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Abstract: Handling missing values (MVs) and feature selection (FS) are vital preprocessing tasks
for many pattern recognition, data mining, and machine learning (ML) applications, involving
classification and regression problems. The existence of MVs in data badly affects making decisions.
Hence, MVs have to be taken into consideration during preprocessing tasks as a critical problem.
To this end, the authors proposed a new algorithm for manipulating MVs using FS. Bayesian ridge
regression (BRR) is the most beneficial type of Bayesian regression. BRR estimates a probabilistic
model of the regression problem. The proposed algorithm is dubbed as cumulative Bayesian ridge
with similarity and Luca’s fuzzy entropy measure (CBRSL). CBRSL reveals how the fuzzy entropy FS
used for selecting the candidate feature holding MVs aids in the prediction of the MVs within the
selected feature using the Bayesian Ridge technique. CBRSL can be utilized to manipulate MVs within
other features in a cumulative order; the filled features are incorporated within the BRR equation
in order to predict the MVs for the next selected incomplete feature. An experimental analysis was
conducted on four datasets holding MVs generated from three missingness mechanisms to compare
CBRSL with state-of-the-art practical imputation methods. The performance was measured in terms
of R2 score (determination coefficient), RMSE (root mean square error), and MAE (mean absolute
error). Experimental results indicate that the accuracy and execution times differ depending on
the amount of MVs, the dataset’s size, and the mechanism type of missingness. In addition, the
results show that CBRSL can manipulate MVs generated from any missingness mechanism with a
competitive accuracy against the compared methods.

Keywords: missingness mechanisms; feature selection; bayesian ridge regression; imputation;
similarity classifier

1. Introduction

Data refers to cases or instances from the ambit that characterize the issue to be
solved. In data management, one of the most important concerns is the quality of the data.
Incomplete data often leads to bad decisions and negative analytics of the data. Researchers
and analysts may face barriers when dealing with incomplete data. In addition, knowledge
discovery becomes difficult to conduct with incomplete data, which means that the data
quality comes first and foremost before working with the data [1]. The most popular form
of data involves so-called tabular or structured data (i.e., rows of instances and columns
of features for instances). The acquisition and collection of data may lead to errors in
the data, for example, replicated entries, outliers, mixed formats, typos, MVs, etc. Error
detection (i.e., errors are identified by experts) and error repair (i.e., bringing the data to
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a cleaner state) are the two phases of data cleaning. In research and industrial data, the
presence of MVs causes loss of information [2]. Hence, the data preprocessing stage is
needed to make the data clear and useful for analysis and knowledge extraction processes.
Data preprocessing comprises two essential tasks: data preparation (e.g., handling MVs)
and data reduction (e.g., feature selection). Most of the time and effort are dedicated to
these tasks. To ensure accurate results, practitioners and theoreticians search for data
preprocessing techniques.

The problems that are associated with MVs comprise bias; difficulties in analyzing the
data; and loss of efficiency. Inadequate handling of MVs may result in deceitful findings
derived from a research study. Several approaches have been elaborated to overcome the
downsides produced by MVs; imputation is the most well-known approach. Imputation
of MVs endeavors to fill in these MVs with predicted values. Relationships among the
features can be defined because, in most cases, the features are not independent of each
other [3].

Feature selection aims to remove redundant or irrelevant features (i.e., finding a
minimum set of features). According to a specific criterion, FS chooses an optimal subset of
features. The details of estimating feature subsets are determined by the selected criterion.
The purposes of FS determine the selection of the criterion. In a nutshell, the main objective
of FS is to identify the most important features in the dataset. The final dataset resulting
from the sequence of data preprocessing can be considered suitable and useful for further
work with the data [4].

1.1. Missing Data

This section introduces the missingness mechanism (i.e., the reason for the occurrence
of MVs) and the traditional methods for handling MVs.

1.1.1. Missingness Mechanisms

Detecting the missingness mechanism is considered an important step for manipu-
lating MVs. This paper considers and deals with the three kinds of missingness mecha-
nisms [5–8].

For more illustrations of the different missingness mechanisms, consider that M is a
matrix whose elements are zeros or ones as indicators for missing and observed values,
respectively, of the same size as the dataset that contains MVs. Indicate to the total dataset by
∆ = {∆mis, ∆obs}, where ∆mis represents the missing and ∆obs represents the observed values.
The distribution of M is related to ∆ and to some unknown parameters ξ. The probability for
M is described by P(M|∆, ξ). The three missing mechanisms are stated below.

MAR (Missing at random): the data are considered as MAR when M does not depend
on the MVs; the probability estimation is given by Equation (1):

P(M|∆, ξ) = P(M|∆obs, ξ) (1)

MCAR (Missing completely at random): the data are considered as MCAR if the
distribution of an instance having an MV for a feature does not depend on either complete
or incomplete data (i.e., a special case of MAR); the probability estimation is given by
Equation (2):

P(M|∆, ξ) = P(M|ξ) (2)

NMAR (Not missing at random): the data are considered as NMAR, also known as
MNAR (missing not at random), when MV depends on both the value itself and the rest of
the complete values; the probability estimation is given by Equation (3):

P(M|∆obs, ∆mis, ξ) (3)

The next section introduces the most used approaches for handling MVs.
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1.1.2. Simple Methods for Handling MVs

“Do not impute” is the simplest method, where all MVs are unsubstituted. Ignoring
missing data (also known as case deletion) is another common method in the literature. Using
the posterior method, all cases with one MV or more are deleted from the dataset. The
only advantage of using case deletion comes when the data is MCAR; it leads to unbiased
parameter estimates. In contrast, there is a lack of power when using case deletion. In addition,
case deletion biases the results when the data is not MCAR. The results are biased when the
data is MAR or MNAR. MVs are treated in one of three ways: (I) In complete case analysis
(CCA), the instances that contain MVs on the features of interest are dropped from the data.
(II) The other extreme is available case analysis (ACA), where, for each feature, all the responses
in the data are used. The serious problem with these approaches is that MVs do not occur
completely at random. (III) A more flexible method to deal with MVs is imputation.

Imputation approaches are most often used to handle nonresponse items. Imputation
is defined as substituting an MV with a plausible value. There are many approaches for
replacing an MV with a plausible value. The use of information in auxiliary or available
data is a good method for improving data quality. The two approaches to impute MVs are
single or multiple imputations.

Mean imputation replaces the MV of some feature with the sample mean computed
from all observed values of that feature. Using mean imputation may distort correlations
and relationships among features; it also distorts the distribution of the features. Regression
imputation uses a regression model from complete cases to estimate MVs. Hot-deck
imputation replaces MVs of the recipient variable (i.e., nonrespondent variable) with
observed values from the donor variable (i.e., respondent variable). The random hot-deck
method is a version of the hot-deck imputation approach in which there is a set of potential
donors, and the random hot-deck approach selects the donor randomly. On the other
hand, the deterministic hot-deck method selects specific donors based on some metrics.
Cold-deck imputation uses auxiliary data as a source for MVs.

The imputed values resulting from the imputation methods mentioned above are
treated as the ‘truth’, and the statistical methods use the completed dataset resulting from
the imputation. Therefore, these imputation methods may cause underestimation of the
variance, and all posterior analyses ignore that an imputation was conducted. Ignoring the
uncertainty may lead to underestimating the variance. Multiple imputation [9] takes this
uncertainty into consideration. The multiple imputation technique creates m imputations
for each MV, and the analysis of the data uses these m completed datasets. Moreover, MVs
can be predicted using ML techniques such as k-nearest neighbors (KNN), linear regression,
or BRR.

The proposed algorithm depends on BRR given by Equation (4) [10] for predicting MVs.

y ∼ N(µ, α) (4)

where
µ = βX = βo + β1x1 + β2x2 + · · · βqxq

β ∼ N
(

0, λ−1 Iq

)
α ∼ Γ(α1, α2)

λ ∼ Γ(λ1, λ2)

The target variable is represented by y which is distributed as a Gaussian distribu-
tion characterized by mean µ = βX and variance α. X =

{
x1, x2, . . . , xq

}
represents the

independent features, and β =
{

β0, β1, β2, . . . , βq
}

represents the unknown parameters.
The number of independent features is denoted by q. The regularization parameters are
represented by α and λ, which are assessed jointly during the fit of the model by maxi-
mizing the log marginal likelihood. Both of them are distributed as gamma distributions.
α1, α2, λ1, and λ2 are hyperparameters of the gamma prior distributions.
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1.2. Feature Selection

Just as handling MVs is necessary for obtaining correct decisions, the machine learning-
based classification techniques also play an important role in the decision-making process.
In various applications, accuracy is considered very essential in classifiers. For example, but
not limited to, a false negative with a high percentage in screening systems may increase
the risk of the patients not receiving the required attention. Furthermore, a high false alarm
rate increases the load on medical resources and causes undesired worries. For the purpose
of obtaining a higher classification accuracy, feature selection (FS) has been applied for data
reduction [11].

The problem of FS is defined as follows: for a set of given features, a subset is selected
that fulfills the best under some classification system [12]. In other words, FS reduces the
number of features. FS methods are intended to reduce the number of input features to those
that are believed to be most useful to a model with the aim of predicting the target feature.

FS is expected to improve ML model performance, especially in circumstances defined
by the high dimensionality data problem produced by quite a few training instances versus
a large number of detected features. This type of circumstance occurs generally in medicine,
where thoughtfulness of difficulty, cost, time, and risk problems may limit the number
of training instances, while the number of disease markers increases quickly over the
years [13].

Some predictive modeling problems may have a large number of features that require
a large amount of memory and can slow the training and development of models. Addi-
tionally, the performance of models can degrade when comprising input features that are
irrelevant to the target feature.

The two most important advantages of using FS are (1) reducing the cost of recognition
and (2) providing a better classification accuracy [14]. FS is of high importance for two
reasons: (I) prediction, i.e., improving the prediction performance of a target feature while
dropping uninformative or irrelevant features, and (II) discovery, i.e., detecting features that
actually depend on the target feature. In both cases, if features contain a large number of
MVs, imputing these features may cause false positives. In the first situation, the prediction
may not be harmed; however, in the second one, it will incorrectly choose unrelated
features [11].

Similar to correlation, mutual information and fuzzy FS, the FS preprocessing step, are
still of high importance despite the existence of MVs. Easy solution is to neglect features
that hold large number of MVs (e.g., >50%). Nevertheless, dropping a feature may end in
losing analytical power. In addition, losing the ability to recognize statistically considerable
variations, and it usually generates bias, influencing badly the conclusions. FS needs to pay
attention to the MVs’ mechanisms [3].

In this paper, we use the FS approach based on fuzzy entropy measures defined by De
Luca and Termini [15] with the similarity-based classification procedure that was proposed
in [16]. Fuzzy entropy is an FS method for choosing the most important features, and the
measures of fuzzy entropy have been successfully used for the process of FS.

1.2.1. Similarity-Based Classification

Classification is an important technique in modern statistical approaches. It categorizes
objects into distinct classes [17]. Many machine learning systems include classification, and
pattern recognition is used in a variety of applications. In such systems, the accuracy of
the classification is important since it supports decision making [18]. The classification
phase assigns objects to definite classes (or categories) based on the information in the
feature. The number of features that should be measured as well as the best of them are
two critical factors to consider. Additionally, misclassification may cause heavy losses.
Currently, classifiers are useful in online classifications that require decisions in a short
time interval [19].
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The idea behind measures of similarity is that there is a potential to find the similarity
between two objects by comparing them, and a numerical value which is used during the
classification is assigned to this similarity. Partitioning of the feature space in order to
execute the classification is normally significant because it requires that the decisions be
correct. Once partitioning is conducted conveniently, then classification can be conducted.

To provide greater elaboration about feature similarity classification, suppose we want
to classify a set X of objects into N separate classes C1, . . . , CN by their features. Luukka [16]
assumed that t is the number of features of diverse types f1, . . . , ft that can be observed from
the objects. We suppose that the values for the magnitude of each attribute are normalized
so that they can be presented as a value between [0, 1]. Consequently, the objects we want
to classify are vectors that belong to [0, 1] t.

For every class, the ideal vector vi = (vi( f1), . . . , vi( ft)) that denotes the class i should
be determined. By using some sample set Xi of vectors x = (x( f1), . . . , x( ft)) which belong
to a known class Ci, vi can be calculated or user defined. The generalized mean given by
Equation (5) can be used to calculate vi.

vi(r) =

(
1

#Xi
∑

x∈Xi

x( fr)
m

) 1
m

, ∀r = 1, . . . , t (5)

where m is the power value obtained from the generalized mean. m is fixed for all i and r
values. The variable #Xi represents the number of samples in class i.

After determining the ideal vectors, the decision for an arbitrary selected xєXi belong-
ing to which class is made by a comparison between it and each ideal vector. The compari-
son can be accomplished through the use of similarity S in the generalized Lukasiewicz
structure [20] defined by Equation (6).

S〈x, v〉 =
(

1
t

t

∑
r=1

wr
(
1−

∣∣x( fr)
p − v( fr)

p∣∣)m
p

) 1
m

, x, vє[0, 1]t (6)

for 〈x, v〉є[0, 1]t. From the generalized Lukasiewicz structure, the parameter p can be
detected, and wr is a weight parameter. The weights were set as one. Luukka decided that
xєCi if:

S〈x, vi〉 = max
i=1,...,N

S〈x, vi〉 (7)

This means that the decision of whether the sample belongs to a specific class is made
depending on the highest similarity value of the ideal vector.

1.2.2. Fuzzy Entropy & Similarity Classifier

A fuzzy set is a set of elements with different degrees of membership [21]. The
elements in classical sets have full membership (i.e., the value of the membership is 1).
On the other hand, a function is used to map the elements of the fuzzy set into a value
belonging to a universe of interval values [0, 1] [22,23]. Based on the fuzzy set, fuzzy
entropy is defined through the use of the membership function concept. De Luca and
Termini [15] used Shannon’s function to define fuzzy entropy given by Equation (8).

H1(A) = −
n

∑
j=1

(
µA
(

xj
)

log µA
(

xj
)
−
(
1− µA

(
xj
))

log
(
1− µA

(
xj
)))

(8)

where j denotes the number of features, and the fuzzy values are represented by µA
(

xj
)
. A

represents the fuzzy set that performs the role of the maximum element of the ordering
specified by H when µA(x) = 0.5.
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Now, in the best circumstances, if the sample fits into the class i, we acquire the
similarity S〈x, v〉 = 1, and the similarity value equals zero if the sample does not fit into
this class. The evaluation of fuzzy entropy is conducted using Equation (8). If we obtain
high similarity values, we acquire low entropy values, and if the similarity values are
close to 0.5, we acquire high entropy values. When the uncertainty is high, we obtain high
entropy values, and we obtain low entropy values if similarities are high (or low). For
manipulating MVs using an FS method, the mechanisms of the MVs must be taken into
consideration [3].

The rest of the paper is organized as follows: Section 2 contains literature review about
the analysis of MVs and FS. Section 3 presents the proposed algorithm. Section 4 illustrates
the experimental setup. Section 5 discusses the results and discussion. The conclusion and
future work are presented in Section 6.

1.3. Motivation and Contribution

Poor performance and the failure of many imputation algorithms during the manipu-
lation of MVs encouraged the authors to propose an algorithm that handles these defects.
The proposed approach manipulates the aforesaid deficiencies by utilization of the most
operational features for dealing with MVs in a cumulative order.

The main contributions are that this paper provides a summary of the studies that
deal with MVs and FS; proposes a new method for imputing missing values; overcomes
the problems found in existing algorithms; and shows that the size of the dataset influences
the performance metrics.

2. Literature Review

This section offers a short overview of the literature about MV manipulation and
previous work that used FS to handle MVs.

2.1. The Problem of MVs

As previously emphasized, the problem of MVs is very well-known in ML and has
therefore been extensively studied and analyzed in the literature for several purposes.
Manipulating MVs essentially involves deletion, imputation, and learning instantly with
MVs [24].

A deletion may be case deletion, also known as complete case analysis, which deletes
instances that hold any MVs and only uses the complete ones for the analysis [6]. Obviously,
case deletion may result in instances being lost, especially when the number of MVs is high
and the MVs exist within several instances [25]. Deleting the feature which holds MVs
more than a predefined percentage is known as “specific deletion”. In pair-wise deletion or
variable deletion, where the instances that include MVs in the features within the current
analysis are excluded, these features are used for other studies that do not involve the
features that hold the MVs [2,3,24].

On the other hand, imputation benefits from the observed instances within the dataset
to assess the missed values for producing complete datasets, and hence, imputation over-
comes the disadvantages of the deletion method. Imputation can be classified into two
classes: single imputation and multiple imputation. In single imputation, the missing value
is imputed using a specific value [26]. In multiple imputation, the MVs are imputed m
times, generating m complete datasets, and the final manipulated dataset is the average
analysis of these m completely generated datasets [27]. The disadvantage of using multiple
imputation is the need for more resources [28]. It is better than other methods such as
deletion, maximum likelihood techniques, and single imputation [29]. The imputed value
can be the mode, median, mean, or any predetermined value from the feature that has
MVs [30], or it may be the result of a substitution case. Furthermore, imputed values
can be assessed using cold-deck imputation [26], hot-deck imputation [31], expectation-
maximization imputation [32,33], etc. Prediction models are also used to predict MVs after
a model is built using the available information in the dataset [34]. Imputation methods
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are thought to be useful for manipulating MVs in situations such as when (I) the feature
that holds MVs has a statistical impact on the output feature, (II) the MVs are of type MAR
or MCAR, and (III) an instance does not hold MVs due to various features [35]. MVs of
type MCAR may be manipulated using listwise deletion or maximum likelihood methods.
On the other hand, there are no general approaches for dealing with MVs of the MNAR
type [6,36].

One of the most extensively used imputation methods is KNN imputation, which
consists of determining among the complete instances the k-nearest neighbors of the
missing value. The MVs are then substituted with the average of these neighbors’ values.
The performance of this method is limited, especially when the number of MVs is high [25].
FINNIM is a practical nonparametric iterative multiple imputation method that uses KNN
to impute MVs [37]. Inverse probability weighting (IPW) methods are used to manipulate
MVs depending on the weighting cases by describing the whole dataset, even the MVs
using the inverse of the detected probability [3]. Some other multiple imputation methods
are singular-value decomposition (SVD), ordinary least squares (OLS), and partial least
squares (PLS), which are good methods for multiple imputation [6]. The manipulation
of MVs in datasets that contain binary and ordinal features using the fully conditional
specification (FCS) and multivariate normal imputation (MVNI) methods exhibits less
biased and similar results [38].

The author of [5] proposed an imputation method based on similarities between the
cases in the donor and the incomplete feature to impute the missing values. In [2], the
author proposed a linear regression-based imputation technique. Each variable that is filled
in is included in the equation periodically. In the same manner, the authors of [3] proposed
an imputation technique for imputing missing values depending on the cumulative order
with the aid of gain ratio (GR) feature selection. Likewise, the authors of [24] proposed two
imputation algorithms for imputing missing values based on the Bayesian ridge technique.
Their proposed algorithms work under two different feature selection conditions.

2.2. FS with MVs

Commonly, three approaches are used to achieve FS: wrappers, filters, and embedded
methods. Wrappers are based on the performance prediction of a particular model and thus
need many such models to be optimized, which can be very time-consuming in practice.
Nevertheless, they are assumed to result in high-performance predictions, specifically
because they are meant to maximize the model’s performance [25,39]. Filtering methods,
on the other hand, look for a subset of features independent of any prediction algorithm,
optimizing a criterion. The most common criteria used for FS are mutual information (MI),
the correlation coefficient, or other information-theoretic quantities. Filters are generally
used in practice as a result of their speed and simplicity [25]. Eventually, embedded meth-
ods that perform predictions and FS have earned a lot of consideration lately, particularly
the original LASSO extensions [40].

Despite the importance of studying both MVs and FS concurrently, we have awareness
of only the following studies: In [41], the authors attempted to estimate the MI distribution
utilizing the Dirichlet second-order distribution to perform FS. The improvements were,
however, restricted to the classification problem. In [42], the authors proposed to join FS
and the imputation of MVs. Nevertheless, the FS was only used to increase the performance
of a KNN, and it was not obvious if such a strategy can improve the algorithm performance.
In [3,24], three novel algorithms were proposed to impute MVs depending on a specific
FS condition such as correlation, gain ratio, and the feature with a lower number of MVs.
In [2], a cumulative linear regression algorithm was proposed using linear regression as a
predictive model to handle MVs. It operates well with both small and large datasets.
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3. Proposed Algorithm

This section introduces the proposed algorithm in detail. The following procedural
steps aid in explaining the proposed algorithm presented in Figure 1. The main objective
of the steps of the proposed algorithm is to use the most informative feature to impute
missing values with the appropriate values.
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Step 1: The proposed algorithm receives a dataset D as the input, which contains MVs,
and then it separates D into two sets. The first set X(comp) incorporates all the complete
features, and the second set X(mis) incorporates all the incomplete features. The output
feature was assumed to be complete, so X(comp) includes all the perfect features and the
target feature y. The importance of this step is obtaining two datasets, the in/complete
datasets. The incomplete one will be used in the next steps.

Step 2: The proposed algorithm (CBRSL) uses the FS of the fuzzy entropy measure
introduced by De Luca and Termini, given by Equation (8), with the similarity-based
classification presented in Equation (6). The proposed algorithm looks for the feature that
has a strong relationship with the target feature (i.e., selects the feature that offers the
lowest fuzzy entropy). The importance of this step is the use of the most influencing feature
among all features.

Step 3: After selecting the candidate variable X(miss)
g , the model is fitted using the

cumulative formula presented in Equation (9) with the candidate feature as dependent
and X(comp) as the independent feature. The selected feature is removed from X(mis), and
after filling MVs within the X(miss)

g , the filled feature X(mis)
imp is added to X(comp). Now,

X(comp) includes all the complete features, X(mis)
imp , and y. A new X(miss)

g from X(mis) is

chosen. X(comp) and X(miss)
g are the new variables for the cumulative formula. The model is
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fitted with the cumulative formula, with X(comp) as an independent feature and the new
X(miss)

g as the dependent feature.

X(miss)
g ∼ N

(
µg, αg

)
(9)

where

µg = βo +
c

∑
i=1

βiX
(comp)
i + βc+1y +

g−1

∑
imp=1

βimp+c+1X(miss)
imp

β ∼ N
(

0, λ−1
g Iimp+c+1

)
αg ∼ Γ

(
α1g, α2g

)
λg ∼ Γ

(
λ1g, λ2g

)
where g = 1, 2, . . . , m, m is the number of features containing MVs, and c is the number of
complete independents. This step is the most important because it includes the formula
that will be used in the imputation.

Step 4: Repeat Step 2 of feature selection until X(mis) becomes empty. At that moment,
return the imputed dataset (X(comp)) as described in Algorithm 1.

Algorithm 1: CBRSL

1: Input:
2: D: a dataset with MVs containing n instances.
3: Output:
4: Dimputed: a dataset with all missing features imputed.
5: Definitions:
6: X(comp) Set of complete features.
7: X(mis) Set of incomplete features.

8: X(mis)
imp Imputed feature from X(mis).

9: m Number of features containing MVs.
10: H[i] Fuzzy entropy measure with the similarity.
11: Begin
12: 1 : Split Dinto X(comp) and X(mis).

13: 2 : From X(mis) select X(mis)
l that exhibits minH[i] # l ∈ { 1, . . . , m}.

14: 3 : While X(mis) 6=
15: i : g ← index of the candidate feature in X(mis) .
16: ii : Fit a BRRmodel on X(comp) as independent features and

X(miss)
g as dependent feature.

17: iii : X(mis)
imp ← Impute the MVs in X(miss)

g with the fitted model.

18: iv : Delete X(miss)
g from X(mis) and add X(mis)

imp to X(comp).
19: End While
20: 4 : return D imputed ← X(comp).
21: End

4. Experimental Setup
4.1. Datasets

Datasets were collected from many database repositories where they are available
and freely accessible. To clarify that the proposed method is valid for different datasets,
different datasets were used in cases and features. The fundamental specifications of
the datasets used are shown in Table 1. In every dataset, the amounts, 10%, 20%, 30%,
40%, and 50%, of MVs were created for each missingness mechanism, MAR, MCAR, and
MNAR, using the ampute function from the R environment [43]. As mentioned in Section 3,
the output feature of each dataset was assumed to be complete, and all other features
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contained missing values. The proposed algorithm applies the cumulative equation for
each incomplete dataset generated.

Table 1. The fundamental specifications of the used datasets.

Dataset Name References #Instances #Features
Missingness Mechanism

MAR MCAR MNAR

Breast Cancer Wisconsin [44] 699 10
√ √ √

Dermatology [45] 366 33
√ √ √

Parkinson’s [46] 197 23
√ √ √

Pima Indians Diabetes [47] 768 8
√ √ √

Breast Cancer Wisconsin Dataset: This dataset was designed by Dr. Wolberg, and the
intention was to precisely diagnose breast masses depending solely on fine-needle aspiration
(FNA). The resulting dataset is well known as the Wisconsin Breast Cancer Dataset.

Dermatology Dataset: This database includes 34 features, one of them is nominal and
33 of them are linear valued. The differential diagnosis of erythemato-squamous diseases
is an extreme problem in dermatology. They all participate in the clinical features of
scaling and erythema with very small variations. The diseases in this group are seborrheic
dermatitis, psoriasis, lichen planus, chronic dermatitis, pityriasis rosea, and pityriasis rubra
pilaris. Usually, a biopsy is essential for the examination, but unluckily, these diseases
participate in various histopathological features as well. A different problem for the
differential diagnosis is that a disease can display the features of different diseases in
the starting stage and can hold the unique features in later stages. Patients were first
assessed clinically with 12 features. Later, skin samples were selected for the calculation of
22 histopathological variables. The values of the histopathological variables are defined by
sample analyses under a microscope.

Parkinson’s Dataset: This dataset was designed at the University of Oxford by Max
Little. This dataset comprises a series of biomedical voice estimations from people with
Parkinson’s disease (PD) and healthy people. The foremost purpose of the data is to classify
healthy people from those with PD according to the “status” feature, which is set to zero
for healthy and 1 for PD.

Pima Indians Diabetes Dataset: This dataset contains information on the presence or
absence of diabetes among Pima Indian women living near Phoenix, Arizona. There are
eight features: plasma glucose concentration; number of pregnancies; diastolic blood pressure
(mmHg); serum insulin (µU/mL); tricep skin fold thickness (mm); diabetes pedigree function;
body mass index (kg m−2); and age in years.

4.2. Performance Evaluation

A comparison was made between the proposed algorithm and five algorithms for the
previous four datasets. The experiments were carried out using Python (version 3.7) and R
(version 3.5.2). The compared algorithms are briefly described in Table 2. The performance
evaluation was calculated for the five missingness ratios in terms of MAE, RMSE, and the
R2 score.
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Table 2. The algorithms used in the comparison.

Package (Function Name) Description

Impyute (MICE) [43,48] Handles MVs through the use of multivariate imputation using the
chained equations algorithm.

Autoimpute (interpolate) [49] Imputes MVs using linear interpolation.

Autoimpute (locf) [49] Imputes MVs by carrying the last observation moving forward.

SimpleImputer (mean) [49] Imputes MVs using the mean for each feature.

Impyute (random) [50] Imputes MVs using a randomly selected
value from the same feature.

4.3. MAE and RMSE

Generally, MAE and RMSE were used as statistical metrics to measure the performance
of the models [51]. MAE and RMSE are exhibited in Equations (10) and (11), respectively.

MAE =
1
n

n

∑
l=1
|yl − ŷl | (10)

RMSE =

√
1
n ∑n

l=1(yl − ŷl)
2 (11)

where yl and ŷl are the real and predicted values, respectively, of the lth case, and
n represents the number of the cases.

4.4. R2 Score

The R2 score, given by Equation (12), is a statistical measure that denotes how well the
predicted values and real values are close to each other.

R2(y, ŷ) = 1− ∑n
l=1(yl − ŷi)

2

∑n
l=1(yl − y)2 (12)

where

y =
1
n

n

∑
l=1

yl

5. Analysis and Discussion

Figures 2–5 exhibit the averages of the evaluation metrics for the five missingness
ratios. The results show that the performance varies due to the missingness mechanisms,
MV proportions, and size of the dataset. This section is divided into two subsections:
the first subsection exhibits error analysis, and the second subsection offers accuracy
analysis. A log scale is used in MAE and RMSE comparisons because each of them has a
different range of values. Considering RMSE and MAE, a lower value is better so they can
be collected in the same figure. On the other hand, an R2 score with a higher value is better.
The computational complexity of the proposed algorithm is O (n).
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5.1. Error Analysis

This subsection demonstrates that, in most cases, CBRSL offers lower errors. In what
follows, the error analysis is presented in detail. The error analysis was interpreted by
evaluating RMSE and MAE. It can be concluded that the error is small because all the
features were used in the prediction of missing values.

From Figure 2b, for MAR, it was remarked that the MAE and RMSE of CBRSL are better
than the mean and random methods and are worse than the interpolate, last observation
carried forward (locf), and multivariate imputation by chained equations (MICE) methods.
For MCAR, the MAE and RMSE of CBRSL are better than the interpolate, locf, mean, and
random methods and are worse than MICE. For MNAR, the MAE and RMSE of CBRSL are
better than the mean and random methods and are worse than the interpolate, locf, and
MICE methods. From Figure 3b, it was observed that the RMSE and MAE are better than
all the compared methods for MAR. For MCAR and MNAR, the MAE of CBRSL is better
than all the compared methods, and the RMSE of CBRSL is better than all the compared
methods but is worse than MICE. From Figure 4b, for MAR, it was observed that the MAE
of CBRSL is better than the mean and random methods and is worse than the interpolate,
locf, and MICE methods. In addition, the RMSE of CBRSL is better than the mean and
MICE methods and is worse than the interpolate, locf, and random methods. CBRSL’s
MAE equals the mean of the provided error for MCAR and outperforms the interpolate,
locf, MICE, and random methods. In addition, the RMSE of CBRSL is better than the mean
and MICE methods and is worse than the interpolate, locf, and random methods. CBRSL’s
MAE equals the mean of the provided error for MCAR and outperforms the interpolate,
locf, MICE, and random methods. In addition, the RMSE of CBRSL is better than the mean
and MICE methods and is worse than the interpolate, locf, and random methods. From
Figure 5b, for MAR and MNAR, it was observed that the MAE and RMSE of CBRSL are
better than the mean and random methods and are worse than the interpolate, locf, and
MICE methods. For MCAR, the MAE and RMSE of CBRSL are better than the interpolate,
locf, mean, and random methods and are worse than MICE.

5.2. Accuracy Analysis

This subsection shows that in most cases, CBRSL offers better accuracy. In what
follows, the accuracy analysis is discussed in detail. The accuracy analysis was interpreted
by evaluating the R2 score. The improvement in accuracy results from using the most
important and influential variable under the conditions stated in Section 3.

From Figures 2a, 3a and 5a, it was shown that the R2 score of CBRSL is better than the
interpolate, locf, mean, and random methods and is worse than MICE for all missingness
mechanisms. From Figure 4a for MAR, it was observed that the R2 score of CBRSL is better
than the interpolate, locf, mean, and random methods and is worse than MICE. For MCAR,
the R2 score of CBRSL is better than the interpolate, locf, mean, and random methods and is
equal to MICE. For MNAR, the R2 score of CBRSL is better than the other stated methods.

The proposed algorithm depends on the BRR technique, which assumes that the target
feature is distributed as a normal distribution, so CBRSL offers good a imputation accuracy
when the target feature is Gaussian or Gaussian-like. Furthermore, it is considered a good
choice to use transformers such as Box–Cox and Yeo–Johnson data before applying the
proposed algorithm. In addition, the proposed algorithm includes a ridge parameter in
which the ordinary least square is tuned to minimize the squared absolute sum, termed as
L2 regularization. This method is effective in the case of collinearity between independent
features, and training data will be overfitted by the ordinary least square.

6. Conclusions

MVs occur in nearly every analysis, and thus have become a universal problem.
It is not recommended to use the delete method for cases that contain missing values.
Facilitating the use of deletion may lead to data loss that may lead to undesirable results
and expectations. Some of the algorithms currently in use result in insufficient accuracies.
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To this end, this paper proposes an imputation algorithm named CBRSL that manipulates
MVs using FS. CBRSL is based on the notion of feature similarity measures and fuzzy
entropy measures for performing the FS step, which has been proven to be efficient in
classification problems, and the BRR technique for building the predictive model. The
proposed algorithm handles MVs in a cumulative order, and the imputed features are
incorporated with the other complete features to predict the MVs within the next candidate
feature until all MVs in the dataset are imputed.

Hence, CBRSL benefits from the complete features to predict the incomplete features,
hence utilizing the predicted features in the imputation of the incomplete features and so
on. The proposed algorithm is simple to perform and does not fail in the imputation despite
the volume of the dataset. In addition, the proposed algorithm succeeded in dealing with
different percentages of MVs resulting from any missingness mechanism. The proposed
algorithm is promising when handling MVs with new datasets. Additional units for
selecting the candidate feature of the standard error will be used (such as the T-value and
P-value). Furthermore, the proposed algorithm is considered to be beneficial in imputing
inadequate medical datasets, such as cardiovascular disease data, DNA microarray data,
food composition data, pulmonary embolism data, and other medical data. In the future, the
proposed method will take into consideration some other techniques, such as classification
and clustering.
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