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Abstract: The task of fast magnetic resonance (MR) image reconstruction is to reconstruct high-quality
MR images from undersampled images. Most of the existing methods are based on U-Net, and these
methods mainly adopt several simple connections within the network, which we call microscopic
design ideas. However, these considerations cannot make full use of the feature information inside the
network, which leads to low reconstruction quality. To solve this problem, we rethought the feature
utilization method of the encoder and decoder network from a macroscopic point of view and propose
a densely macroscopic feature fusion network for fast magnetic resonance image reconstruction. Our
network uses three stages to reconstruct high-quality MR images from undersampled images from
coarse to fine. We propose an inter-stage feature compensation structure (IFCS) which makes full
use of the feature information of different stages and fuses the features of different encoders and
decoders. This structure uses a connection method between sub-networks similar to dense form to
fuse encoding and decoding features, which is called densely macroscopic feature fusion. A cross
network attention block (CNAB) is also proposed to further improve the reconstruction performance.
Experiments show that the quality of undersampled MR images is greatly improved, and the detailed
information of MR images is enriched to a large extent. Our reconstruction network is lighter than
many previous methods, but it achieves better performance. The performance of our method is about
10% higher than that of the original method, and about 3% higher than that of most existing methods.
Compared with the nearest optimal algorithms, the performance of our method is improved by about
0.01–0.45%, and our computational complexity is only 1/14 of these algorithms.

Keywords: fastMRI; image reconstruction; magnetic resonance imaging (MRI); U-Net

1. Introduction

Magnetic resonance imaging (MRI) is a widely used medical imaging technology in
the field of modern medicine [1]. This non-invasive imaging method can provide high-
resolution structural, anatomical, and functional information as well as excellent contrast
of soft tissue without ionizing radiation [2]. Thus, it has become a necessity in the fields of
psychiatry, medicine, radiology, and so on.

K-space undersampling is usually a common method to speed up MRI scanning.
This method can achieve the purpose of speeding up by reducing the number of k-space
traversals during acquisition, but this method does not meet the Nyquist sampling theorem
and will generate aliasing artifacts during reconstruction [1]. Therefore, people have
explored traditional reconstruction methods such as compressed sensing [3] and parallel
imaging [4]. The compressed sensing algorithm uses a nonlinear process to reconstruct
images from undersampled k-space data. Parallel imaging is accelerated by multi-channel
k-space data. GRAPPA is an algorithm based on k-space reconstruction, which is based
on the premise that the collected k-space lines can be used to obtain the lost k-space lines
through weighted interpolation [5]. SENSE is an algorithm based on image space correction,
which estimates images from k-space by applying prior knowledge to image attributes [6].
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These traditional algorithms speed up the scanning of MRI to a certain extent, but these
methods adopt iterative calculation, which leads to a long reconstruction time.

With the development of depth learning, more and more people have begun to use
depth learning methods to reconstruct MR images [7], segment, classify and detect single-
photon emission computed tomography (SPECT) images or positron emission tomography
(PET) [8–12]. In the past, deep learning has been widely used in PET and SPECT, including
instrumentation and image acquisition/formation, image reconstruction and low-dose/fast
image acquisition, quantitative imaging, image interpretation and decision support, and so
on [12]. Among these methods, convolutional neural networks (CNNs) are widely used.
Some researchers have tried to present a specific CNN architectural component to derive
explicit fusion maps [11]. Some researchers have used CNN to classify PET images [10].
The U-Net architecture has also been used for lung cancer lesion segmentation and to fuse
the features of the modalities of both PET and CT [9].

Currently, most methods of convolutional neural networks (CNNs) used in MRI
reconstruction are based on the encoding and decoding structure of U-Net [13–17]. These
methods extract and refine the features of the input image by coding layer by layer, and then
restoring the features of the image by decoder, thus achieving a good reconstruction effect.
It is worth noting that the skip connection structure in the U-Net network significantly
improves the performance of the network. This skip connection links the features of the
encoder to the decoder, so that the network can retrieve the lost spatial information in the
down sampling of the image and make up the semantic gap of the encoder and decoder [15].
It can be seen that within the network, using the features of the encoder to compensate
for the features of the decoder is helpful in improving the reconstruction ability of the
network. However, the existing reconstruction algorithms usually adopt simple connection
methods such as cascading or parallel connections between networks, which easily leads to
semantic gaps between networks and makes insufficient use of the feature information in
each sub-network. We call these methods microscopic design ideas.

From a macro point of view, we compared the multistage network to the above-
mentioned encoding and decoding network structures. Corresponding to the skip connec-
tion within the U-Net, we adopted the skip connection method between networks, making
full use of the feature information of the previous network. Through a dense-like connection
between sub-networks, the features of encoding and decoding are fully fused, and the
encoding ability and decoding ability are enhanced. Our contributions are as follows:

(1) We designed a new encoding and decoding network, and reconstructed high-quality MR
images from undersampled images from coarse to fine by adopting three-stage processing.

(2) We propose an inter-stage feature compensation structure (IFCS), which improves
the utilization efficiency of features and enhances the encoding and decoding ability
by compensating for different encoder and decoder features in different stages. The
structure has achieved a significant breakthrough in terms of performance.

(3) Inspired by the self-attention mechanism, we designed a cross network attention block
(CNAB), which creatively fuses cross-network features to obtain a global receptive
field and further improves the image reconstruction quality.

(4) The experiment shows that our network achieves good performance, which is superior
to many previous reconstruction methods and achieves a competitive result in the
FastMRI Public Leader board published by Facebook [18].

2. Related Works

We will introduce the related works from three aspects: first, several methods in the
field of MR image reconstruction, then the research on the attention mechanism, and finally
the related works based on the encoder and decoder structure of U-Net.

2.1. Some Methods in the Field of MR Image Reconstruction

The traditional compressed sensing method [3] realizes the process of image recon-
struction from undersampled MR images; Xie et al. [19] summarized the compressed
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sensing methods and combined deep learning methods with traditional methods; the
TV model [20] uses the total-variation penalty, which improves the reconstruction perfor-
mance; Eo et al. [21] adopted a cross-domain convolutional neural network and introduced
a DC layer, and finally proposed KIKI-Net; Ran et al. [22] put forward MD-Recon-Net,
which is a network that can process k-space and image space data at the same time, and
has achieved good results in removing MR image artifacts; The XPD-Net proposed by
Ramzi et al. [23] uses the optimization algorithm to correct the cross-domain network; i-
RIM network [24] uses data-driven methods to train the network, which greatly improves
the image reconstruction quality and achieves very good performance.

2.2. Attention Mechanism

To better capture long-distance dependencies, Wang et al. [25] proposed the non-local
network. Based on the self-attention mechanism [26], they designed a method that can
effectively capture global context information. Although the non-local method has achieved
good performance, it is not an efficient method because of its huge amount of computation.
After that, Hu et al. proposed a very efficient SE-block [27]. This structure caused extensive
discussion in academic circles. Over the next few years, SE-block was widely used, and
designs based on this structure have emerged in an endless stream. SE-block obtains the
importance of each channel through squeezing and exciting operations. Then, according to
this importance, the useful features are enhanced and the less useful features suppressed.
The global information of the network is used to selectively enhance the useful feature
channels and suppress the useless feature channels, to realize the adaptive calibration
of feature channels. Compared with non-local, SE-block has fewer parameters, is very
convenient to use, and has higher feature processing efficiency. However, compared with
the non-local structure, SE-block does not deal with features adequately. To solve this
problem, Cao et al. [28] combined these two structures and proposed GC-Net. This structure
combines the characteristics of SE-block and non-local and makes a meaningful innovation.

2.3. Encoder and Decoder Network Structure Based on U-Net

The U-Net network [14] was first proposed for cell image segmentation in biology, and
its encoding and decoding network can effectively extract image features and refine them
step by step. Following that, many scholars put forward increasing numbers of encoding
and decoding network structures based on this network for different image processing tasks.
Cho et al. [13] proposed a self-spatial, adaptive, and weighted U-Net image segmentation
algorithm, which improved the performance of existing methods. In the field of MRI, many
reconstruction networks based on U-Net structure have also been born. Ibtehaz et al. [15]
deeply analyzed the architecture of the U-Net model and speculated several possibilities
of enhancing network performance. According to their analysis, the subtlety of the U-
Net is that it connects the corresponding layer of encoder and decoder. However, many
disadvantages also exist: the encoder is usually considered low-level semantic information,
and the decoder is usually considered high-level semantic information. There may be
a semantic gap after connecting the two directly, so the author made some changes to
the U-Net network and proposed the idea of MultiRes-Unet; Jha et al. [16] proposed the
ResUNet++ network structure, which consists of residual block, SE-block, Atrous pyramid
(ASPP), and attention block. The network structure improves the segmentation effect;
Zhou et al. [17] also made an analysis on U-Net and put forward U-Net++. They believe
that the success of encoding and decoding networks is largely due to their skip connections.
This kind of skip connection will combine the shallow, low-level, and fine-grained feature
map mapping from the encoding sub-network with the deep, high-level, and coarse-grained
feature map mapping from the decoding sub-network. U-Net++ does not tend to choose
the network depth. It embeds U-Net with different depths in the architecture. All these
U-Nets share one encoder, and their decoders are intertwined. At the skip connection, the
aggregation layer is allowed to decide the fusion of different proportions of feature maps
and decoder feature maps, instead of just fusing the same scale information.
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At present, most encoding and decoding networks only modify the internal structure
of the network. Although some methods cascade networks, they only make some simple
connections, which do not make full use of the inter-level feature information. To solve this
problem, we lighten each network and cascade the networks in a special way to fully share
and utilize the feature information. On rethinking the structure of U-Net, we find that the
introduction of encoder features greatly improves the decoding ability of the decoder and
enriches the semantic information in the decoding stage. With this method, the decoder can
fully obtain the spatial information lost due to downsampling in the encoding stage. This
idea of feature compensation is very effective. We believe that this method can be expanded.
We define this feature compensation method within the network as a microscopic design
idea, while we call the feature compensation method between networks a macroscopic
design idea. From a macro point of view, we extend the idea of feature compensation
from inside the network to between networks, that is, we apply the feature compensation
method of U-Net between each sub-network to enhance the decoding ability of the decoder.
This idea enables us to obtain very good experimental performance. In addition, inspired
by this idea, we also mix the features of the encoder and decoder of the previous network
to compensate for the features of the current network encoder. This greatly enhances the
coding capability of the network and enriches the semantic information in the coding stage.
On this basis, we also designed a cross-network feature attention mechanism to further
improve the performance.

Our idea of feature compensation is not limited to the internal structure of the network.
It has expanded from microscopic internal network features to macroscopic inter-stage
features, and from feature compensation only for decoders to feature compensation for the
whole encoding and decoding network. The network parameters are very small, and the
whole network is lightweight, but its performance has reached a satisfactory level.

3. DMFF-Net

The overall network structure of DMFF-Net is shown in Figure 1. The network consists of
three sub-networks. What is considered is not only the internal structure of each sub-network
at the micro level, but also the macroscopic feature compensation between networks. The
general structure of each sub-network is similar, but the specific details are different. This
macro connection design can make full use of the inter-stage features of the network and its
connection mode is similar to the macro dense connection between sub-networks. It greatly
improves the efficiency of network reconstruction and reduces the difficulty of training.
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Figure 1. Overview of the DMFF-Net. The network consists of three stages. The internal structure
of each stage is the same, but there are some differences in details. We make use of the microscopic
features compensation structure within the stage and the macroscopic features compensation structure
between the stages. The feature compensation between stages covers the features of encoder and
decoder and is used to enhance the encoding and decoding capability in the later stage.
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3.1. Three-Stage Sub-Network Reconstruction

Our overall reconstruction network consists of three sub-networks to reconstruct high-
quality MR images from undersampled images in three stages. The three sub-networks
all adopt the encoder–decoder network structure, and also apply the microcosmic feature
compensation connection inside the network. The three networks are roughly the same,
but there are some differences in some details, as shown in Figure 2.
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Figure 2. Three-stage sub-network. (a) The network structure of the first stage. (b) The network
structure of the second stage. (c) The network structure of the third stage. The sub-network structure
of these three stages is roughly the same, but there are some differences in details. We reconstruct
high-quality MR images from undersampled images from coarse to fine through a three-stage network.
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3.1.1. Stage One

We use a network with an encoder and decoder structure, and the input image size is
B× C×H×W. B stands for batch size, C stands for channel, H stands for image height, and
W stands for image width. We take the real part and the imaginary part of the image on two
channels for processing. This is because the collected k-space data is complex, and if the real
part and the imaginary part are combined at the beginning, a lot of information will be lost.
First, the input channel is changed from 2 to 32 through a 1 × 1 convolution layer, instance
normalization (IN), and leakyReLU. Then the features are sent to the convolution block. The
structure is shown in Figure 3a. This structure consists of two groups of 3 × 3 convolution,
IN, and leakyReLU. The features of the image are extracted by a convolution operation.
Note that the number of channels is kept constant here. After that, it will be down sampled
by strided convolution. There is no pooling operation here. Strided convolution can make
the network occupy less memory during training.
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attention convolution block (ACB). We applied the above processing units in the three-stage network.

• Attention Convolution Block (ACB)

As shown in Figure 3c, here we design a module that combines attention with convolution.
Convolution operation can extract image features, but this feature extraction is only limited to
the size of the convolution kernel. Thus, the well-known disadvantage of convolution operation
is that the receptive field is too small. Many researchers have tried to expand the convolution
kernel size from 3 × 3 to 5 × 5 or even 7 × 7 and 9 × 9. However, this will increase a huge
number of parameters, and the effect is not obvious. Based on GC block [28], we designed an
attention convolution block to extract MRI image features more efficiently.
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As shown in Figure 3c, we assume that the input feature map is x and its size is (B, C,
H, W). This structure has four input branches, and we call the top-down branches the first,
second, third, and fourth branches. We use Wa to represent the transformation matrix of the
first 3 × 3 convolution in the second branch, LR to represent the leakyReLU operation, and
IN to represent the instance normalization operation, so the output of the second branch is

ya = LR(IN(Wax)), (1)

For the third branch, we first reshape it into a matrix of (B, 1, C, H × W) and get
x1. For the fourth branch, we use Wb to represent the transformation matrix of the first
1 × 1 convolution, and the number of output channels becomes 1. Then it is reshaped into
(B, 1, H ×W, 1) and we get x2.

x1 = Reshape(x), (2)

x2 = Reshape(Wbx), (3)

After that, through softmax operation, matrix multiplication is performed with the
data of the third branch to obtain ys, which is

ys = ∑N
i=1

exp
(
x2i

)
∑N

j=1 exp
(

x2j

) x1i , (4)

Here, n is the number of positions in the feature map, where N = H ×W. After the
above operation, the matrix of (B, 1, C, 1) is obtained. Then we reshape it into (B, C, 1, 1)
and note it as yr.

yr = Reshape(ys), (5)

We use Wc and Wd to represent the next two 1× 1 convolution transformation matrices,
and LN to represent the layer normalization operation, so the final output of the third and
fourth branches is

yc = Wd(ReLU(LN(Wcyr))), (6)

Then we make element-wise addition to the data of these branches. We use We to
represent the transformation matrix of the last 3 × 3 convolution, and the final output is:

z = LR(IN(We(x + ya + yc))), (7)

That is the total of the operations of the attention convolution block. The processing
unit improves the GC block by adding a convolution branch. So, we can combine the
attention mechanism with convolution, and extract global and local features at the same
time. Finally, we fuse the global features and local features to better encode the input data
and enhance the network coding ability.

• Bridge Convolution Block (BCB)

The connection between encoder and decoder is called the bridge layer. Here, we use
the bridge convolution block, which is a set of dense residual convolution layers. With its
small size and low computation, the feature map of the bridge layer is suitable for complex
convolution operations. Moreover, the semantic information of the bottom feature map is
the most abstract, so it is necessary to extract more features. Based on the above analysis,
we use this dense residual convolution structure to fully extract the information from the
feature map. The specific structure is shown in Figure 3b.

3.1.2. Stage Two

As shown in Figure 2b, the sub-network in the second stage is roughly the same
as that in the first stage. We replaced the 1 × 1 convolution at the beginning and the
end with a 3 × 3 convolution. In addition, at the beginning of each layer of the encoder,
1 × 1 convolution, IN layer, and leakyReLU layer are introduced to fuse the features of the
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previous stage. It can be noted that compared with the first stage, the encoder and decoder
here apply more feature compensation, which will be explained later in the introduction of
the inter-stage feature compensation structure (IFCS).

3.1.3. Stage Three

As shown in Figure 2c, the sub-network of the third stage is roughly the same as
that of the second stage. Compared with the previous two-stage network, this network
does not need to transmit features to the later network. In addition, the cross network
attention block (CNAB) is introduced here, and the specific operation of this structure is
introduced in detail later.

3.2. Inter-Stage Feature Compensation Structure (IFCS)

To effectively utilize the feature information of each sub-network, we designed an
inter-stage feature compensation structure (IFCS). This structure is inspired by the internal
skip connection of the U-Net network. According to our analysis, the internal feature
compensation structure of the U-Net network is of great reference value. This structure
compensates for the features of the encoder to the decoder, thus making the decoding
stage more efficient. The downsampling operation in the encoding stage will lose a lot of
spatial information, and this feature compensation in the network can make up for the
lost information in the decoding stage. Meanwhile, the semantic information of encoder
and decoder is usually different. By combining them, the semantic space of the decoding
stage can be enriched, and the network decoding ability can be enhanced. This kind of
structure is limited to the inside of the network, so we name the microscopic feature the
compensation structure. Based on this idea, we extend it between networks from a macro
point of view. That is to say, if each sub-network is compared to the encoder or decoder in
the U-Net network, then similar feature compensation can be extended between networks.

The overall structure is shown in Figure 4. Let us first consider the decoder part. U-Net
enhances the network decoding ability by compensating for the features of the encoder. We
use the encoder features of the previous network to compensate for the decoder. Specifically,
we compensate the encoder features of the first stage to the decoder parts of the second and
third stages and compensate the encoder features of the second stage to the decoder part of
the third stage. In this way, the decoder of the current network can not only integrate the
encoder characteristics of the current network but also integrate the encoder characteristics
of all previous networks. It enriches the semantic information of the decoder and makes
up for the lost spatial information between networks. This stage of the network contains
the encoder information of the previous stages, which expands the receptive field of the
network to a certain extent and enables the network to capture global information.

Based on the above ideas, we focus on the encoder. We believe that the same idea can
also be applied to the encoder to enhance the encoding ability of the network. We creatively
mix the encoder and decoder information of the previous network and then compensate
the mixed features to the encoder of the current network. Specifically, we mix the encoder
features and decoder features of the first stage, and then compensate to the encoder parts of
the second and third stages. Then, the encoder features and decoder features of the second
stage are mixed and compensated to the encoder part of the third stage. In this way, the
network encoding capability is greatly improved, and the encoder has the receptive field of
the previous network. At the same time, we creatively compensate for the features of the
previous network decoder to the current network encoder. This can enable the encoder to
have a richer encoding space and to make up for the information lost in the previous stage
of network decoding.

Experiments show that the design improves the network coding and decoding ability.
It is an efficient and concise design, which greatly improves the network performance
without introducing too much calculation.
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Figure 4. Inter-stage feature compensation structure (IFCS). The figure describes the IFCS structure
used in this network, which is a structure for feature compensation between networks from a macro
perspective. In the figure, pink lines represent encoder features, blue lines represent decoder features,
and black thick lines represent encoder–decoder hybrid features.

3.3. Cross Network Attention Block (CNAB)

To make more effective use of the underlying feature information between networks,
we designed a cross network attention block (CNAB) for the bottom bridge layer. The
specific structure is shown in Figure 5, and the green lines are the input features from three
sub-network bridge layers. We send these features into a set of convolution layers with
shared weights and obtain three output features. Suppose the three input features are x1,
x2, and x3, respectively, and the transformation matrix of the convolution layer is Wb. After
the convolution layer, we can get three output features with the channel number of 1, and
we reshape them into features with the size of (B, C, H ×W). After that, through matrix
multiplication, softmax, and other operations, the attention feature map is obtained. Then,
the attention feature map is multiplied and added with the output feature y of the third
sub-network bridge layer. We express the final output as z. The whole operation process is
shown in the following formula (the reshape operation is omitted in the formula):

z = y + y ∗∑N
i=1

exp(Wbx1i ∗Wbx2i)

∑N
j=1 exp(Wbx1 j ∗Wbx2 j)

Wbx3i, (8)

Here, N = H ×W indicates the number of positions in the feature map. Through this
cross-network attention mechanism, we can obtain the feature information of the previous
network and expand the receptive field to the whole world. Moreover, the bottom image
has a small size and a low amount of computation, so the processing efficiency is very
high. We fuse the features across the network and calculate the attention map and the
feature map containing attention information is applied to the reconstruction network in
the last stage. Our attention mechanism is no longer limited to the inside of the network
but extends between the networks.
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3.4. Data Consistency Module

We apply the data consistency module behind each sub-network, which plays a vital
role in the cascaded network. The data consistency module is used to improve the fidelity
of data and impose the constraint of the original MR measurement on the reconstruction
data. We use soft DC here [29]:

ksdc(i) =
{

kr(i), i f i /∈ Φ
kr(i)− α(kr(i)− ks(i)), i f i ∈ Φ

, (9)

where Φ represents the set of index values of sampled data, kr(i) represents the k-space
data after network reconstruction, and ks(i) represents the original real k-space data. α
is a trainable hyper-parameter, which is used to dynamically adjust the weights of the
predicted data and the original k-space data. As shown in the above Formula (9), if the
location point of k-space data is sampled, that is, it is in the set Φ, then the value at this
location will be replaced by the combination of the predicted value and the true value. If
the location point of the k-space is not sampled, it is filled with the predicted value.

4. Implementation and Experiments
4.1. Dataset

Our method is tested on the fastMRI dataset [30]. In the field of machine learning,
large public data sets are usually used for annual competitions and benchmark tests. The
research of MR image reconstruction is usually trained and verified on several small,
isolated datasets. This makes it difficult to compare the performance of different methods
fairly. To solve this problem, Facebook and New York University jointly produced the
fastMRI dataset [30]. This dataset is specially used for image reconstruction of machine
learning technology, including original MRI k-space data and DICOM images. k-space data
includes 1594 measurement datasets obtained from a series of MRI systems and clinical
patient groups’ knee joint MRI examinations, and corresponding images derived from
k-space data using the reference image reconstruction algorithm [20,30]. The test data
released by this dataset only contains incomplete k-space matrixes and undersampled
images. Note that the complete original k-space matrix here is the ground truth used in our
reconstruction task. The ground truth (complete k-space matrix) of the test data has not
been released. We need to upload the reconstructed image correctly before we can observe
the test results and the corresponding rankings in the public ranking [18].

Our method was evaluated on the fastMRI single-coil knee joint [20] dataset. This data
set contains original k-space data and DICOM images. The dataset consists of multiple
volumes, and the number of slices in each volume is different, about 36. The training set,
verification set, and test set consist of 973, 199, and 108 volumes. The ground truth of the
test set has not been publicly released.

In the dataset we used, the undersampled images of the training sets and the validation
sets are all in 4× acceleration mode. The undersampling mask includes a fully sampled
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central area, which accounts for 8% of all k-space lines. The rest positions are uniformly
and randomly undersampled to obtain the required acceleration factor on average.

4.2. Loss Function

The output image of the network is expressed as Y, and the ground truth is X. Our
training strategy is to supervise the output of the network in the image domain with ground
truth. The SSIM index is mainly used to measure the structural similarity of two images,
and the specific calculation method is given by [30]. The most important and meaningful
thing in MR images is the structural information, so our reconstruction task is to make the
output image as similar as possible to the ground truth in structure. Based on the above
considerations, the loss function is defined as follows:

Ψ = 1− SSIM(Y, X), (10)

4.3. Implementation Details

The proposed method is implemented with PyTorch framework and is tested on two
NVIDIA Tesla V100 GPUs. We trained 50 epochs in total, and the initial learning rate was 0.001,
which became 0.0001 at the 40th epoch. We use RMSProp optimizer to optimize the network.

We use average structural similarity (SSIM), peak signal to noise ratio (PSNR), and
normalized mean square error (NMSE) to measure the quality of the reconstructed im-
age [31]. The image performance and evaluating indicators on the test set can be seen on
the fastMRI single-coil knee public leader board [18].

4.4. Ablation Study

The DMFF-Net, excluding inter-stage feature compensation structure (IFCS) and cross
network attention block (CNAB), is called the triple convolution network (TCN). DMFF-
Net is TCN+IFCS+CNAB. We verify the effectiveness of the proposed TCN, IFCS, and
CNAB through several ablation experiments, and the experimental results are shown in
Table 1. Here, we take U-Net as the baseline for the comparative experiment. Because our
DMFF-Net contains three stages of sub-networks, we also cascaded U-Net three times for
fair comparison. A soft DC layer is also added behind its sub-network, and the cascaded
network is called U-Net_cascade3. Our ablation experiment and the comparison experiment
with the baseline network were conducted on the validation set, and the experimental
results are shown in Table 2.

Table 1. Ablation experiment. Here we mainly observe the role of each module in our network. IFCS
represents inter-stage feature compensation structure, CNAB represents cross network attention block.
TCN represents the DMFF-Net excluding IFCS and CNAB.

√
indicates that this part is included in

the network used in this experiment.

TCN IFCS CNAB NMSE PSNR SSIM
√

0.03545 32.05 0.7435
√ √

0.03494 32.16 0.7457
√ √

0.03545 32.05 0.7442
√ √ √

0.03486 32.18 0.7463

As can be seen from Table 2, the performance of our TCN network is already better
than that of U-Net and U-Net_cascade3. Our complete network DMFF-Net has much better
performance than U-Net and U-Net_cascade3. No matter whether NMSE, PSNR, or SSIM,
our DMFF-Net has achieved the best results. It can be seen from Table 1 that our three-stage
sub-network is very effective in the reconstruction task, and it also proves the effectiveness
of processing units. From the experimental results, it can be seen that the proposed IFCS is
very effective, obviously improves the quality of reconstruction, and plays a key role in the
network. Our designed CNAB further improves the network performance. Although the
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effect of the CNAB is not obvious when acting alone, it can give full play to its advantages
when cooperating with IFCS.

Table 2. Comparison to baseline network. Here we mainly observe the performance comparison
between the complete network and the baseline network.

NMSE PSNR SSIM

U-Net 0.03828 31.39 0.7313

U-Net_cascade3 0.03599 31.92 0.7393

TCN 0.03545 32.05 0.7435

DMFF-Net 0.03486 32.18 0.7463

In order to see the role of each module in DMFF-Net more intuitively, we drew the
experimental results of NMSE, PSNR, and SSIM respectively, as shown in Figure 6. In order
to compare with the baseline network better, we also drew a comparison chart of SSIM
indicators, as shown in Figure 7.
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4.5. Comparisons with State-of-the-Art Methods

We compared our method with the TV Model [20], KIKI-Net [21], MD-Recon-Net [22],
U-Net Baseline Model [20], XPDNet [23], and i-RIM [24] on the test set data of fastMRI data
set. In addition, we also compared DMFF-Net with MD-Recon-Net, U-Net Baseline Model,
and KIKI-Net in the validation set, because the codes of these networks are all available.

4.5.1. Comparisons on Validation Set

As shown in Figure 8a, the reconstruction performances of DMFF-Net, MD-Recon-Net,
U-Net Baseline Model, and KIKI-Net on the validation set are shown here. It can be seen
intuitively from the figure that from the first epoch to the last epoch, the SSIM of our
DMFF-Net is always significantly higher than that of other methods. This result fully
reflects the advantages and effectiveness of our method. Specifically, the SSIM values of
DMFF-Net, MD-Recon-Net, U-Net Baseline Model, and KIKI-Net are 0.7506, 0.7262, 0.7299,
and 0.7199, respectively.
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4.5.2. Comparisons on Test Set

As mentioned earlier, the test set of the fastMRI data set has not released the ground
truth. We need to upload the reconstruction results of the test set to the leaderboard [18] to
see our reconstruction results. We also achieved a competitive ranking on the leaderboard.
In the following, we mainly compare Zero Filling, TV Model [20], KIKI-Net [21], MD-
Recon-Net [22], U-Net Baseline Model [20], XPD-Net [23], i-RIM [24], and our DMFF-Net
methods from the perspective of SSIM. As shown in Table 3, our DMFF-Net has achieved
the best performance. It can be found that the performance of the i-RIM method here is
also very high. However, it should be noted that the parameter of this network is 275 M,
while our DMFF-Net parameter is only 18.7 M. Therefore, our network has achieved both
lightweight and very high performance. XPD-Net is very prominent in these networks,
and its NMSE and PSNR are the best. The SSIM of XPD-Net does not perform very well,
and its parameters are large, which will cause a lot of computation.
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Table 3. Comparisons with state-of-the-art methods on the test set.

Parameters NMSE PSNR SSIM

Zero Filling – 0.0438 30.5 0.6870

TV-Model [20] – 0.0479 30.7 0.6028

KIKI-Net [21] 1.25 M 0.0296 32.8 0.7520

MD-Recon-Net [22] 0.3 M 0.0272 33.3 0.7590

U-Net Baseline [20] 7.8 M 0.0271 33.2 0.7604

XPD-Net [23] 155 M 0.0251 33.9 0.7763

i-RIM [24] 275 M 0.0271 33.7 0.7807

DMFF-Net 18.7 M 0.0271 33.7 0.7808

In Figure 8b, we drew the curve of the relationship between SSIM and model size (i.e.,
model parameters). Here, the very left of the horizontal axis represents the smallest model
size, and the very top of the vertical axis represents the best SSIM performance. Therefore,
the closer to the upper left corner of the coordinate plane, the more ideal is the model. It can
be seen intuitively that our model is the best among these algorithms. DMFF-Net achieved
very high SSIM performance with relatively small model size, and we achieved the best
balance between reconstruction quality and model size.

To observe the effect of each network reconstruction more intuitively, we placed the
reconstruction results of these networks in Figure 9. It can be seen from Figure 9 that
the effect of the Zero Filling and TV Model is worse than that of deep learning. The
reconstruction effect of U-Net is better than KIKI-Net and MD-Recon-Net, and it can
suppress artifacts in images better. However, the U-Net baseline has the disadvantage of
over-smoothing, and it is easy to lose detailed information. XPD-Net, i-RIM, and DMFF-
Net have not only achieved outstanding effects in suppressing artifacts but also kept the
high-frequency information of images well, showing more detailed textures. Among them,
our DMFF-Net is superior to XPD-Net and i-RIM.
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5. Discussion and Conclusions

In this paper, we rethought the feature utilization methods in the U-Net network from
a macro perspective and proposed a DMFF-Net network for MR image reconstruction.
We used the reconstruction strategy of a triple-stage sub-network to reconstruct high-
quality MR images from undersampled images from coarse to fine. We extended the
skip connection feature compensation of U-Net from inside the network to between the
networks and introduced the feature compensation mechanism of the encoder. Using
the dual feature compensation and cross-stage feature compensation of the encoder and
decoder, we proposed the inter-stage feature compensation structure (IFCS), which fuses
features in a densely macroscopic way between sub-networks and significantly improves
the network encoding and decoding ability. Inspired by the self-attention mechanism, we
put forward the cross network attention block (CNAB) to further improve the quality of
reconstructed images.

To verify the effectiveness of our method, we designed some comparative experiments.
We conducted experiments on the fastMRI dataset and uploaded the results to the fastMRI
single-coil knee public leader board [18] published by Facebook. It can be seen from the
specific data that the final performance of zero filling method is only 0.6870, while that of
TV-model method is only 0.6028. However, the performance of our method reached 0.7808,
which is a great improvement of about 10%. Compared with the current advanced methods,
such as KIKI-Net (0.7520), MD-Recon-Net (0.7590), and U-Net Baseline (0.7604), our method
achieved nearly 3% performance improvement. For the XPD-Net and i-RIM methods with
high performance, although our performance is not much improved, our parameters are
very small in comparison. Our parameters are only 18.7 M, which is 6.7–14.3% of those of
the two methods. This means that the computation for our method is very small, and the
reconstruction speed is greatly improved. The experimental results show that our method
can effectively remove the artifacts in the image, and fully retain the structural details.
Compared with other networks, our method is not only lightweight, but also can achieve
very high performance.
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