b2

i (2l2
2 + C0) ln(bi + l0)

l0
+

bi

l2
1
[jC0C6C9 − C4C10]

} (A1)

I(3) = − 1
C4

{
2biC6 f1(C6) +

2C0b2
i

l2
ln
(

bi + l2
bi

)
− 2biC1

l0
ln
(

bi + l0
bi

)

+ jbiC6C9
(4b2

i l2
1 − C2

6)

2l1
C8

} (A2)

where function f1(x) is defined as

f1(x) ,
[

arctan
(

C1

x

)
− arctan

(
C0

x

)]
(A3)

The analytical expression for the first two terms in (16) can be calculated using the
following identity. ˆ 1

0

1
|l2 + vl1|

dv =
1
l1

ln
(

2l1l0 + C1

C3

)
(A4)

ˆ 1

0

1
|l2 + vl1|2

dv =
2

C5
f1(C5) (A5)

The coefficients Ci, i = 0, 1, ..., 10 are defined as follow. Among them only C6, C9, and
C10 are related to the value of bi in RFF expression to SIs, the rest are determined by the
source triangle vertexes and vector rp, and the scalar li, i = 0, 1, 2 are the length of vector li

C0 = 2l1 · l2 C1 = 2l2
1 + C0 C2 = 4l2

1C2
0 − 4l2

1 l2
2 + C2

0 C3 = 2l1l2 + C0 (A6)
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C4 = 4l2
1 l2

2 − C2
0 C5 =

√
4l2

1 l2
2 − C2

0 C6 =
√

4l2
1 l2

2 − C2
0 − 4l2

1b2
i (A7)

C7 =
(C0 + 2l2(l2 − l0))

l0
C8 = ln

(
C1 + 2l1l0

C3

)
(A8)

C9 = ln

(
(−C1 + jC6)(C0 + jC6)(C4 + 4l2

1 l2bi + jC0C6)(−C4 − 4l2
1 l0bi + jC1C6)

(−C0 + jC6)(C1 + jC6)(−C4 − 4l2
1 l2bi + jC0C6)(C4 + 4l2

1 l0bi + jC1C6)

)
(A9)

C10 = ln

(
(−C0 + jC6)(C0 + jC6)(C4 + 4l2

1 l0bi + jC1C6)(−C4 − 4l2
1 l0bi + jC1C6)

(−C1 + jC6)(C1 + jC6)(−C4 − 4l2
1 l2bi + jC0C6)(C4 + 4l2

1 l2bi + jC0C6)

)
(A10)

Appendix B

Substituting l2 = pl1 into the integrand of (15a), we have

u|l2 + vl1|+ bi = u|p + v||r′2 − r′1|+ bi (A11)

then analytical expressions for I(1) can be derived base on the value of p. If p > 0 or
p < −1, then

I(1) =
1

l2
1 p(1 + p)

(
bi ln bi

+ p[bi + (1 + l1)|p|] ln(b + (l1 + 1)|p|)

− (1 + p)(bi + li|p|) ln(bi + l1|p|)
) (A12)

If −1 < p < 0, then

I(1) =
1

l2
1 p(1 + p)

(
− 2l1 p(1 + p)

+ [bi − 2l1 p(1 + p)] ln bi

− (1 + p)(bi − l1 p) ln(bi − l1 p)

+ p(bi + l1 + l1 p) ln(bi + l1 + l1 p)
) (A13)

Appendix C

If rp coincides with r′1 or r′2, the analytical expressions in Appendices A and B are
rewritten as follows

I(1) =
−1
l2
1
(l1 + (bi + l1)(ln bi − ln(bi + l1))) (A14)

and

I(3) =
1

4l3
1

(
(2bi − l1)l1 + 2(b2

i − l2
1) ln

(
bi

bi + l1

))
(A15)

If rp = r′1, then

I(2) =
−1
4l3

1

(
(2bi + 3l1)l1 + 2(bi + l1)2 ln

(
bi

bi + l1

))
(A16)

if rp = r′2,

I(2) =
1

2l3
1

(
(2bi + l1)l1 + 2(bi + l1)bi ln

(
bi

bi + l1

))
(A17)
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