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Abstract: Knowledge base question answering (KBQA) aims to provide answers to natural language
questions from information in the knowledge base. Although many methods perform well when
dealing with simple questions, there are still two challenges for complex questions: huge search
space and information missing from the query graphs’ structure. To solve these problems, we
propose a novel KBQA method based on a graph convolutional network and optimized search space.
When generating the query graph, we rank the query graphs by both their semantic and structural
similarities with the question. Then, we just use the top k for the next step. In this process, we
specifically extract the structure information of the query graphs by a graph convolutional network
while extracting semantic information by a pre-trained model. Thus, we can enhance the method’s
ability to understand complex questions. We also introduce a constraint function to optimize the
search space. Furthermore, we use the beam search algorithm to reduce the search space further.
Experiments on the WebQuestionsSP dataset demonstrate that our method outperforms some baseline
methods, showing that the structural information of the query graph has a significant impact on the
KBQA task.

Keywords: knowledge base question answering; query graph; question answering; knowledge base

1. Introduction

A knowledge graph is a heterogeneous multi-digraph, which means it is directed, and
multiple edges can exist between two nodes. An agent generates knowledge by relating
elements of a graph to real-world objects and actions. A knowledge graph (KG), also
known as a knowledge base (KB), is a structured representation of facts that describes a
collection of interlinked descriptions of entities, relationships, and semantic descriptions
of entities [1]. Knowledge bases store a large amount of factual knowledge from the real
world. Many large KBs, such as DBPedia [2], Freebase, YAGO [3] and NELL [4], have been
built to serve downstream tasks. Knowledge base question answering (KBQA), which aims
to answer natural language questions by knowledge bases, has received a lot of attention
as an important research direction [5–8]. Figure 1 shows the process of finding the answer
to a question by the knowledge in KB.

Semantic parsing-based methods (SP-based methods) are one of the mainstream ap-
proaches for KBQA [9,10]. The SP-based methods first convert natural language questions
into symbolic logical forms; after that, the answers are obtained by executing them in a
knowledge base [11]. Such methods can visualize the reasoning process, which makes the
results have high interpretability. However, they rely heavily on the design of logical forms
and parsing algorithms.

Some works combine graphical structures with SP-based methods to solve the prob-
lem [12,13]. These methods transform question answering into a query graph generation
process and show powerful expressive power in the complex KBQA task. However, such
approaches still face two problems. (1) The number of query graphs grows exponentially
with the growth of the knowledge base size and the emergence of complex questions [14].
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(2) Most works only consider the semantic information of the query graphs, while they
ignore the natural graph structure features. However, the latter information is also useful
for selecting the correct query graphs [15]. Therefore, how to reduce the number of can-
didate query graphs and how to precisely select the correct query graphs are still the key
challenges of the current KBQA work.
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Figure 1. An example of a KBQA task. For the question “In which stadium did Player A’s team win
the 1998 World Championship?”, the orange circle and the orange line represent the inference process
from Player A (the topic entity) to Stadium B (the answer).

In this paper, we focus on how to address the two challenges. For challenge 1, we
observe that usually, the correct answer to a complex question cannot be found just once
in the large search space. Therefore, we can use staged queries to decompose complex
questions into multiple simple questions. In addition, a complex question has more than
one constraint, which can be used to further reduce the search overhead. We note that
some approaches use the graph structure information to improve the effect in some other
Natural Language Processing (NLP) tasks but not KBQA [16,17]. In fact, the structure of
the query graph is also useful for KBQA. Therefore, for challenge 2, we extract the structure
information of the query graphs to enhance the ability of our method to select the correct
answer in KBQA.

Based on the motivation above, we propose a novel KBQA method based on a graph
convolutional network by optimized search space. We transform the process of answering
complex questions into a hierarchical process of generating query graphs. We extract
the constraint function from the complex question and use it to reduce the number of
candidate query graphs. After that, we design a novel ranker that scores the candidate
query graphs using two components: semantic similarity matching and graph structural
similarity. Finally, it uses the beam search algorithm to select the Top K highest-rated
query graphs from the candidate query graphs. Due to the addition of the graph structure
similarity matching module, our method can select query graphs more accurately. Our main
contributions are as follows:

1. To reduce the huge search space for KBQA, we use a constraint function as well as the
beam search algorithm to limit the number of candidate query graphs and reduce the
computational overhead.

2. To update the correctness of query graphs, we add structural information to the
semantic information of the query graphs and score the query graphs from multiple
perspectives, which enhances the model’s ability to understand complex questions.

3. Experimental results on the publicly available KBQA dataset WebQuestionsSP show
that our method achieves good experimental results compared to the baseline methods.
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2. Related Work
2.1. Semantic Parsing-Based Methods for KBQA

Semantic parsing-based methods are the most dominant class of KBQA methods, which
aim to parse natural language discourse into logical forms [18,19]. Specifically, this category
of methods first encodes the question through semantic and syntactic analysis. Afterward, the
encoded questions are converted into logical forms of statements (e.g., SPARQL Protocol and
RDF Query Language (SPARQL) and Structured Query Language (SQL)) by using a logical
parsing module. Finally, the obtained logical form statements are executed on the knowledge
base to query the answers [20,21].

The earlier methods [22,23] can handle simple questions well. However, in the subse-
quent large-scale knowledge bases, these traditional methods are no longer applicable in
the face of complex questions with complex semantic syntax involving multiple entities.

2.2. Query Graph-Based Methods for KBQA

The concept of query graph was first proposed by Yih et al., 2015 [12], which is a new
idea to simplify the traditional semantic parsing-based methods [13,14]. The query graph-
based method introduces the semantic information formed by entities and relations in the
knowledge base during the parsing of a question. It transforms the semantic understanding
process of a question into a query graph generation process, which shows the semantic
matching process more intuitively and thus has very good interpretability.

However, the query graph generation process usually relies on predefined manual
rules, which are not well suited for a large number of complex questions in a large-scale
knowledge base. To alleviate this, Ding et al., 2019 [24] used the substructure of frequently
occurring queries to assist query graph generation. Abujabal et al., 2017 [25] automati-
cally generated templates based on question–answer pairs to reduce manual operations.
Hu et al., 2018 [26] applied aggregation operations and coreference resolution techniques
to accommodate complex questions.

In addition, earlier methods only consider the degree of predicate matching in the
natural language question and the query graph. They use the core query path in the query
graph to measure the similarity to the question [12,27]. These methods omit much useful
information and lead to less accurate filtering of the query graph. Based on this, Lan et
al., 2020 [28] more comprehensively utilized the information from nodes, relations, and
constraints in the query graph generation process. They transformed the query graph
into a serialized form containing nodes, relations, and constraints before performing the
semantic similarity measure, which enhances the matching ability of their method to the
correct query graph. However, the serialization process causes two nodes that are originally
adjacent to each other to be split in the sequence, distorting part of the semantic information
and destroying the graph structure information that the query graph naturally has.

3. Method
3.1. Overview of the Method

Task Description: A KB collects knowledge data in the form of triples K = {h, r, t},
where r ∈ R (the set of relations) and h, t ∈ E (the set of entities). For a given natural
language question q, the KBQA task is to find the answer a, where a ∈ E.

Method overview: We propose a novel KBQA method based on a graph convolutional
network by an optimized search space. We formalize the KBQA task as maximizing the
probability distribution p(a|K, q). Instead of reasoning directly about K, we retrieve a query
graph g ∈ K and infer a on g. Since g is unknown, we treat it as a latent variable and rewrite
p(a|K, q) as:

p(a|K, q) = ∑
g

p(a|q, g)p(g|q) (1)
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To obtain the query graph g, our method starts from the topic entity in question q and
generates the query graph hierarchically using the extend or constrain operations, which
are described in Section 3.2.

We assume that the correct query graph has a high degree of similarity to the question
q. We can use this to select the correct path from the generated candidate query graphs.
To measure this similarity, we design a Ranker (described in Section 3.3) that selects the
candidate query graphs based on semantic matching and structural similarity of the graphs.

Specifically, we use the pre-trained language model RoBERTa to measure the semantic
similarity between the question q and the candidate query graphs. At the same time, we
use a graph convolutional network to encode the semantic and structural information of
the candidate query graphs together, after which we can measure the similarity of these
candidate query graphs. Finally, we combine a constrain function and a beam search
algorithm to select the query graphs with high similarity for the next step. The beam search
algorithm improves the greedy search algorithm by selecting beam− size candidates from
the set of candidates generated by each search as the starting point for subsequent searches.
Therefore, we can select the beam− size query graphs with high similarity scores from all
candidate query graphs, which largely reduces the number of query graphs to optimize the
search space.

We repeat the above generation-ranking operation until we find the correct answer
or reach the maximum hop count limit. An example in Figure 2 shows the process of our
method to find the correct answer to a question.

topic entity 𝑒𝑡

Question

𝑒𝑡

Question : When did the author of "The Cricket by the Fireside" write his first book?

1-hop 2-hop 3-hop

Query process on KB:

The Cricket by 

the Fireside

X
X

X

1938

answer

0-hop

book argmin

Oliver Twist

author

Charles Dickens year

Intermediate entities 𝑦
lambda variable X 

（ Candidate answer）Candidate entities Constraint function

1938
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𝑒𝑡

X
X

X

𝑦1

𝑦2

𝑦1

extendextendextend extend

X

Ranker Ranker Ranker

Figure 2. An example of the query process. Starting from a topic entity in the question, the extend
and constrain operations are applied to generate the query graphs and eventually find the answer.
The orange circles represent the constraint function to reduce the search space. Ranker is used to
select the path with a higher score after ranking the candidate paths, such as the path made up of the
orange arrow and the lambda variable X.

3.2. Query Graph Generation

This module uses two actions: extend and constrain to generate query graphs.
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The extend action extends the core relational path by adding relations (selected by
Ranker) to the query graph. Specifically, we connect the relation r chosen by Ranker to
the lambda variable X (or the topic entity et). After the connection, the original lambda
variable X becomes an intermediate variable y (the topic entity et remains unchanged),
while the other end of r becomes the new lambda variable X.

Referring to Luo et al., 2018 [29], we generate a constraint function by matching the
keywords (e.g., first, last, biggest, etc.) in the question. The constrain action attaches the
detected constraint function to the lambda variable X or an intermediate variable connected
to X. In the example in Figure 2, when our method detects the keyword ‘first‘, it generates
a constraint function argmin, which limits the search to the nodes around which it is
connected. Such a constraint helps the model limit the search to a certain range, which
reduces the search space.

This module starts with the topic entity (topic entity linking results are from the
paper [28]) and uses the extend action or constrain action to generate the query graph step
by step. Some previous methods [12,27] place the process of adding constraints after the
core path is fully generated. However, such methods are too simple and have a limited
reduction in the number of candidate query graphs. Therefore, our method performs
the constrain action before the extend action, which reduces the number of candidate
query graphs.

3.3. Query Graph Ranker

For the method that uses enumeration to search [12], the number of candidate query
graphs approaches kn, where k is the core path length and n is the average number of
single-hop candidate paths. For complex questions, kn varies from thousands to millions.
Such an order of magnitude cannot be handled with current methods.

Therefore, to prevent the number of candidate query graphs from growing exponen-
tially with the number of query steps, we use a beam search algorithm to limit the number
of query graphs obtained at each step. Further, in order to select query graphs associated
with the correct answers, we design a scoring function to rank the query graphs by both
semantic and graph structure perspectives of the query graphs and some simple features.
Figure 3 is an example of the query graph Ranker.

Where is Johnny Depp from?

name
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spouse
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birth

Owensboro

Kate Moss
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TOP K
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K-query graphs
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X lambda variable（ Candidate answer）Candidate entities Semantic vectors of graph nodes

Similarity measureInput Ranking Output

Johnny Depp

sequentialization

…

…

… …

Semantic similarity 

measure

Figure 3. The structure of the query graph Ranker.

3.3.1. Semantic Similarity Measure

This module aims to measure the semantic similarity of the natural language question
q and the query graph g. This module starts from the topic entity in the question and
transforms the query graph into a sequence form g′ containing entities and relations
according to the query graph generation process.
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Specifically, we compose the question q and the query graph sequence g′ into a
statement pair as the input to RoBERTa (robustly optimized BERT approach) [30]. Then,
their semantic similarity score(q, g′) is obtained. The formulas are as follows:

Hqg′ = RoBERTaCLS([q; g′]) (2)

score(q, g′) = LINEAR(Hqg′) (3)

where RoBERTaCLS denotes the (CLS) representation of the concatenated input (Figure 4),
and LINEAR is a projection layer reducing the representation to a scalar similarity score.

Question 𝑞 Serialized query graph 𝑔′

𝐻𝑞𝑔′

𝐸[𝐶𝐿𝑆] 𝐸𝑞1 𝐸𝑞𝑛 𝐸[𝑆𝐸𝑃] 𝐸𝑔′1 𝐸𝑔′𝑛 𝐸[𝑆𝐸𝑃]

[𝐶𝐿𝑆] 𝑇𝑜𝑘𝑞1 𝑇𝑜𝑘𝑞𝑛 [𝑆𝐸𝑃] 𝑇𝑜𝑘𝑔′1 𝑇𝑜𝑘𝑔′𝑛 [𝑆𝐸𝑃]

𝑇[𝐶𝐿𝑆] 𝑇𝑞1 𝑇𝑞𝑛 𝑇[𝑆𝐸𝑃] 𝑇𝑔′1 𝑇𝑔′𝑛 𝑇[𝑆𝐸𝑃]

…

…

…

…

…

…

… …

…

Figure 4. The input and output of RoBERTa for measuring the semantic similarity.

3.3.2. Graph Structure Similarity Measure

The semantic similarity metric module lacks the structural information of the query
graph. Furthermore, the sequence transformation process leads to the segmentation of
adjacent nodes in the query graph. Therefore, in addition to the semantic information
mentioned in Section 3.3.1), this module also parses the query graph from the view of
its structure.

First, the module vectorizes a node and its type as Ne (using the Global Vectors for
Word Representation (GloVe)). After that, Ne is fed into the Bi-directional Long Short-Term
Memory (Bi-LSTM), and the hidden state he of the last time step of the Bi-LSTM is selected
as the final encoding of the node, i.e.,

he = Bi− LSTM(Ne) (4)

At this point, the initial description of each node in the query graph is obtained, but
each node in the current graph contains only its own information and lacks the description
of its neighboring nodes. Therefore, this module uses the Graph Convolutional Network
(GCN) to represent the query graph g. The GCN hierarchically aggregates nodes and their
neighbor representations. After several aggregations, the nodes contain more information
about their neighborhoods. Then, hg, the final representation of the graph g, is obtained by
averaging over all nodes’ representations. The formulas are as follows:

h(l+1)
i = ReLU( ∑

j∈N(i)

h(l)j

Dji
W(l) + b(l)) (5)

Dji =
√
|N(j)|

√
|N(i)| (6)

h(l)g =
1
|V| ∑

i∈V
h(l)i (7)
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where N(i) is the set of neighbor nodes of node hi; h(l)j is the representation of node hj in

the l-th iteration; W(l) is the parameter matrix of each layer of linear transformation; b(l) is
the bias value of each aggregation; and V denotes the set of nodes in graph g.

Finally, the graph structure similarity score(q, g) is measured by using the cosine similarity:

score(q, g) = cos(hq, hg) (8)

where hq is the vector representation of the question q (obtained from RoBERTa).

3.3.3. Candidate Query Graph Selection

We design a scoring function that uses the previously obtained semantic similarity
and structure similarity as well as some simple features as evaluation criteria to rank the
candidate query graphs, the formulas are as follows:

Features = score(q, s)⊕ score(q, g)⊕ Fanswer ⊕ Ftopic ⊕ Fcons (9)

SCORE = sigmoid(W[Features] + b) (10)

where Fanswer is the number of candidate answers; Ftopic is the topic entity score; Fcons is the
number of constraints; and W and b parameters are to be learned during model training.

Finally, we use the beam search algorithm to select the top K candidate query graphs
for the next iteration.

4. Experimentals
4.1. Datasets

We conduct experiments using the WebQuestionsSP (WebQSP [31]) dataset to evaluate
the effectiveness of our method. WebQuestionsSP is a widely used publicly available
dataset containing 4737 questions based on Freebase KB. Following Sun et al., 2018 [32],
we partitioned the dataset into the training/validation/testing sets with the number of
2848/250/1639 questions.

4.2. Methods for Comparison

We have selected several methods in related fields within the last few years as baseline
methods. First, we compare the method proposed by Lan et al., 2019 [33], which considers
the complexity of multi-hop relational paths but does not use set searches or constraints
to reduce the search space. After that, we compare the method of Chen et al., 2019 [34],
who transforms the extraction of multi-hop relationships into multiple single-pick extrac-
tions, thus reducing the search space. We also compare the method that uses additional
information: Han et al., 2020 [35] take textual information as hyper-edges and update
entity states using GCN. Next, we compare the method of Yan et al., 2021 [36] that uses
auxiliary tasks to enhance the pre-trained model. Then, we compare the method of Qin et
al., 2021 [37], who use the relational graph to reduce the search space of the query graph.
Finally, we compared some of the latest methods [7,8,14,38]. Among them, Zhang et al.,
2022 [7] composed subgraphs from multiple entities. Chen et al., 2022 [14] used abstract
query graphs to enhance query graph accuracy. Ye et al., 2022 [8] and Hu et al., 2022 [38]
used generative methods to find answers.

4.3. Results

The results of our method compared with the baseline methods on WebQuestionsSP
are shown in Table 1.

The method of Qin et al., 2021 [37] reduces the number of candidate query graphs
but does not extract the graph structure information of query graphs. Although Han et al.,
2020 [35] use GCN to extract graph structure information, they ignore the matching of
semantic information. Yan et al. 2021 [36] reformulate the retrieval-based KBQA task to
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make it a question-context matching form and propose three auxiliary tasks for relation
learning, namely relation extraction, relation matching, and relation reasoning, which gives
the best results (Hit@1-score) among all baseline methods. Due to the clear supervised
signal, these supervised models show excellent performance. In particular, the method of
Ye et al., 2022 [8] achieved a surprising F1-score of 76.6.

In contrast, our method not only extracts semantic information by using a pre-trained
model but also uses GCN to extract graph structure information. Furthermore, we also
combine the beam search algorithm and constraint function to enhance the performance of
our method. Thus, our method achieves competitive performance on the WebQSP dataset
compared to other baseline methods.

Table 1. Experimental results for comparison with baselines.

Method F1 Hits@1

Lan el al. (2019) [33] 67.9 68.2
Chen et al. (2019) [34] 68.5 -
Han et al. (2020) [35] 60.6 68.4
Yan et al. (2021) [36] 64.5 72.9
Qin et al. (2021) [37] 66 -

Zhang et al. (2022) [7] 64.1 69.5

Chen et al. (2022) * [14] 70.3 70.6
Ye et al. (2022) * [8] 75.6 -

Hu et al. (2022) * [38] 76.6 -

our method 68.9 68.5

* denotes supervised methods that use gold SPARQL (or ground truth logical form) as
a supervised signal. Our method uses only question–answer pairs, which is a weakly
supervised method. The bolded scores represent the highest scores.

4.4. Ablation Study

In order to verify the validity of each component in the model, we performed an
ablation study. Table 2 shows the experimental results.

Table 2. Experimental results of the ablation study.

Mothod F1 ∆F1

our method 68.9 0.0
w/o RoBERTa 62.9 −6.0

w/o GCN 66.7 −2.2
w/o Other features 68.3 −0.6

Variant 1 (w/o RoBERTa): We use Gate Recurrent Unit (GRU) to replace RoBERTa
in the model. The performance of the model decreased by 6.0% due to the prevalence of
missing links in the knowledge base. For example, 71% of the person entities in Freebase are
missing birthplace information [39]. This leads to the fact that two logically related nodes
are not linked in the knowledge base, which reduces the likelihood of finding the correct
answer. However, the pre-trained model contains knowledge of many open domains and
can make predictions about the missing links in the KB.

Variant 2 (w/o GCN): We remove part of the graph structure similarity measure.
The performance of the model decreases by 2.2%, which confirms that for query graph-
based KBQA methods, extracting the graph structure of the query graph is important.
The query graph cannot be filtered well by semantic information matching alone.

Variant 3 (w/o Other features): We remove the simple features of the candidate query
graph selection module. This variant has the lowest performance degradation of 0.6%.
This proves that these simple features are much less capable of filtering query graphs than
semantic matching as well as graph structure matching.
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Furthermore, in order to evaluate the impact of the model components more ex-
tensively, we continued our experiments based on Variant 1. The results are shown in
Table 3.

Table 3. Ablation study for Variant 1.

Method F1 ∆F1

Variant 1 62.9 0.0
w/o GCN 60.5 −2.4

w/o Other features 62.4 −0.5

Variant 1-a (w/o GCN): We removed the graph structure extraction and matching
module from variant 1. In this case, the model uses only semantic similarity to select
candidate query graphs. The results of the model decreased by 2.4%. This demonstrates
that graph structure matching can improve the performance of the query graph-based
KBQA model very well.

Variant 1-b (w/o Other features): We removed the simple features from variant 1.
The model effect is reduced by 0.4%.

The results of these two variants demonstrate that both graph structure and simple
features can have some improvement on the KBQA task under different settings.

We also compared the change in the F1-score score during training for each variant
(excluding the variant with simple features removed since the difference in their effective-
ness was not significant). As can be seen from Figure 5, although the graph structure metric
makes the model fluctuate more sharply in the early stages, which makes the model less
effective than the variants without considering the graph structure at some point, it also
gives the model a higher upper limit.

The ablation study results prove that each module in our model improves the effec-
tiveness of the model. Moreover, the above variants still outperform some of the baseline
models, which proves that the effectiveness of our method comes not only from the indi-
vidual modules but also depends on the overall process design of the model.
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Figure 5. Comparison of the F1-score for each variant. (a) Comparison of our method and its variants.
(b) Comparison of variant 1 and its variant.

5. Conclusions

In this paper, we propose a novel KBQA method based on graph convolutional
networks and optimized search spaces. By constraining the search process, the model
is able to handle complex problems with multiple hops. It solves the problem of graph
structure information missing in previous query graph-based KBQA methods, and the
results show that the addition of the graph structure matching module improves the model
performance by 2.2% (F1-score). Experiments on the WebQSP dataset show that our method
has excellent performance.
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Limitations: In the process of using keywords to detect constraint functions, there
may be ambiguity issues. In addition, while using graph structures to improve model
performance, our approach leads to an increase in model training time. Further, the
large-scale pre-training of the model implies a large resource overhead.

Future work: We plan to optimize the model, reduce the resource overhead, and
resolve the ambiguity in the constraint function. We also intend to study the effect of
different dataset partitions on the experiment.
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