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Abstract: Vendor management systems (VMSs) are web-based software packages that can be used to
manage businesses. The performance of the VMSs can be assessed using multi-attribute decision-
making (MADM) techniques under uncertain situations. This article aims to analyze and assess the
performance of VMSs using MADM techniques, especially when the uncertainty is of complex nature.
To achieve the goals, we aim to explore Hany mean (HM) operators in the environment of complex
picture fuzzy (CPF) sets (CPFSs). We introduce CPF Hamy mean (CPFHM) and CPF weighted HM
(CPFWHM) operators. Moreover, the reliability of the newly proposed HM operators is examined by
taking into account the properties of idempotency, monotonicity, and boundedness. A case study
of VMS is briefly discussed, and a comprehensive numerical example is carried out to assess VMSs
using the MADM technique based on CPFHM operators. The sensitivity analysis and comprehensive
comparative analysis of the proposed work are discussed to point out the significance of the newly
established results.

Keywords: ambiguous and vague information; complex picture fuzzy numbers; Hamy mean operators;
multi-attribute decision-making technique; vendor management systems

1. Introduction

The majority of fields, including engineering, economics, and management, involve
some type of decision-making difficulties. All of the information about using the alter-
natives has been traditionally thought to be taken in the form of unambiguous numbers.
The processing of the data fuzziness and uncertainty is essential because they change
regularly in real-life scenarios. A VMS is a tool that allows businesses to manage every
step of the vendor management process, from the initial point of interaction through the
final steps of concluding a sale or establishing a new business relationship. They typically
feature particular modules or apps that deal with procedures such as on-boarding new
vendors or processing vendor payments because they have a modular approach. Many
aspects can move in vendor relationship management. There are purchase orders, purchase
requisitions, order confirmations, performance monitoring, vendor screening procedures,
and so on.

The decision-making technique plays a vital role in the process of aggregating infor-
mation and creates a lot of interactions for several research scholars. Every field is full of
uncertain, imprecise, and hazy information. To deal with human opinion in the form of
uncertain and vague information, Zadeh [1] gave the concept of a fuzzy set (FS) with a
degree of truth index (TI). El-Bably and Abo-Tabl [2,3] presented an innovative concept of
FSs in the frame work of a rough set under some topological reduction. El Sayed et al. [4]
explored the theory of topological techniques to handle the current situations of COVID-19
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by using the model of nano-topology. Atanassov [5] generalized the theory of FS in the
framework of an intuitionistic fuzzy set (IFS) having TI and falsity index (FI), where the
sum of TI
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of FSs in the frame work of a rough set under some topological reduction. El Sayed et al. 
[4] explored the theory of topological techniques to handle the current situations of 
COVID-19 by using the model of nano-topology. Atanassov [5] generalized the theory of 
FS in the framework of an intuitionistic fuzzy set (IFS) having TI and falsity index 
(FI),where the sum of TI ὕ 𝜚  and FI Ὗ 𝜚  restricted is less and equal to 0 and 1, i.e., 0 ≤ ὕ 𝜚 + Ὗ 𝜚 ≤ 1. In some scenarios IFS has failed; if the TI is 0.65 and FI is 0.55, then 
the sum of TI and FI is 0.65 + 0.55 = 1.2 ∉ [0, 1]. To cope with this situation, Yager [6] 
presented the concepts of a Pythagorean fuzzy set (PyFS); according to PyFS, the sum of 
the square of TI and FI are less than or equal to 0 and 1, and from the above example, 0 ≤ὕ 𝜚 + Ὗ 𝜚 ≤ 1, so 0.65 + 0.55 = 0.73 ∈ [0, 1]. Yager [7] also developed the con-
cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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(0.65)2 + (0.55)2 = 0.73 ∈ [0, 1]. Yager [7] also developed the concept of a q-rung orthopair
fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong [8,9] introduced a new concept
of picture fuzzy (PF) set (PFS), which contains four types of characteristic functions, TI,
abstinence index (AI), FI, and refusal index (RI). The structure of PFS has the sum of three
terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. [10] generalized the concepts of
PFSs in the framework of PF rough sets to solve real-life problems under the system of
MADM techniques. Several research scholars worked in different fields of research to find
the limitations of the above-discussed phenomenon seen in [11–14].

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to
recognize how to deal with ambiguity and uncertainty in complex information. Several
research scholars presented their research methodologies to solve MADM techniques. For
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16]
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and
Deb [17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the operations
of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained a
new technique of AOs by using the VIKOR method in the environment of complex q-rung
orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophantine
FSs and solve a MADM technique to investigate a suitable candidate for a multinational
company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new AOs
by using the operations of Hamacher TNM and TCNM under the system interval-valued
IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic operations of
Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational company.
Liu et al. [23] generalized similarity measures based on interval-valued PFS (IVPFS) and
studied a MADM technique to solve real-life problems. Mahmood et al. [24] established a
series of new AOs based on the bipolar valued fuzzy hesitant system and their special cases.
Garg [25] explained some new AOs based on PFSs and also studied a MADM technique
to solve a numerical example related to our daily life. Wei [26] presented some AOs of
arithmetic and geometric operators by utilizing the basic operations of Hamacher TNM
and TCNM. We also studied the theory of generalized FS in different fuzzy environments
seen in references [27–30].

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these
works consider the data under the FS, IFSs, or their modifications, which are only to handle
the uncertainty and vagueness that exist in the data. The partial ignorance of the data
and their variations at a specific point in the time during implementation, however, is
something that none of the existing models is capable of recognizing. Additionally, in
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and
ambiguity that is present in the data. There is information loss during the process as a result
of the present theories’ inability to adequately account for this information. To overcome
this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the range
of the TI is expanding from real numbers to complex numbers with the unit circle. Tradi-
tionally, fuzzy logic was generalized to complex fuzzy logic by Ramot et al. [32] in which
the sets employed in the reasoning process are CFSs, characterized by complex-valued TI
functions. In a later study, Greenfield et al. expanded on the CFS idea by considering the TI
as an interval number rather than a single integer. A systematic review of CFSs and logic
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was done by Yazdanbakhsh and Dick [33], and they explained their finding. Alkouri and
Salleh [34] extended the concepts of CFS in the framework of complex IFS (CIFS) by adding
the new term of FI in CFS. They extended the range of both TI and FI to a unit circle in a
complex system. Furthermore, they defined fundamental operations of CIFS such as union,
intersection, and complement of CIFSs. Garg and Rani [35] utilized the MADM technique
to solve real life problems by using the AOs of complex IFSs. Ullah et al. [36] generalized
the concepts of CFS and CIFS in the framework of complex PyFS to find distance measures
by using the technique of pattern recognition. Liu et al. [37] presented a new concepts of
complex q-ROFS (Cq-ROFS) by the generalization of CPyFSs with sum of qth power of TI
and FI. Rong et al. [38] developed a new list of AOs of MacLaurin symmetric mean opera-
tors under the system of Cq-ROFS. Akram et al. [39] proposed a new theory of complex
PFS (CPFS), as an extension of CFSs, CIFSs, CPyFSs, and Cq-ROFSs by utilizing the basic
operations of Hamacher AOs.

The HM tools are used to aggregate uncertain and vague information in a different
framework of fuzzy environment. Firstly, the theory of HM operators was discovered by
Hara et al. [40] in 1998. He obtained different inequalities by classifying the arithmetic
and geometric inequalities. Recently a lot of research done on this topic. Qin [41] explored
the concept of HM operator to cope with vagueness and imprecision under the system of
interval type 2-fuzzy and he also discussed their application based on MADM techniques.
Wu et al. [42] expanded the ideas of HM operators in the framework of interval-valued
intuitionistic fuzzy Dombi HM operators to find suitable tourism destinations. Li et al. [43]
utilized the theory of HM operator to select a suitable supplier for a motor vehicle under
the system of IFSs. Wu et al. [44] also explored the concepts of HM operators in a new
research area to evaluate construction engineering schemes based on the 2-tuple linguistic
neutrosophic system. Li et al. [45] provided some new AOs by using the operational laws of
HM operators based on PyFSs and also established an application to find the best supplier
system based on the MADM technique. Liu et al. [46] also introduced some new AOs of IF
uncertain linguistic HM operators with an application of a healthcare waste administration
authority. Wu et al. [47] elaborated the concept of HM and dual HM (DHM) operators to
develop a series of new AOs based on IVIFSs and also discussed an application to find the
best tourism place. Wang et al. [48] developed some AOs by using the idea of HM and
DHM operators under the system of q-rung orthopair fuzzy sets and gave an application
for the selection of enterprise resource management authority. Xing et al. [49] developed
some AOs to handle uncertain and vague information by using new operational laws of
interactive HM and DHM operators. Sinani et al. [50] introduced a series of AOs by using
the operation operator based on rough numbers. Wei et al. [51] developed some AOs
to fuse uncertain information under the system of dual hesitant PyFSs with the help of
the MADM approaches. Liu et al. [52] presented some convenient AOs by generalizing
the concept of HM and DHM tools in the framework of interval neutrosophic power sets.
Garg et al. [53] illustrated a list of AOs by using the operations of HM operators in the
framework of a q-rung orthopair fuzzy set (q-ROFS). Ali et al. [54] presented a series of
AOs by utilizing the theory of HM operators under the system of complex interval-valued
q-ROFS (CIVq-ROFSs).

Keeping in mind the significance of CPFSs, we developed some new AOs by using the
concept of the HM tool in the framework of CPFS. A CPFS has two aspects of information
in the form of amplitude terms and phase terms of TI, AI, and FI. In this article, a list of
AOs discusses CPFHM, CPFWHM, CPFDHM and CPFWDHM operators with some basic
properties such as idempotency, monotonicity, and boundedness. We also study some
numerical examples to support our proposed methodologies. We established an application
based on VMS to find the flexibility and reliability of our proposed techniques. With the
help of a practical numerical example, we evaluate suitable software for VMS. To check
validity and compatibility, we study a comprehensive comparative study to contrast the
results of existing AOs with the results of the discussed technique.
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The structure of this article is organized as follows: In Section 1, we review the history
of our research work for the improvement of this article. In Section 2, we study all the
notions related to PFSs, CPFSs, and their basic operations. In Section 3, we recall existing
concepts of HM and GHM operators and also discuss their basic properties. In Section 4,
we utilize the basic operations of HM operators to introduce some new AOs such as
CPFHM and CPFWHM operators with their characteristics. In Section 5, we also present
some new AOs of CPFGHM and CPFWGHM operators. We also present some numerical
examples to find the feasibility of our proposed approaches. In Section 6, we establish a
strategy for the MADM process under the system of CPFSs. We also provide an application
in the framework of VMS. To check the competitiveness and flexibility of our proposed
AOs, we illustrate a numerical example based on CPF information. In Section 7, to find
the validity and rationality of our proposed work, we make comparison results of our
proposed approaches with some existing AOs. In Section 8, we summarize the whole article
in a paragraph.

2. Preliminaries

This section aims to recall notions of PFSs, CPFSs, and their basic operational laws.
We applied these operational laws to develop our proposed methodology. First, we want
to define the meaning of some symbols and letters in Table 1, as follows.

Table 1. Symbols and their meanings.

Symbols Meanings Symbols Meanings
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Definition 4. Consider 𝐼 = ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒  is a CPFV. Then 
score functions are defined as: 
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where Ą 𝐼 ∈ [0,2]. 
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function is defined as follows: 

Ŝ 𝐼 = 3 + 0.30 − 0.17 − 0.42 + 0.09 − 0.12 − 0.32  6 = 0.3050 ∈ [0,1] 
Ŝ 𝐼 = 3 + 0.68 − 0.07 − 0.16 + 0.29 − 0.52 − 0.06  6 = 0.3550 ∈ [0,1] 
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(6)

Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

n Binomial Coefficient

E CPFS
√
−1 Unit circle

ψµ Truth Index of phase term ŕE Hesitancy Index

ϕA Abstinence Index of phase term I Complement of CPFV

The concepts of PFSs were developed by Cuong [8] and is given as follows:

Definition 1. [8] Consider
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degree of truth index (TI). El-Bably and Abo-Tabl [2,3] presented an innovative concept 
of FSs in the frame work of a rough set under some topological reduction. El Sayed et al. 
[4] explored the theory of topological techniques to handle the current situations of 
COVID-19 by using the model of nano-topology. Atanassov [5] generalized the theory of 
FS in the framework of an intuitionistic fuzzy set (IFS) having TI and falsity index 
(FI),where the sum of TI ὕ 𝜚  and FI Ὗ 𝜚  restricted is less and equal to 0 and 1, i.e., 0 ≤ ὕ 𝜚 + Ὗ 𝜚 ≤ 1. In some scenarios IFS has failed; if the TI is 0.65 and FI is 0.55, then 
the sum of TI and FI is 0.65 + 0.55 = 1.2 ∉ [0, 1]. To cope with this situation, Yager [6] 
presented the concepts of a Pythagorean fuzzy set (PyFS); according to PyFS, the sum of 
the square of TI and FI are less than or equal to 0 and 1, and from the above example, 0 ≤ὕ 𝜚 + Ὗ 𝜚 ≤ 1, so 0.65 + 0.55 = 0.73 ∈ [0, 1]. Yager [7] also developed the con-
cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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With the help of a practical numerical example, we evaluate suitable software for VMS. 
To check validity and compatibility, we study a comprehensive comparative study to con-
trast the results of existing AOs with the results of the discussed technique. 

The structure of this article is organized as follows: In Section 1, we review the history 
of our research work for the improvement of this article. In Section 2, we study all the 
notions related to PFSs, CPFSs, and their basic operations. In Section 3, we recall existing 
concepts of HM and GHM operators and also discuss their basic properties. In Section 4, 
we utilize the basic operations of HM operators to introduce some new AOs such as 
CPFHM and CPFWHM operators with their characteristics. In Section 5, we also present 
some new AOs of CPFGHM and CPFWGHM operators. We also present some numerical 
examples to find the feasibility of our proposed approaches. In Section 6, we establish a 
strategy for the MADM process under the system of CPFSs. We also provide an applica-
tion in the framework of VMS. To check the competitiveness and flexibility of our pro-
posed AOs, we illustrate a numerical example based on CPF information. In Section 7, to 
find the validity and rationality of our proposed work, we make comparison results of 
our proposed approaches with some existing AOs. In Section 8, we summarize the whole 
article in a paragraph. 

2. Preliminaries 
This section aims to recall notions of PFSs, CPFSs, and their basic operational laws. 

We applied these operational laws to develop our proposed methodology. First, we want 
to define the meaning of some symbols and letters in Table 1, as follows. 

Table 1. Symbols and their meanings. 

Symbols Meanings Symbols Meanings Ǖ Universal set 𝜙  Falsity Index of phase term 𝜚 Element belonging to Universal set Ŝ Score function ὕ  Truth Index/ (TI) of amplitude term Ą Accuracy function ἒ  Abstinence Index /(AI) of amplitude 
term 

𝔑  Weight vector Ὗ  Falsity Index/(FI) of amplitude term 𝐶ɰ Binomial Coefficient 𝔈 CPFS  √−1 Unit circle 𝜓  Truth Index of phase term ŕ𝔈 Hesitancy Index 𝜑  Abstinence Index of phase term 𝐼 ̅ Complement of CPFV 

The concepts of PFSs were developed by Cuong [8] and is given as follows: 

Definition 1. [8] Consider Ǖ to be an empty set. A PFS ƴ is defined as: ƴ = 𝜚, ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 |𝜚  

where ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 ∈ [0,1]. Truth index is denoted (TI) by the ὕ 𝜚 , abstinence index (AI) 
is denoted by the ἒ 𝜚 , and falsity index (FI) is denoted by the Ὗ 𝜚 , such that: 0 < ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 < 1 

A picture fuzzy value (PFV) represented by 𝒯 = ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 . 

The theory of the following Definition was proposed by Akram et al. [39]. 

Definition 2. [39] A CPFS is formed as: 𝔈 = 𝜚, ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 |𝜚 ∈ Ǖ , 𝑖 = √−1 
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of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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With the help of a practical numerical example, we evaluate suitable software for VMS. 
To check validity and compatibility, we study a comprehensive comparative study to con-
trast the results of existing AOs with the results of the discussed technique. 

The structure of this article is organized as follows: In Section 1, we review the history 
of our research work for the improvement of this article. In Section 2, we study all the 
notions related to PFSs, CPFSs, and their basic operations. In Section 3, we recall existing 
concepts of HM and GHM operators and also discuss their basic properties. In Section 4, 
we utilize the basic operations of HM operators to introduce some new AOs such as 
CPFHM and CPFWHM operators with their characteristics. In Section 5, we also present 
some new AOs of CPFGHM and CPFWGHM operators. We also present some numerical 
examples to find the feasibility of our proposed approaches. In Section 6, we establish a 
strategy for the MADM process under the system of CPFSs. We also provide an applica-
tion in the framework of VMS. To check the competitiveness and flexibility of our pro-
posed AOs, we illustrate a numerical example based on CPF information. In Section 7, to 
find the validity and rationality of our proposed work, we make comparison results of 
our proposed approaches with some existing AOs. In Section 8, we summarize the whole 
article in a paragraph. 

2. Preliminaries 
This section aims to recall notions of PFSs, CPFSs, and their basic operational laws. 

We applied these operational laws to develop our proposed methodology. First, we want 
to define the meaning of some symbols and letters in Table 1, as follows. 

Table 1. Symbols and their meanings. 

Symbols Meanings Symbols Meanings Ǖ Universal set 𝜙  Falsity Index of phase term 𝜚 Element belonging to Universal set Ŝ Score function ὕ  Truth Index/ (TI) of amplitude term Ą Accuracy function ἒ  Abstinence Index /(AI) of amplitude 
term 

𝔑  Weight vector Ὗ  Falsity Index/(FI) of amplitude term 𝐶ɰ Binomial Coefficient 𝔈 CPFS  √−1 Unit circle 𝜓  Truth Index of phase term ŕ𝔈 Hesitancy Index 𝜑  Abstinence Index of phase term 𝐼 ̅ Complement of CPFV 

The concepts of PFSs were developed by Cuong [8] and is given as follows: 

Definition 1. [8] Consider Ǖ to be an empty set. A PFS ƴ is defined as: ƴ = 𝜚, ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 |𝜚  

where ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 ∈ [0,1]. Truth index is denoted (TI) by the ὕ 𝜚 , abstinence index (AI) 
is denoted by the ἒ 𝜚 , and falsity index (FI) is denoted by the Ὗ 𝜚 , such that: 0 < ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 < 1 

A picture fuzzy value (PFV) represented by 𝒯 = ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 . 

The theory of the following Definition was proposed by Akram et al. [39]. 

Definition 2. [39] A CPFS is formed as: 𝔈 = 𝜚, ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 |𝜚 ∈ Ǖ , 𝑖 = √−1 
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degree of truth index (TI). El-Bably and Abo-Tabl [2,3] presented an innovative concept 
of FSs in the frame work of a rough set under some topological reduction. El Sayed et al. 
[4] explored the theory of topological techniques to handle the current situations of 
COVID-19 by using the model of nano-topology. Atanassov [5] generalized the theory of 
FS in the framework of an intuitionistic fuzzy set (IFS) having TI and falsity index 
(FI),where the sum of TI ὕ 𝜚  and FI Ὗ 𝜚  restricted is less and equal to 0 and 1, i.e., 0 ≤ ὕ 𝜚 + Ὗ 𝜚 ≤ 1. In some scenarios IFS has failed; if the TI is 0.65 and FI is 0.55, then 
the sum of TI and FI is 0.65 + 0.55 = 1.2 ∉ [0, 1]. To cope with this situation, Yager [6] 
presented the concepts of a Pythagorean fuzzy set (PyFS); according to PyFS, the sum of 
the square of TI and FI are less than or equal to 0 and 1, and from the above example, 0 ≤ὕ 𝜚 + Ὗ 𝜚 ≤ 1, so 0.65 + 0.55 = 0.73 ∈ [0, 1]. Yager [7] also developed the con-
cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
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established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
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of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
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works consider the data under the FS, IFSs, or their modifications, which are only to han-
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result of the present theories’ inability to adequately account for this information. To over-
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some new AOs of CPFGHM and CPFWGHM operators. We also present some numerical 
examples to find the feasibility of our proposed approaches. In Section 6, we establish a 
strategy for the MADM process under the system of CPFSs. We also provide an applica-
tion in the framework of VMS. To check the competitiveness and flexibility of our pro-
posed AOs, we illustrate a numerical example based on CPF information. In Section 7, to 
find the validity and rationality of our proposed work, we make comparison results of 
our proposed approaches with some existing AOs. In Section 8, we summarize the whole 
article in a paragraph. 

2. Preliminaries 
This section aims to recall notions of PFSs, CPFSs, and their basic operational laws. 

We applied these operational laws to develop our proposed methodology. First, we want 
to define the meaning of some symbols and letters in Table 1, as follows. 

Table 1. Symbols and their meanings. 

Symbols Meanings Symbols Meanings Ǖ Universal set 𝜙  Falsity Index of phase term 𝜚 Element belonging to Universal set Ŝ Score function ὕ  Truth Index/ (TI) of amplitude term Ą Accuracy function ἒ  Abstinence Index /(AI) of amplitude 
term 

𝔑  Weight vector Ὗ  Falsity Index/(FI) of amplitude term 𝐶ɰ Binomial Coefficient 𝔈 CPFS  √−1 Unit circle 𝜓  Truth Index of phase term ŕ𝔈 Hesitancy Index 𝜑  Abstinence Index of phase term 𝐼 ̅ Complement of CPFV 

The concepts of PFSs were developed by Cuong [8] and is given as follows: 

Definition 1. [8] Consider Ǖ to be an empty set. A PFS ƴ is defined as: ƴ = 𝜚, ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 |𝜚  

where ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 ∈ [0,1]. Truth index is denoted (TI) by the ὕ 𝜚 , abstinence index (AI) 
is denoted by the ἒ 𝜚 , and falsity index (FI) is denoted by the Ὗ 𝜚 , such that: 0 < ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 < 1 

A picture fuzzy value (PFV) represented by 𝒯 = ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 . 

The theory of the following Definition was proposed by Akram et al. [39]. 

Definition 2. [39] A CPFS is formed as: 𝔈 = 𝜚, ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 |𝜚 ∈ Ǖ , 𝑖 = √−1 

,

A hesitancy index of a CPFS ŕE is denoted by ŕE = 1 −
(
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cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
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[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
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ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
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company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
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something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
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come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
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daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
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dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
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daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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degree of truth index (TI). El-Bably and Abo-Tabl [2,3] presented an innovative concept 
of FSs in the frame work of a rough set under some topological reduction. El Sayed et al. 
[4] explored the theory of topological techniques to handle the current situations of 
COVID-19 by using the model of nano-topology. Atanassov [5] generalized the theory of 
FS in the framework of an intuitionistic fuzzy set (IFS) having TI and falsity index 
(FI),where the sum of TI ὕ 𝜚  and FI Ὗ 𝜚  restricted is less and equal to 0 and 1, i.e., 0 ≤ ὕ 𝜚 + Ὗ 𝜚 ≤ 1. In some scenarios IFS has failed; if the TI is 0.65 and FI is 0.55, then 
the sum of TI and FI is 0.65 + 0.55 = 1.2 ∉ [0, 1]. To cope with this situation, Yager [6] 
presented the concepts of a Pythagorean fuzzy set (PyFS); according to PyFS, the sum of 
the square of TI and FI are less than or equal to 0 and 1, and from the above example, 0 ≤ὕ 𝜚 + Ὗ 𝜚 ≤ 1, so 0.65 + 0.55 = 0.73 ∈ [0, 1]. Yager [7] also developed the con-
cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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With the help of a practical numerical example, we evaluate suitable software for VMS. 
To check validity and compatibility, we study a comprehensive comparative study to con-
trast the results of existing AOs with the results of the discussed technique. 

The structure of this article is organized as follows: In Section 1, we review the history 
of our research work for the improvement of this article. In Section 2, we study all the 
notions related to PFSs, CPFSs, and their basic operations. In Section 3, we recall existing 
concepts of HM and GHM operators and also discuss their basic properties. In Section 4, 
we utilize the basic operations of HM operators to introduce some new AOs such as 
CPFHM and CPFWHM operators with their characteristics. In Section 5, we also present 
some new AOs of CPFGHM and CPFWGHM operators. We also present some numerical 
examples to find the feasibility of our proposed approaches. In Section 6, we establish a 
strategy for the MADM process under the system of CPFSs. We also provide an applica-
tion in the framework of VMS. To check the competitiveness and flexibility of our pro-
posed AOs, we illustrate a numerical example based on CPF information. In Section 7, to 
find the validity and rationality of our proposed work, we make comparison results of 
our proposed approaches with some existing AOs. In Section 8, we summarize the whole 
article in a paragraph. 
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to define the meaning of some symbols and letters in Table 1, as follows. 

Table 1. Symbols and their meanings. 
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The concepts of PFSs were developed by Cuong [8] and is given as follows: 

Definition 1. [8] Consider Ǖ to be an empty set. A PFS ƴ is defined as: ƴ = 𝜚, ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 |𝜚  

where ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 ∈ [0,1]. Truth index is denoted (TI) by the ὕ 𝜚 , abstinence index (AI) 
is denoted by the ἒ 𝜚 , and falsity index (FI) is denoted by the Ὗ 𝜚 , such that: 0 < ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 < 1 

A picture fuzzy value (PFV) represented by 𝒯 = ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 . 

The theory of the following Definition was proposed by Akram et al. [39]. 

Definition 2. [39] A CPFS is formed as: 𝔈 = 𝜚, ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 |𝜚 ∈ Ǖ , 𝑖 = √−1 
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generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
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The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
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something that none of the existing models is capable of recognizing. Additionally, in 
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[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 

µ1($) ∧

Electronics 2022, 11, x FOR PEER REVIEW 2 of 34 
 

 

degree of truth index (TI). El-Bably and Abo-Tabl [2,3] presented an innovative concept 
of FSs in the frame work of a rough set under some topological reduction. El Sayed et al. 
[4] explored the theory of topological techniques to handle the current situations of 
COVID-19 by using the model of nano-topology. Atanassov [5] generalized the theory of 
FS in the framework of an intuitionistic fuzzy set (IFS) having TI and falsity index 
(FI),where the sum of TI ὕ 𝜚  and FI Ὗ 𝜚  restricted is less and equal to 0 and 1, i.e., 0 ≤ ὕ 𝜚 + Ὗ 𝜚 ≤ 1. In some scenarios IFS has failed; if the TI is 0.65 and FI is 0.55, then 
the sum of TI and FI is 0.65 + 0.55 = 1.2 ∉ [0, 1]. To cope with this situation, Yager [6] 
presented the concepts of a Pythagorean fuzzy set (PyFS); according to PyFS, the sum of 
the square of TI and FI are less than or equal to 0 and 1, and from the above example, 0 ≤ὕ 𝜚 + Ὗ 𝜚 ≤ 1, so 0.65 + 0.55 = 0.73 ∈ [0, 1]. Yager [7] also developed the con-
cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 

µ2($)) e2iπ(ψµ1 ($)∧ψµ2 ($)), (

Electronics 2022, 11, x FOR PEER REVIEW 4 of 34 
 

 

With the help of a practical numerical example, we evaluate suitable software for VMS. 
To check validity and compatibility, we study a comprehensive comparative study to con-
trast the results of existing AOs with the results of the discussed technique. 

The structure of this article is organized as follows: In Section 1, we review the history 
of our research work for the improvement of this article. In Section 2, we study all the 
notions related to PFSs, CPFSs, and their basic operations. In Section 3, we recall existing 
concepts of HM and GHM operators and also discuss their basic properties. In Section 4, 
we utilize the basic operations of HM operators to introduce some new AOs such as 
CPFHM and CPFWHM operators with their characteristics. In Section 5, we also present 
some new AOs of CPFGHM and CPFWGHM operators. We also present some numerical 
examples to find the feasibility of our proposed approaches. In Section 6, we establish a 
strategy for the MADM process under the system of CPFSs. We also provide an applica-
tion in the framework of VMS. To check the competitiveness and flexibility of our pro-
posed AOs, we illustrate a numerical example based on CPF information. In Section 7, to 
find the validity and rationality of our proposed work, we make comparison results of 
our proposed approaches with some existing AOs. In Section 8, we summarize the whole 
article in a paragraph. 

2. Preliminaries 
This section aims to recall notions of PFSs, CPFSs, and their basic operational laws. 

We applied these operational laws to develop our proposed methodology. First, we want 
to define the meaning of some symbols and letters in Table 1, as follows. 

Table 1. Symbols and their meanings. 

Symbols Meanings Symbols Meanings Ǖ Universal set 𝜙  Falsity Index of phase term 𝜚 Element belonging to Universal set Ŝ Score function ὕ  Truth Index/ (TI) of amplitude term Ą Accuracy function ἒ  Abstinence Index /(AI) of amplitude 
term 

𝔑  Weight vector Ὗ  Falsity Index/(FI) of amplitude term 𝐶ɰ Binomial Coefficient 𝔈 CPFS  √−1 Unit circle 𝜓  Truth Index of phase term ŕ𝔈 Hesitancy Index 𝜑  Abstinence Index of phase term 𝐼 ̅ Complement of CPFV 

The concepts of PFSs were developed by Cuong [8] and is given as follows: 

Definition 1. [8] Consider Ǖ to be an empty set. A PFS ƴ is defined as: ƴ = 𝜚, ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 |𝜚  

where ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 ∈ [0,1]. Truth index is denoted (TI) by the ὕ 𝜚 , abstinence index (AI) 
is denoted by the ἒ 𝜚 , and falsity index (FI) is denoted by the Ὗ 𝜚 , such that: 0 < ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 < 1 

A picture fuzzy value (PFV) represented by 𝒯 = ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 . 

The theory of the following Definition was proposed by Akram et al. [39]. 

Definition 2. [39] A CPFS is formed as: 𝔈 = 𝜚, ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 |𝜚 ∈ Ǖ , 𝑖 = √−1 
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degree of truth index (TI). El-Bably and Abo-Tabl [2,3] presented an innovative concept 
of FSs in the frame work of a rough set under some topological reduction. El Sayed et al. 
[4] explored the theory of topological techniques to handle the current situations of 
COVID-19 by using the model of nano-topology. Atanassov [5] generalized the theory of 
FS in the framework of an intuitionistic fuzzy set (IFS) having TI and falsity index 
(FI),where the sum of TI ὕ 𝜚  and FI Ὗ 𝜚  restricted is less and equal to 0 and 1, i.e., 0 ≤ ὕ 𝜚 + Ὗ 𝜚 ≤ 1. In some scenarios IFS has failed; if the TI is 0.65 and FI is 0.55, then 
the sum of TI and FI is 0.65 + 0.55 = 1.2 ∉ [0, 1]. To cope with this situation, Yager [6] 
presented the concepts of a Pythagorean fuzzy set (PyFS); according to PyFS, the sum of 
the square of TI and FI are less than or equal to 0 and 1, and from the above example, 0 ≤ὕ 𝜚 + Ὗ 𝜚 ≤ 1, so 0.65 + 0.55 = 0.73 ∈ [0, 1]. Yager [7] also developed the con-
cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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the square of TI and FI are less than or equal to 0 and 1, and from the above example, 0 ≤ὕ 𝜚 + Ὗ 𝜚 ≤ 1, so 0.65 + 0.55 = 0.73 ∈ [0, 1]. Yager [7] also developed the con-
cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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With the help of a practical numerical example, we evaluate suitable software for VMS. 
To check validity and compatibility, we study a comprehensive comparative study to con-
trast the results of existing AOs with the results of the discussed technique. 

The structure of this article is organized as follows: In Section 1, we review the history 
of our research work for the improvement of this article. In Section 2, we study all the 
notions related to PFSs, CPFSs, and their basic operations. In Section 3, we recall existing 
concepts of HM and GHM operators and also discuss their basic properties. In Section 4, 
we utilize the basic operations of HM operators to introduce some new AOs such as 
CPFHM and CPFWHM operators with their characteristics. In Section 5, we also present 
some new AOs of CPFGHM and CPFWGHM operators. We also present some numerical 
examples to find the feasibility of our proposed approaches. In Section 6, we establish a 
strategy for the MADM process under the system of CPFSs. We also provide an applica-
tion in the framework of VMS. To check the competitiveness and flexibility of our pro-
posed AOs, we illustrate a numerical example based on CPF information. In Section 7, to 
find the validity and rationality of our proposed work, we make comparison results of 
our proposed approaches with some existing AOs. In Section 8, we summarize the whole 
article in a paragraph. 

2. Preliminaries 
This section aims to recall notions of PFSs, CPFSs, and their basic operational laws. 

We applied these operational laws to develop our proposed methodology. First, we want 
to define the meaning of some symbols and letters in Table 1, as follows. 

Table 1. Symbols and their meanings. 

Symbols Meanings Symbols Meanings Ǖ Universal set 𝜙  Falsity Index of phase term 𝜚 Element belonging to Universal set Ŝ Score function ὕ  Truth Index/ (TI) of amplitude term Ą Accuracy function ἒ  Abstinence Index /(AI) of amplitude 
term 

𝔑  Weight vector Ὗ  Falsity Index/(FI) of amplitude term 𝐶ɰ Binomial Coefficient 𝔈 CPFS  √−1 Unit circle 𝜓  Truth Index of phase term ŕ𝔈 Hesitancy Index 𝜑  Abstinence Index of phase term 𝐼 ̅ Complement of CPFV 

The concepts of PFSs were developed by Cuong [8] and is given as follows: 

Definition 1. [8] Consider Ǖ to be an empty set. A PFS ƴ is defined as: ƴ = 𝜚, ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 |𝜚  

where ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 ∈ [0,1]. Truth index is denoted (TI) by the ὕ 𝜚 , abstinence index (AI) 
is denoted by the ἒ 𝜚 , and falsity index (FI) is denoted by the Ὗ 𝜚 , such that: 0 < ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 < 1 

A picture fuzzy value (PFV) represented by 𝒯 = ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 . 

The theory of the following Definition was proposed by Akram et al. [39]. 

Definition 2. [39] A CPFS is formed as: 𝔈 = 𝜚, ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 |𝜚 ∈ Ǖ , 𝑖 = √−1 
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degree of truth index (TI). El-Bably and Abo-Tabl [2,3] presented an innovative concept 
of FSs in the frame work of a rough set under some topological reduction. El Sayed et al. 
[4] explored the theory of topological techniques to handle the current situations of 
COVID-19 by using the model of nano-topology. Atanassov [5] generalized the theory of 
FS in the framework of an intuitionistic fuzzy set (IFS) having TI and falsity index 
(FI),where the sum of TI ὕ 𝜚  and FI Ὗ 𝜚  restricted is less and equal to 0 and 1, i.e., 0 ≤ ὕ 𝜚 + Ὗ 𝜚 ≤ 1. In some scenarios IFS has failed; if the TI is 0.65 and FI is 0.55, then 
the sum of TI and FI is 0.65 + 0.55 = 1.2 ∉ [0, 1]. To cope with this situation, Yager [6] 
presented the concepts of a Pythagorean fuzzy set (PyFS); according to PyFS, the sum of 
the square of TI and FI are less than or equal to 0 and 1, and from the above example, 0 ≤ὕ 𝜚 + Ὗ 𝜚 ≤ 1, so 0.65 + 0.55 = 0.73 ∈ [0, 1]. Yager [7] also developed the con-
cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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}
where symbol ∧ and ∨ represent the minimum and maximum respectively.

Definition 4. Consider I =
(
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valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 

µ($)e2πiψµ($),

Electronics 2022, 11, x FOR PEER REVIEW 4 of 34 
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degree of truth index (TI). El-Bably and Abo-Tabl [2,3] presented an innovative concept 
of FSs in the frame work of a rough set under some topological reduction. El Sayed et al. 
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the square of TI and FI are less than or equal to 0 and 1, and from the above example, 0 ≤ὕ 𝜚 + Ὗ 𝜚 ≤ 1, so 0.65 + 0.55 = 0.73 ∈ [0, 1]. Yager [7] also developed the con-
cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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Definition 3. [55] Consider  𝐼 = ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒  , 𝐼 =ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒  and 𝐼 =ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒  be any three CPFSs. Then some basic op-
erational laws are defined as: 
1. 𝐼 ⊆ 𝐼 , if and only if ὕ 𝜚 ≤ ὕ 𝜚 , ἒ 𝜚 ≤  ἒ 𝜚  and Ὗ 𝜚 ≥ Ὗ 𝜚  for ampli-

tude terms and 𝜓 𝜚 ≤ 𝜓 𝜚 , 𝜑 𝜚 ≤ 𝜑 𝜚 , and 𝜙 𝜚 ≥ 𝜙 𝜚  for phase 
terms. For all 𝜚 ∈ Ǖ. 

2. 𝐼 ̅ = 𝜚, ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 |𝜚 ∈ Ǖ  

3. 𝐼 ∩ 𝐼 = 𝜚, ὕ 𝜚 ∧ ὕ 𝜚  𝑒 ∧ , ἒ 𝜚 ∨ἒ 𝜚 𝑒 ∨ , Ὗ 𝜚 ∨ Ὗ 𝜚 𝑒 ∨ |𝜚 ∈ Ǖ  

4. 𝐼 ⊎ 𝐼 = 𝜚, ὕ 𝜚 ∨ ὕ 𝜚  𝑒 ∨ , ἒ 𝜚 ∧ἒ 𝜚 𝑒 ∧ , Ὗ 𝜚 ∧ Ὗ 𝜚 𝑒 ∧ |𝜚 ∈ Ǖ  

where symbol ∧ and ∨ represent the minimum and maximum respectively. 

Definition 4. Consider 𝐼 = ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒  is a CPFV. Then 
score functions are defined as: 

Ŝ 𝐼 = 3 + ὕ 𝜚 − ἒ 𝜚 − Ὗ 𝜚 + 𝜓 𝜚 − 𝜑 𝜚 − 𝜙 𝜚  6  

where Ŝ 𝐼 ∈ [−1,1]. 
Definition 5. Consider 𝐼 = ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒  is a CPFV. Then 
accuracy functions are defined as: 

Ą 𝐼 = ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 + 𝜓 𝜚 + 𝜑 𝜚 + 𝜙 𝜚3  

where Ą 𝐼 ∈ [0,2]. 
Example 1. Let  𝐼 = 0.30𝑒 . , 0.17𝑒 . , 0.42𝑒 . , 𝐼 =0.68𝑒 . , 0.07𝑒 . , 0.16𝑒 .  and 𝐼 =0.37𝑒 . , 0.25𝑒 . , 0.17𝑒 .  be three CPFVs. The score function and accuracy 
function is defined as follows: 

Ŝ 𝐼 = 3 + 0.30 − 0.17 − 0.42 + 0.09 − 0.12 − 0.32  6 = 0.3050 ∈ [0,1] 
Ŝ 𝐼 = 3 + 0.68 − 0.07 − 0.16 + 0.29 − 0.52 − 0.06  6 = 0.3550 ∈ [0,1] 
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the 𝜓 𝜚 , 𝜑 𝜚 , and 𝜙 𝜚 , respectively. A CPFS must satisfy the following condition: 0 ≤ ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 ≤ 1, and 0 ≤ 𝜓 𝜚 + 𝜑 𝜚 + 𝜙 𝜚 ≤ 1, ∀𝜚 ∈ Ǖ, 

A hesitancy index of a CPFS ŕ𝔈  is denoted by ŕ𝔈 = 1 − ὕ 𝜚 + ἒ 𝜚 +Ὗ 𝜚 𝑒 .  Let a complex PFV (CPFV) be denoted by 𝐼 =ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 . 
Definition 3. [55] Consider  𝐼 = ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒  , 𝐼 =ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒  and 𝐼 =ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒  be any three CPFSs. Then some basic op-
erational laws are defined as: 
1. 𝐼 ⊆ 𝐼 , if and only if ὕ 𝜚 ≤ ὕ 𝜚 , ἒ 𝜚 ≤  ἒ 𝜚  and Ὗ 𝜚 ≥ Ὗ 𝜚  for ampli-

tude terms and 𝜓 𝜚 ≤ 𝜓 𝜚 , 𝜑 𝜚 ≤ 𝜑 𝜚 , and 𝜙 𝜚 ≥ 𝜙 𝜚  for phase 
terms. For all 𝜚 ∈ Ǖ. 

2. 𝐼 ̅ = 𝜚, ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 |𝜚 ∈ Ǖ  

3. 𝐼 ∩ 𝐼 = 𝜚, ὕ 𝜚 ∧ ὕ 𝜚  𝑒 ∧ , ἒ 𝜚 ∨ἒ 𝜚 𝑒 ∨ , Ὗ 𝜚 ∨ Ὗ 𝜚 𝑒 ∨ |𝜚 ∈ Ǖ  

4. 𝐼 ⊎ 𝐼 = 𝜚, ὕ 𝜚 ∨ ὕ 𝜚  𝑒 ∨ , ἒ 𝜚 ∧ἒ 𝜚 𝑒 ∧ , Ὗ 𝜚 ∧ Ὗ 𝜚 𝑒 ∧ |𝜚 ∈ Ǖ  

where symbol ∧ and ∨ represent the minimum and maximum respectively. 

Definition 4. Consider 𝐼 = ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒  is a CPFV. Then 
score functions are defined as: 

Ŝ 𝐼 = 3 + ὕ 𝜚 − ἒ 𝜚 − Ὗ 𝜚 + 𝜓 𝜚 − 𝜑 𝜚 − 𝜙 𝜚  6  

where Ŝ 𝐼 ∈ [−1,1]. 
Definition 5. Consider 𝐼 = ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒  is a CPFV. Then 
accuracy functions are defined as: 

Ą 𝐼 = ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 + 𝜓 𝜚 + 𝜑 𝜚 + 𝜙 𝜚3  

where Ą 𝐼 ∈ [0,2]. 
Example 1. Let  𝐼 = 0.30𝑒 . , 0.17𝑒 . , 0.42𝑒 . , 𝐼 =0.68𝑒 . , 0.07𝑒 . , 0.16𝑒 .  and 𝐼 =0.37𝑒 . , 0.25𝑒 . , 0.17𝑒 .  be three CPFVs. The score function and accuracy 
function is defined as follows: 

Ŝ 𝐼 = 3 + 0.30 − 0.17 − 0.42 + 0.09 − 0.12 − 0.32  6 = 0.3050 ∈ [0,1] 
Ŝ 𝐼 = 3 + 0.68 − 0.07 − 0.16 + 0.29 − 0.52 − 0.06  6 = 0.3550 ∈ [0,1] 

(I) ∈ [0, 2].

Example 1. Let I1 =
(

0.30e2πi(0.09), 0.17e2πi(0.12), 0.42e2πi(0.32)
)

, I2 =
(

0.68e2πi(0.29),

0.07e2πi(0.52), 0.16e2πi(0.06)
)

and I3 =
(

0.37e2πi(0.22), 0.25e2πi(0.32), 0.17e2πi(0.09)
)

be three
CPFVs. The score function and accuracy function is defined as follows:

Ŝ(I1) =
(3 + (0.30− 0.17− 0.42) + (0.09− 0.12− 0.32))

6
= 0.3050 ∈ [0, 1]

Ŝ(I2) =
(3 + (0.68− 0.07− 0.16) + (0.29− 0.52− 0.06))

6
= 0.3550 ∈ [0, 1]

Ŝ(I3) =
(3 + (0.37− 0.25− 0.17) + (0.22− 0.32− 0.09))

6
= 0.5433 ∈ [0, 1]

and
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Definition 3. [55] Consider  𝐼 = ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒  , 𝐼 =ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒  and 𝐼 =ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒  be any three CPFSs. Then some basic op-
erational laws are defined as: 
1. 𝐼 ⊆ 𝐼 , if and only if ὕ 𝜚 ≤ ὕ 𝜚 , ἒ 𝜚 ≤  ἒ 𝜚  and Ὗ 𝜚 ≥ Ὗ 𝜚  for ampli-

tude terms and 𝜓 𝜚 ≤ 𝜓 𝜚 , 𝜑 𝜚 ≤ 𝜑 𝜚 , and 𝜙 𝜚 ≥ 𝜙 𝜚  for phase 
terms. For all 𝜚 ∈ Ǖ. 

2. 𝐼 ̅ = 𝜚, ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 |𝜚 ∈ Ǖ  

3. 𝐼 ∩ 𝐼 = 𝜚, ὕ 𝜚 ∧ ὕ 𝜚  𝑒 ∧ , ἒ 𝜚 ∨ἒ 𝜚 𝑒 ∨ , Ὗ 𝜚 ∨ Ὗ 𝜚 𝑒 ∨ |𝜚 ∈ Ǖ  

4. 𝐼 ⊎ 𝐼 = 𝜚, ὕ 𝜚 ∨ ὕ 𝜚  𝑒 ∨ , ἒ 𝜚 ∧ἒ 𝜚 𝑒 ∧ , Ὗ 𝜚 ∧ Ὗ 𝜚 𝑒 ∧ |𝜚 ∈ Ǖ  

where symbol ∧ and ∨ represent the minimum and maximum respectively. 

Definition 4. Consider 𝐼 = ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒  is a CPFV. Then 
score functions are defined as: 

Ŝ 𝐼 = 3 + ὕ 𝜚 − ἒ 𝜚 − Ὗ 𝜚 + 𝜓 𝜚 − 𝜑 𝜚 − 𝜙 𝜚  6  

where Ŝ 𝐼 ∈ [−1,1]. 
Definition 5. Consider 𝐼 = ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒  is a CPFV. Then 
accuracy functions are defined as: 

Ą 𝐼 = ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 + 𝜓 𝜚 + 𝜑 𝜚 + 𝜙 𝜚3  

where Ą 𝐼 ∈ [0,2]. 
Example 1. Let  𝐼 = 0.30𝑒 . , 0.17𝑒 . , 0.42𝑒 . , 𝐼 =0.68𝑒 . , 0.07𝑒 . , 0.16𝑒 .  and 𝐼 =0.37𝑒 . , 0.25𝑒 . , 0.17𝑒 .  be three CPFVs. The score function and accuracy 
function is defined as follows: 

Ŝ 𝐼 = 3 + 0.30 − 0.17 − 0.42 + 0.09 − 0.12 − 0.32  6 = 0.3050 ∈ [0,1] 
Ŝ 𝐼 = 3 + 0.68 − 0.07 − 0.16 + 0.29 − 0.52 − 0.06  6 = 0.3550 ∈ [0,1] 

(I1) =
(0.30 + 0.17 + 0.42) + (0.09 + 0.12 + 0.32)

3
= 0.6500 ∈ [0, 1]
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where  ὕ 𝜚 , ἒ 𝜚  and  Ὗ 𝜚 ∈ [0,1]  be amplitude terms and 𝜓 𝜚 , 𝜑 𝜚 ,  and 𝜙 𝜚 ∈[0,1] be the phase terms. TI, AI, and FI for amplitude terms are represented by the ὕ 𝜚 , ἒ 𝜚  
and  Ὗ 𝜚 , respectively. Similarly, TI, AI and FI for phase terms are represented by 
the 𝜓 𝜚 , 𝜑 𝜚 , and 𝜙 𝜚 , respectively. A CPFS must satisfy the following condition: 0 ≤ ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 ≤ 1, and 0 ≤ 𝜓 𝜚 + 𝜑 𝜚 + 𝜙 𝜚 ≤ 1, ∀𝜚 ∈ Ǖ, 

A hesitancy index of a CPFS ŕ𝔈  is denoted by ŕ𝔈 = 1 − ὕ 𝜚 + ἒ 𝜚 +Ὗ 𝜚 𝑒 .  Let a complex PFV (CPFV) be denoted by 𝐼 =ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 . 
Definition 3. [55] Consider  𝐼 = ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒  , 𝐼 =ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒  and 𝐼 =ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒  be any three CPFSs. Then some basic op-
erational laws are defined as: 
1. 𝐼 ⊆ 𝐼 , if and only if ὕ 𝜚 ≤ ὕ 𝜚 , ἒ 𝜚 ≤  ἒ 𝜚  and Ὗ 𝜚 ≥ Ὗ 𝜚  for ampli-

tude terms and 𝜓 𝜚 ≤ 𝜓 𝜚 , 𝜑 𝜚 ≤ 𝜑 𝜚 , and 𝜙 𝜚 ≥ 𝜙 𝜚  for phase 
terms. For all 𝜚 ∈ Ǖ. 

2. 𝐼 ̅ = 𝜚, ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 |𝜚 ∈ Ǖ  

3. 𝐼 ∩ 𝐼 = 𝜚, ὕ 𝜚 ∧ ὕ 𝜚  𝑒 ∧ , ἒ 𝜚 ∨ἒ 𝜚 𝑒 ∨ , Ὗ 𝜚 ∨ Ὗ 𝜚 𝑒 ∨ |𝜚 ∈ Ǖ  

4. 𝐼 ⊎ 𝐼 = 𝜚, ὕ 𝜚 ∨ ὕ 𝜚  𝑒 ∨ , ἒ 𝜚 ∧ἒ 𝜚 𝑒 ∧ , Ὗ 𝜚 ∧ Ὗ 𝜚 𝑒 ∧ |𝜚 ∈ Ǖ  

where symbol ∧ and ∨ represent the minimum and maximum respectively. 

Definition 4. Consider 𝐼 = ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒  is a CPFV. Then 
score functions are defined as: 

Ŝ 𝐼 = 3 + ὕ 𝜚 − ἒ 𝜚 − Ὗ 𝜚 + 𝜓 𝜚 − 𝜑 𝜚 − 𝜙 𝜚  6  

where Ŝ 𝐼 ∈ [−1,1]. 
Definition 5. Consider 𝐼 = ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒  is a CPFV. Then 
accuracy functions are defined as: 

Ą 𝐼 = ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 + 𝜓 𝜚 + 𝜑 𝜚 + 𝜙 𝜚3  

where Ą 𝐼 ∈ [0,2]. 
Example 1. Let  𝐼 = 0.30𝑒 . , 0.17𝑒 . , 0.42𝑒 . , 𝐼 =0.68𝑒 . , 0.07𝑒 . , 0.16𝑒 .  and 𝐼 =0.37𝑒 . , 0.25𝑒 . , 0.17𝑒 .  be three CPFVs. The score function and accuracy 
function is defined as follows: 

Ŝ 𝐼 = 3 + 0.30 − 0.17 − 0.42 + 0.09 − 0.12 − 0.32  6 = 0.3050 ∈ [0,1] 
Ŝ 𝐼 = 3 + 0.68 − 0.07 − 0.16 + 0.29 − 0.52 − 0.06  6 = 0.3550 ∈ [0,1] 

(I2) =
(0.68 + 0.07 + 0.16) + (0.29 + 0.52 + 0.06)

3
= 0.4833 ∈ [0, 1]
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A hesitancy index of a CPFS ŕ𝔈  is denoted by ŕ𝔈 = 1 − ὕ 𝜚 + ἒ 𝜚 +Ὗ 𝜚 𝑒 .  Let a complex PFV (CPFV) be denoted by 𝐼 =ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 . 
Definition 3. [55] Consider  𝐼 = ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒  , 𝐼 =ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒  and 𝐼 =ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒  be any three CPFSs. Then some basic op-
erational laws are defined as: 
1. 𝐼 ⊆ 𝐼 , if and only if ὕ 𝜚 ≤ ὕ 𝜚 , ἒ 𝜚 ≤  ἒ 𝜚  and Ὗ 𝜚 ≥ Ὗ 𝜚  for ampli-

tude terms and 𝜓 𝜚 ≤ 𝜓 𝜚 , 𝜑 𝜚 ≤ 𝜑 𝜚 , and 𝜙 𝜚 ≥ 𝜙 𝜚  for phase 
terms. For all 𝜚 ∈ Ǖ. 

2. 𝐼 ̅ = 𝜚, ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 |𝜚 ∈ Ǖ  

3. 𝐼 ∩ 𝐼 = 𝜚, ὕ 𝜚 ∧ ὕ 𝜚  𝑒 ∧ , ἒ 𝜚 ∨ἒ 𝜚 𝑒 ∨ , Ὗ 𝜚 ∨ Ὗ 𝜚 𝑒 ∨ |𝜚 ∈ Ǖ  

4. 𝐼 ⊎ 𝐼 = 𝜚, ὕ 𝜚 ∨ ὕ 𝜚  𝑒 ∨ , ἒ 𝜚 ∧ἒ 𝜚 𝑒 ∧ , Ὗ 𝜚 ∧ Ὗ 𝜚 𝑒 ∧ |𝜚 ∈ Ǖ  

where symbol ∧ and ∨ represent the minimum and maximum respectively. 

Definition 4. Consider 𝐼 = ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒  is a CPFV. Then 
score functions are defined as: 

Ŝ 𝐼 = 3 + ὕ 𝜚 − ἒ 𝜚 − Ὗ 𝜚 + 𝜓 𝜚 − 𝜑 𝜚 − 𝜙 𝜚  6  

where Ŝ 𝐼 ∈ [−1,1]. 
Definition 5. Consider 𝐼 = ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒  is a CPFV. Then 
accuracy functions are defined as: 

Ą 𝐼 = ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 + 𝜓 𝜚 + 𝜑 𝜚 + 𝜙 𝜚3  

where Ą 𝐼 ∈ [0,2]. 
Example 1. Let  𝐼 = 0.30𝑒 . , 0.17𝑒 . , 0.42𝑒 . , 𝐼 =0.68𝑒 . , 0.07𝑒 . , 0.16𝑒 .  and 𝐼 =0.37𝑒 . , 0.25𝑒 . , 0.17𝑒 .  be three CPFVs. The score function and accuracy 
function is defined as follows: 

Ŝ 𝐼 = 3 + 0.30 − 0.17 − 0.42 + 0.09 − 0.12 − 0.32  6 = 0.3050 ∈ [0,1] 
Ŝ 𝐼 = 3 + 0.68 − 0.07 − 0.16 + 0.29 − 0.52 − 0.06  6 = 0.3550 ∈ [0,1] 

(I3) =
(0.37 + 0.25 + 0.17) + (0.22 + 0.32 + 0.09)

3
= 0.4067 ∈ [0, 1]

Remark 1. Consider I1 =
(
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degree of truth index (TI). El-Bably and Abo-Tabl [2,3] presented an innovative concept 
of FSs in the frame work of a rough set under some topological reduction. El Sayed et al. 
[4] explored the theory of topological techniques to handle the current situations of 
COVID-19 by using the model of nano-topology. Atanassov [5] generalized the theory of 
FS in the framework of an intuitionistic fuzzy set (IFS) having TI and falsity index 
(FI),where the sum of TI ὕ 𝜚  and FI Ὗ 𝜚  restricted is less and equal to 0 and 1, i.e., 0 ≤ ὕ 𝜚 + Ὗ 𝜚 ≤ 1. In some scenarios IFS has failed; if the TI is 0.65 and FI is 0.55, then 
the sum of TI and FI is 0.65 + 0.55 = 1.2 ∉ [0, 1]. To cope with this situation, Yager [6] 
presented the concepts of a Pythagorean fuzzy set (PyFS); according to PyFS, the sum of 
the square of TI and FI are less than or equal to 0 and 1, and from the above example, 0 ≤ὕ 𝜚 + Ὗ 𝜚 ≤ 1, so 0.65 + 0.55 = 0.73 ∈ [0, 1]. Yager [7] also developed the con-
cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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With the help of a practical numerical example, we evaluate suitable software for VMS. 
To check validity and compatibility, we study a comprehensive comparative study to con-
trast the results of existing AOs with the results of the discussed technique. 

The structure of this article is organized as follows: In Section 1, we review the history 
of our research work for the improvement of this article. In Section 2, we study all the 
notions related to PFSs, CPFSs, and their basic operations. In Section 3, we recall existing 
concepts of HM and GHM operators and also discuss their basic properties. In Section 4, 
we utilize the basic operations of HM operators to introduce some new AOs such as 
CPFHM and CPFWHM operators with their characteristics. In Section 5, we also present 
some new AOs of CPFGHM and CPFWGHM operators. We also present some numerical 
examples to find the feasibility of our proposed approaches. In Section 6, we establish a 
strategy for the MADM process under the system of CPFSs. We also provide an applica-
tion in the framework of VMS. To check the competitiveness and flexibility of our pro-
posed AOs, we illustrate a numerical example based on CPF information. In Section 7, to 
find the validity and rationality of our proposed work, we make comparison results of 
our proposed approaches with some existing AOs. In Section 8, we summarize the whole 
article in a paragraph. 

2. Preliminaries 
This section aims to recall notions of PFSs, CPFSs, and their basic operational laws. 

We applied these operational laws to develop our proposed methodology. First, we want 
to define the meaning of some symbols and letters in Table 1, as follows. 

Table 1. Symbols and their meanings. 

Symbols Meanings Symbols Meanings Ǖ Universal set 𝜙  Falsity Index of phase term 𝜚 Element belonging to Universal set Ŝ Score function ὕ  Truth Index/ (TI) of amplitude term Ą Accuracy function ἒ  Abstinence Index /(AI) of amplitude 
term 

𝔑  Weight vector Ὗ  Falsity Index/(FI) of amplitude term 𝐶ɰ Binomial Coefficient 𝔈 CPFS  √−1 Unit circle 𝜓  Truth Index of phase term ŕ𝔈 Hesitancy Index 𝜑  Abstinence Index of phase term 𝐼 ̅ Complement of CPFV 

The concepts of PFSs were developed by Cuong [8] and is given as follows: 

Definition 1. [8] Consider Ǖ to be an empty set. A PFS ƴ is defined as: ƴ = 𝜚, ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 |𝜚  

where ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 ∈ [0,1]. Truth index is denoted (TI) by the ὕ 𝜚 , abstinence index (AI) 
is denoted by the ἒ 𝜚 , and falsity index (FI) is denoted by the Ὗ 𝜚 , such that: 0 < ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 < 1 

A picture fuzzy value (PFV) represented by 𝒯 = ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 . 

The theory of the following Definition was proposed by Akram et al. [39]. 

Definition 2. [39] A CPFS is formed as: 𝔈 = 𝜚, ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 |𝜚 ∈ Ǖ , 𝑖 = √−1 
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degree of truth index (TI). El-Bably and Abo-Tabl [2,3] presented an innovative concept 
of FSs in the frame work of a rough set under some topological reduction. El Sayed et al. 
[4] explored the theory of topological techniques to handle the current situations of 
COVID-19 by using the model of nano-topology. Atanassov [5] generalized the theory of 
FS in the framework of an intuitionistic fuzzy set (IFS) having TI and falsity index 
(FI),where the sum of TI ὕ 𝜚  and FI Ὗ 𝜚  restricted is less and equal to 0 and 1, i.e., 0 ≤ ὕ 𝜚 + Ὗ 𝜚 ≤ 1. In some scenarios IFS has failed; if the TI is 0.65 and FI is 0.55, then 
the sum of TI and FI is 0.65 + 0.55 = 1.2 ∉ [0, 1]. To cope with this situation, Yager [6] 
presented the concepts of a Pythagorean fuzzy set (PyFS); according to PyFS, the sum of 
the square of TI and FI are less than or equal to 0 and 1, and from the above example, 0 ≤ὕ 𝜚 + Ὗ 𝜚 ≤ 1, so 0.65 + 0.55 = 0.73 ∈ [0, 1]. Yager [7] also developed the con-
cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 

ν1($)e
2πiφν1 ($)

)
and I2 =(

Electronics 2022, 11, x FOR PEER REVIEW 2 of 34 
 

 

degree of truth index (TI). El-Bably and Abo-Tabl [2,3] presented an innovative concept 
of FSs in the frame work of a rough set under some topological reduction. El Sayed et al. 
[4] explored the theory of topological techniques to handle the current situations of 
COVID-19 by using the model of nano-topology. Atanassov [5] generalized the theory of 
FS in the framework of an intuitionistic fuzzy set (IFS) having TI and falsity index 
(FI),where the sum of TI ὕ 𝜚  and FI Ὗ 𝜚  restricted is less and equal to 0 and 1, i.e., 0 ≤ ὕ 𝜚 + Ὗ 𝜚 ≤ 1. In some scenarios IFS has failed; if the TI is 0.65 and FI is 0.55, then 
the sum of TI and FI is 0.65 + 0.55 = 1.2 ∉ [0, 1]. To cope with this situation, Yager [6] 
presented the concepts of a Pythagorean fuzzy set (PyFS); according to PyFS, the sum of 
the square of TI and FI are less than or equal to 0 and 1, and from the above example, 0 ≤ὕ 𝜚 + Ὗ 𝜚 ≤ 1, so 0.65 + 0.55 = 0.73 ∈ [0, 1]. Yager [7] also developed the con-
cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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With the help of a practical numerical example, we evaluate suitable software for VMS. 
To check validity and compatibility, we study a comprehensive comparative study to con-
trast the results of existing AOs with the results of the discussed technique. 

The structure of this article is organized as follows: In Section 1, we review the history 
of our research work for the improvement of this article. In Section 2, we study all the 
notions related to PFSs, CPFSs, and their basic operations. In Section 3, we recall existing 
concepts of HM and GHM operators and also discuss their basic properties. In Section 4, 
we utilize the basic operations of HM operators to introduce some new AOs such as 
CPFHM and CPFWHM operators with their characteristics. In Section 5, we also present 
some new AOs of CPFGHM and CPFWGHM operators. We also present some numerical 
examples to find the feasibility of our proposed approaches. In Section 6, we establish a 
strategy for the MADM process under the system of CPFSs. We also provide an applica-
tion in the framework of VMS. To check the competitiveness and flexibility of our pro-
posed AOs, we illustrate a numerical example based on CPF information. In Section 7, to 
find the validity and rationality of our proposed work, we make comparison results of 
our proposed approaches with some existing AOs. In Section 8, we summarize the whole 
article in a paragraph. 

2. Preliminaries 
This section aims to recall notions of PFSs, CPFSs, and their basic operational laws. 

We applied these operational laws to develop our proposed methodology. First, we want 
to define the meaning of some symbols and letters in Table 1, as follows. 

Table 1. Symbols and their meanings. 

Symbols Meanings Symbols Meanings Ǖ Universal set 𝜙  Falsity Index of phase term 𝜚 Element belonging to Universal set Ŝ Score function ὕ  Truth Index/ (TI) of amplitude term Ą Accuracy function ἒ  Abstinence Index /(AI) of amplitude 
term 

𝔑  Weight vector Ὗ  Falsity Index/(FI) of amplitude term 𝐶ɰ Binomial Coefficient 𝔈 CPFS  √−1 Unit circle 𝜓  Truth Index of phase term ŕ𝔈 Hesitancy Index 𝜑  Abstinence Index of phase term 𝐼 ̅ Complement of CPFV 

The concepts of PFSs were developed by Cuong [8] and is given as follows: 

Definition 1. [8] Consider Ǖ to be an empty set. A PFS ƴ is defined as: ƴ = 𝜚, ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 |𝜚  

where ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 ∈ [0,1]. Truth index is denoted (TI) by the ὕ 𝜚 , abstinence index (AI) 
is denoted by the ἒ 𝜚 , and falsity index (FI) is denoted by the Ὗ 𝜚 , such that: 0 < ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 < 1 

A picture fuzzy value (PFV) represented by 𝒯 = ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 . 

The theory of the following Definition was proposed by Akram et al. [39]. 

Definition 2. [39] A CPFS is formed as: 𝔈 = 𝜚, ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 |𝜚 ∈ Ǖ , 𝑖 = √−1 
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degree of truth index (TI). El-Bably and Abo-Tabl [2,3] presented an innovative concept 
of FSs in the frame work of a rough set under some topological reduction. El Sayed et al. 
[4] explored the theory of topological techniques to handle the current situations of 
COVID-19 by using the model of nano-topology. Atanassov [5] generalized the theory of 
FS in the framework of an intuitionistic fuzzy set (IFS) having TI and falsity index 
(FI),where the sum of TI ὕ 𝜚  and FI Ὗ 𝜚  restricted is less and equal to 0 and 1, i.e., 0 ≤ ὕ 𝜚 + Ὗ 𝜚 ≤ 1. In some scenarios IFS has failed; if the TI is 0.65 and FI is 0.55, then 
the sum of TI and FI is 0.65 + 0.55 = 1.2 ∉ [0, 1]. To cope with this situation, Yager [6] 
presented the concepts of a Pythagorean fuzzy set (PyFS); according to PyFS, the sum of 
the square of TI and FI are less than or equal to 0 and 1, and from the above example, 0 ≤ὕ 𝜚 + Ὗ 𝜚 ≤ 1, so 0.65 + 0.55 = 0.73 ∈ [0, 1]. Yager [7] also developed the con-
cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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are two CPFVs. Then some rules of score

function and accuracy function such as if I1 < I2 , then Ŝ(I1) < Ŝ(I2), if I1 > I2, then
Ŝ(I1) > Ŝ(I2). Similarly, if Ŝ(I1) = Ŝ(I2), then following conditions must be satisfied:

I. If
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where  ὕ 𝜚 , ἒ 𝜚  and  Ὗ 𝜚 ∈ [0,1]  be amplitude terms and 𝜓 𝜚 , 𝜑 𝜚 ,  and 𝜙 𝜚 ∈[0,1] be the phase terms. TI, AI, and FI for amplitude terms are represented by the ὕ 𝜚 , ἒ 𝜚  
and  Ὗ 𝜚 , respectively. Similarly, TI, AI and FI for phase terms are represented by 
the 𝜓 𝜚 , 𝜑 𝜚 , and 𝜙 𝜚 , respectively. A CPFS must satisfy the following condition: 0 ≤ ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 ≤ 1, and 0 ≤ 𝜓 𝜚 + 𝜑 𝜚 + 𝜙 𝜚 ≤ 1, ∀𝜚 ∈ Ǖ, 

A hesitancy index of a CPFS ŕ𝔈  is denoted by ŕ𝔈 = 1 − ὕ 𝜚 + ἒ 𝜚 +Ὗ 𝜚 𝑒 .  Let a complex PFV (CPFV) be denoted by 𝐼 =ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 . 
Definition 3. [55] Consider  𝐼 = ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒  , 𝐼 =ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒  and 𝐼 =ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒  be any three CPFSs. Then some basic op-
erational laws are defined as: 
1. 𝐼 ⊆ 𝐼 , if and only if ὕ 𝜚 ≤ ὕ 𝜚 , ἒ 𝜚 ≤  ἒ 𝜚  and Ὗ 𝜚 ≥ Ὗ 𝜚  for ampli-

tude terms and 𝜓 𝜚 ≤ 𝜓 𝜚 , 𝜑 𝜚 ≤ 𝜑 𝜚 , and 𝜙 𝜚 ≥ 𝜙 𝜚  for phase 
terms. For all 𝜚 ∈ Ǖ. 

2. 𝐼 ̅ = 𝜚, ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 |𝜚 ∈ Ǖ  

3. 𝐼 ∩ 𝐼 = 𝜚, ὕ 𝜚 ∧ ὕ 𝜚  𝑒 ∧ , ἒ 𝜚 ∨ἒ 𝜚 𝑒 ∨ , Ὗ 𝜚 ∨ Ὗ 𝜚 𝑒 ∨ |𝜚 ∈ Ǖ  

4. 𝐼 ⊎ 𝐼 = 𝜚, ὕ 𝜚 ∨ ὕ 𝜚  𝑒 ∨ , ἒ 𝜚 ∧ἒ 𝜚 𝑒 ∧ , Ὗ 𝜚 ∧ Ὗ 𝜚 𝑒 ∧ |𝜚 ∈ Ǖ  

where symbol ∧ and ∨ represent the minimum and maximum respectively. 

Definition 4. Consider 𝐼 = ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒  is a CPFV. Then 
score functions are defined as: 

Ŝ 𝐼 = 3 + ὕ 𝜚 − ἒ 𝜚 − Ὗ 𝜚 + 𝜓 𝜚 − 𝜑 𝜚 − 𝜙 𝜚  6  

where Ŝ 𝐼 ∈ [−1,1]. 
Definition 5. Consider 𝐼 = ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒  is a CPFV. Then 
accuracy functions are defined as: 

Ą 𝐼 = ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 + 𝜓 𝜚 + 𝜑 𝜚 + 𝜙 𝜚3  

where Ą 𝐼 ∈ [0,2]. 
Example 1. Let  𝐼 = 0.30𝑒 . , 0.17𝑒 . , 0.42𝑒 . , 𝐼 =0.68𝑒 . , 0.07𝑒 . , 0.16𝑒 .  and 𝐼 =0.37𝑒 . , 0.25𝑒 . , 0.17𝑒 .  be three CPFVs. The score function and accuracy 
function is defined as follows: 

Ŝ 𝐼 = 3 + 0.30 − 0.17 − 0.42 + 0.09 − 0.12 − 0.32  6 = 0.3050 ∈ [0,1] 
Ŝ 𝐼 = 3 + 0.68 − 0.07 − 0.16 + 0.29 − 0.52 − 0.06  6 = 0.3550 ∈ [0,1] 
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Definition 3. [55] Consider  𝐼 = ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒  , 𝐼 =ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒  and 𝐼 =ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒  be any three CPFSs. Then some basic op-
erational laws are defined as: 
1. 𝐼 ⊆ 𝐼 , if and only if ὕ 𝜚 ≤ ὕ 𝜚 , ἒ 𝜚 ≤  ἒ 𝜚  and Ὗ 𝜚 ≥ Ὗ 𝜚  for ampli-

tude terms and 𝜓 𝜚 ≤ 𝜓 𝜚 , 𝜑 𝜚 ≤ 𝜑 𝜚 , and 𝜙 𝜚 ≥ 𝜙 𝜚  for phase 
terms. For all 𝜚 ∈ Ǖ. 

2. 𝐼 ̅ = 𝜚, ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 |𝜚 ∈ Ǖ  

3. 𝐼 ∩ 𝐼 = 𝜚, ὕ 𝜚 ∧ ὕ 𝜚  𝑒 ∧ , ἒ 𝜚 ∨ἒ 𝜚 𝑒 ∨ , Ὗ 𝜚 ∨ Ὗ 𝜚 𝑒 ∨ |𝜚 ∈ Ǖ  

4. 𝐼 ⊎ 𝐼 = 𝜚, ὕ 𝜚 ∨ ὕ 𝜚  𝑒 ∨ , ἒ 𝜚 ∧ἒ 𝜚 𝑒 ∧ , Ὗ 𝜚 ∧ Ὗ 𝜚 𝑒 ∧ |𝜚 ∈ Ǖ  

where symbol ∧ and ∨ represent the minimum and maximum respectively. 

Definition 4. Consider 𝐼 = ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒  is a CPFV. Then 
score functions are defined as: 

Ŝ 𝐼 = 3 + ὕ 𝜚 − ἒ 𝜚 − Ὗ 𝜚 + 𝜓 𝜚 − 𝜑 𝜚 − 𝜙 𝜚  6  

where Ŝ 𝐼 ∈ [−1,1]. 
Definition 5. Consider 𝐼 = ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒  is a CPFV. Then 
accuracy functions are defined as: 

Ą 𝐼 = ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 + 𝜓 𝜚 + 𝜑 𝜚 + 𝜙 𝜚3  

where Ą 𝐼 ∈ [0,2]. 
Example 1. Let  𝐼 = 0.30𝑒 . , 0.17𝑒 . , 0.42𝑒 . , 𝐼 =0.68𝑒 . , 0.07𝑒 . , 0.16𝑒 .  and 𝐼 =0.37𝑒 . , 0.25𝑒 . , 0.17𝑒 .  be three CPFVs. The score function and accuracy 
function is defined as follows: 

Ŝ 𝐼 = 3 + 0.30 − 0.17 − 0.42 + 0.09 − 0.12 − 0.32  6 = 0.3050 ∈ [0,1] 
Ŝ 𝐼 = 3 + 0.68 − 0.07 − 0.16 + 0.29 − 0.52 − 0.06  6 = 0.3550 ∈ [0,1] 

(I2), then I1 < I2.
II. If
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where  ὕ 𝜚 , ἒ 𝜚  and  Ὗ 𝜚 ∈ [0,1]  be amplitude terms and 𝜓 𝜚 , 𝜑 𝜚 ,  and 𝜙 𝜚 ∈[0,1] be the phase terms. TI, AI, and FI for amplitude terms are represented by the ὕ 𝜚 , ἒ 𝜚  
and  Ὗ 𝜚 , respectively. Similarly, TI, AI and FI for phase terms are represented by 
the 𝜓 𝜚 , 𝜑 𝜚 , and 𝜙 𝜚 , respectively. A CPFS must satisfy the following condition: 0 ≤ ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 ≤ 1, and 0 ≤ 𝜓 𝜚 + 𝜑 𝜚 + 𝜙 𝜚 ≤ 1, ∀𝜚 ∈ Ǖ, 

A hesitancy index of a CPFS ŕ𝔈  is denoted by ŕ𝔈 = 1 − ὕ 𝜚 + ἒ 𝜚 +Ὗ 𝜚 𝑒 .  Let a complex PFV (CPFV) be denoted by 𝐼 =ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 . 
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tude terms and 𝜓 𝜚 ≤ 𝜓 𝜚 , 𝜑 𝜚 ≤ 𝜑 𝜚 , and 𝜙 𝜚 ≥ 𝜙 𝜚  for phase 
terms. For all 𝜚 ∈ Ǖ. 

2. 𝐼 ̅ = 𝜚, ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 |𝜚 ∈ Ǖ  

3. 𝐼 ∩ 𝐼 = 𝜚, ὕ 𝜚 ∧ ὕ 𝜚  𝑒 ∧ , ἒ 𝜚 ∨ἒ 𝜚 𝑒 ∨ , Ὗ 𝜚 ∨ Ὗ 𝜚 𝑒 ∨ |𝜚 ∈ Ǖ  

4. 𝐼 ⊎ 𝐼 = 𝜚, ὕ 𝜚 ∨ ὕ 𝜚  𝑒 ∨ , ἒ 𝜚 ∧ἒ 𝜚 𝑒 ∧ , Ὗ 𝜚 ∧ Ὗ 𝜚 𝑒 ∧ |𝜚 ∈ Ǖ  

where symbol ∧ and ∨ represent the minimum and maximum respectively. 

Definition 4. Consider 𝐼 = ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒  is a CPFV. Then 
score functions are defined as: 

Ŝ 𝐼 = 3 + ὕ 𝜚 − ἒ 𝜚 − Ὗ 𝜚 + 𝜓 𝜚 − 𝜑 𝜚 − 𝜙 𝜚  6  

where Ŝ 𝐼 ∈ [−1,1]. 
Definition 5. Consider 𝐼 = ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒  is a CPFV. Then 
accuracy functions are defined as: 

Ą 𝐼 = ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 + 𝜓 𝜚 + 𝜑 𝜚 + 𝜙 𝜚3  

where Ą 𝐼 ∈ [0,2]. 
Example 1. Let  𝐼 = 0.30𝑒 . , 0.17𝑒 . , 0.42𝑒 . , 𝐼 =0.68𝑒 . , 0.07𝑒 . , 0.16𝑒 .  and 𝐼 =0.37𝑒 . , 0.25𝑒 . , 0.17𝑒 .  be three CPFVs. The score function and accuracy 
function is defined as follows: 

Ŝ 𝐼 = 3 + 0.30 − 0.17 − 0.42 + 0.09 − 0.12 − 0.32  6 = 0.3050 ∈ [0,1] 
Ŝ 𝐼 = 3 + 0.68 − 0.07 − 0.16 + 0.29 − 0.52 − 0.06  6 = 0.3550 ∈ [0,1] 

(I1) =
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where symbol ∧ and ∨ represent the minimum and maximum respectively. 

Definition 4. Consider 𝐼 = ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒  is a CPFV. Then 
score functions are defined as: 

Ŝ 𝐼 = 3 + ὕ 𝜚 − ἒ 𝜚 − Ὗ 𝜚 + 𝜓 𝜚 − 𝜑 𝜚 − 𝜙 𝜚  6  

where Ŝ 𝐼 ∈ [−1,1]. 
Definition 5. Consider 𝐼 = ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒  is a CPFV. Then 
accuracy functions are defined as: 

Ą 𝐼 = ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 + 𝜓 𝜚 + 𝜑 𝜚 + 𝜙 𝜚3  

where Ą 𝐼 ∈ [0,2]. 
Example 1. Let  𝐼 = 0.30𝑒 . , 0.17𝑒 . , 0.42𝑒 . , 𝐼 =0.68𝑒 . , 0.07𝑒 . , 0.16𝑒 .  and 𝐼 =0.37𝑒 . , 0.25𝑒 . , 0.17𝑒 .  be three CPFVs. The score function and accuracy 
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(I2), then I1 = I2.

Definition 6. Consider I =
(
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degree of truth index (TI). El-Bably and Abo-Tabl [2,3] presented an innovative concept 
of FSs in the frame work of a rough set under some topological reduction. El Sayed et al. 
[4] explored the theory of topological techniques to handle the current situations of 
COVID-19 by using the model of nano-topology. Atanassov [5] generalized the theory of 
FS in the framework of an intuitionistic fuzzy set (IFS) having TI and falsity index 
(FI),where the sum of TI ὕ 𝜚  and FI Ὗ 𝜚  restricted is less and equal to 0 and 1, i.e., 0 ≤ ὕ 𝜚 + Ὗ 𝜚 ≤ 1. In some scenarios IFS has failed; if the TI is 0.65 and FI is 0.55, then 
the sum of TI and FI is 0.65 + 0.55 = 1.2 ∉ [0, 1]. To cope with this situation, Yager [6] 
presented the concepts of a Pythagorean fuzzy set (PyFS); according to PyFS, the sum of 
the square of TI and FI are less than or equal to 0 and 1, and from the above example, 0 ≤ὕ 𝜚 + Ὗ 𝜚 ≤ 1, so 0.65 + 0.55 = 0.73 ∈ [0, 1]. Yager [7] also developed the con-
cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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With the help of a practical numerical example, we evaluate suitable software for VMS. 
To check validity and compatibility, we study a comprehensive comparative study to con-
trast the results of existing AOs with the results of the discussed technique. 

The structure of this article is organized as follows: In Section 1, we review the history 
of our research work for the improvement of this article. In Section 2, we study all the 
notions related to PFSs, CPFSs, and their basic operations. In Section 3, we recall existing 
concepts of HM and GHM operators and also discuss their basic properties. In Section 4, 
we utilize the basic operations of HM operators to introduce some new AOs such as 
CPFHM and CPFWHM operators with their characteristics. In Section 5, we also present 
some new AOs of CPFGHM and CPFWGHM operators. We also present some numerical 
examples to find the feasibility of our proposed approaches. In Section 6, we establish a 
strategy for the MADM process under the system of CPFSs. We also provide an applica-
tion in the framework of VMS. To check the competitiveness and flexibility of our pro-
posed AOs, we illustrate a numerical example based on CPF information. In Section 7, to 
find the validity and rationality of our proposed work, we make comparison results of 
our proposed approaches with some existing AOs. In Section 8, we summarize the whole 
article in a paragraph. 

2. Preliminaries 
This section aims to recall notions of PFSs, CPFSs, and their basic operational laws. 

We applied these operational laws to develop our proposed methodology. First, we want 
to define the meaning of some symbols and letters in Table 1, as follows. 

Table 1. Symbols and their meanings. 

Symbols Meanings Symbols Meanings Ǖ Universal set 𝜙  Falsity Index of phase term 𝜚 Element belonging to Universal set Ŝ Score function ὕ  Truth Index/ (TI) of amplitude term Ą Accuracy function ἒ  Abstinence Index /(AI) of amplitude 
term 

𝔑  Weight vector Ὗ  Falsity Index/(FI) of amplitude term 𝐶ɰ Binomial Coefficient 𝔈 CPFS  √−1 Unit circle 𝜓  Truth Index of phase term ŕ𝔈 Hesitancy Index 𝜑  Abstinence Index of phase term 𝐼 ̅ Complement of CPFV 

The concepts of PFSs were developed by Cuong [8] and is given as follows: 

Definition 1. [8] Consider Ǖ to be an empty set. A PFS ƴ is defined as: ƴ = 𝜚, ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 |𝜚  

where ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 ∈ [0,1]. Truth index is denoted (TI) by the ὕ 𝜚 , abstinence index (AI) 
is denoted by the ἒ 𝜚 , and falsity index (FI) is denoted by the Ὗ 𝜚 , such that: 0 < ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 < 1 

A picture fuzzy value (PFV) represented by 𝒯 = ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 . 

The theory of the following Definition was proposed by Akram et al. [39]. 

Definition 2. [39] A CPFS is formed as: 𝔈 = 𝜚, ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 |𝜚 ∈ Ǖ , 𝑖 = √−1 
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degree of truth index (TI). El-Bably and Abo-Tabl [2,3] presented an innovative concept 
of FSs in the frame work of a rough set under some topological reduction. El Sayed et al. 
[4] explored the theory of topological techniques to handle the current situations of 
COVID-19 by using the model of nano-topology. Atanassov [5] generalized the theory of 
FS in the framework of an intuitionistic fuzzy set (IFS) having TI and falsity index 
(FI),where the sum of TI ὕ 𝜚  and FI Ὗ 𝜚  restricted is less and equal to 0 and 1, i.e., 0 ≤ ὕ 𝜚 + Ὗ 𝜚 ≤ 1. In some scenarios IFS has failed; if the TI is 0.65 and FI is 0.55, then 
the sum of TI and FI is 0.65 + 0.55 = 1.2 ∉ [0, 1]. To cope with this situation, Yager [6] 
presented the concepts of a Pythagorean fuzzy set (PyFS); according to PyFS, the sum of 
the square of TI and FI are less than or equal to 0 and 1, and from the above example, 0 ≤ὕ 𝜚 + Ὗ 𝜚 ≤ 1, so 0.65 + 0.55 = 0.73 ∈ [0, 1]. Yager [7] also developed the con-
cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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With the help of a practical numerical example, we evaluate suitable software for VMS. 
To check validity and compatibility, we study a comprehensive comparative study to con-
trast the results of existing AOs with the results of the discussed technique. 

The structure of this article is organized as follows: In Section 1, we review the history 
of our research work for the improvement of this article. In Section 2, we study all the 
notions related to PFSs, CPFSs, and their basic operations. In Section 3, we recall existing 
concepts of HM and GHM operators and also discuss their basic properties. In Section 4, 
we utilize the basic operations of HM operators to introduce some new AOs such as 
CPFHM and CPFWHM operators with their characteristics. In Section 5, we also present 
some new AOs of CPFGHM and CPFWGHM operators. We also present some numerical 
examples to find the feasibility of our proposed approaches. In Section 6, we establish a 
strategy for the MADM process under the system of CPFSs. We also provide an applica-
tion in the framework of VMS. To check the competitiveness and flexibility of our pro-
posed AOs, we illustrate a numerical example based on CPF information. In Section 7, to 
find the validity and rationality of our proposed work, we make comparison results of 
our proposed approaches with some existing AOs. In Section 8, we summarize the whole 
article in a paragraph. 

2. Preliminaries 
This section aims to recall notions of PFSs, CPFSs, and their basic operational laws. 

We applied these operational laws to develop our proposed methodology. First, we want 
to define the meaning of some symbols and letters in Table 1, as follows. 

Table 1. Symbols and their meanings. 

Symbols Meanings Symbols Meanings Ǖ Universal set 𝜙  Falsity Index of phase term 𝜚 Element belonging to Universal set Ŝ Score function ὕ  Truth Index/ (TI) of amplitude term Ą Accuracy function ἒ  Abstinence Index /(AI) of amplitude 
term 

𝔑  Weight vector Ὗ  Falsity Index/(FI) of amplitude term 𝐶ɰ Binomial Coefficient 𝔈 CPFS  √−1 Unit circle 𝜓  Truth Index of phase term ŕ𝔈 Hesitancy Index 𝜑  Abstinence Index of phase term 𝐼 ̅ Complement of CPFV 

The concepts of PFSs were developed by Cuong [8] and is given as follows: 

Definition 1. [8] Consider Ǖ to be an empty set. A PFS ƴ is defined as: ƴ = 𝜚, ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 |𝜚  

where ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 ∈ [0,1]. Truth index is denoted (TI) by the ὕ 𝜚 , abstinence index (AI) 
is denoted by the ἒ 𝜚 , and falsity index (FI) is denoted by the Ὗ 𝜚 , such that: 0 < ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 < 1 

A picture fuzzy value (PFV) represented by 𝒯 = ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 . 

The theory of the following Definition was proposed by Akram et al. [39]. 

Definition 2. [39] A CPFS is formed as: 𝔈 = 𝜚, ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 |𝜚 ∈ Ǖ , 𝑖 = √−1 
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degree of truth index (TI). El-Bably and Abo-Tabl [2,3] presented an innovative concept 
of FSs in the frame work of a rough set under some topological reduction. El Sayed et al. 
[4] explored the theory of topological techniques to handle the current situations of 
COVID-19 by using the model of nano-topology. Atanassov [5] generalized the theory of 
FS in the framework of an intuitionistic fuzzy set (IFS) having TI and falsity index 
(FI),where the sum of TI ὕ 𝜚  and FI Ὗ 𝜚  restricted is less and equal to 0 and 1, i.e., 0 ≤ ὕ 𝜚 + Ὗ 𝜚 ≤ 1. In some scenarios IFS has failed; if the TI is 0.65 and FI is 0.55, then 
the sum of TI and FI is 0.65 + 0.55 = 1.2 ∉ [0, 1]. To cope with this situation, Yager [6] 
presented the concepts of a Pythagorean fuzzy set (PyFS); according to PyFS, the sum of 
the square of TI and FI are less than or equal to 0 and 1, and from the above example, 0 ≤ὕ 𝜚 + Ὗ 𝜚 ≤ 1, so 0.65 + 0.55 = 0.73 ∈ [0, 1]. Yager [7] also developed the con-
cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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degree of truth index (TI). El-Bably and Abo-Tabl [2,3] presented an innovative concept 
of FSs in the frame work of a rough set under some topological reduction. El Sayed et al. 
[4] explored the theory of topological techniques to handle the current situations of 
COVID-19 by using the model of nano-topology. Atanassov [5] generalized the theory of 
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the sum of TI and FI is 0.65 + 0.55 = 1.2 ∉ [0, 1]. To cope with this situation, Yager [6] 
presented the concepts of a Pythagorean fuzzy set (PyFS); according to PyFS, the sum of 
the square of TI and FI are less than or equal to 0 and 1, and from the above example, 0 ≤ὕ 𝜚 + Ὗ 𝜚 ≤ 1, so 0.65 + 0.55 = 0.73 ∈ [0, 1]. Yager [7] also developed the con-
cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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With the help of a practical numerical example, we evaluate suitable software for VMS. 
To check validity and compatibility, we study a comprehensive comparative study to con-
trast the results of existing AOs with the results of the discussed technique. 

The structure of this article is organized as follows: In Section 1, we review the history 
of our research work for the improvement of this article. In Section 2, we study all the 
notions related to PFSs, CPFSs, and their basic operations. In Section 3, we recall existing 
concepts of HM and GHM operators and also discuss their basic properties. In Section 4, 
we utilize the basic operations of HM operators to introduce some new AOs such as 
CPFHM and CPFWHM operators with their characteristics. In Section 5, we also present 
some new AOs of CPFGHM and CPFWGHM operators. We also present some numerical 
examples to find the feasibility of our proposed approaches. In Section 6, we establish a 
strategy for the MADM process under the system of CPFSs. We also provide an applica-
tion in the framework of VMS. To check the competitiveness and flexibility of our pro-
posed AOs, we illustrate a numerical example based on CPF information. In Section 7, to 
find the validity and rationality of our proposed work, we make comparison results of 
our proposed approaches with some existing AOs. In Section 8, we summarize the whole 
article in a paragraph. 

2. Preliminaries 
This section aims to recall notions of PFSs, CPFSs, and their basic operational laws. 

We applied these operational laws to develop our proposed methodology. First, we want 
to define the meaning of some symbols and letters in Table 1, as follows. 

Table 1. Symbols and their meanings. 

Symbols Meanings Symbols Meanings Ǖ Universal set 𝜙  Falsity Index of phase term 𝜚 Element belonging to Universal set Ŝ Score function ὕ  Truth Index/ (TI) of amplitude term Ą Accuracy function ἒ  Abstinence Index /(AI) of amplitude 
term 

𝔑  Weight vector Ὗ  Falsity Index/(FI) of amplitude term 𝐶ɰ Binomial Coefficient 𝔈 CPFS  √−1 Unit circle 𝜓  Truth Index of phase term ŕ𝔈 Hesitancy Index 𝜑  Abstinence Index of phase term 𝐼 ̅ Complement of CPFV 

The concepts of PFSs were developed by Cuong [8] and is given as follows: 

Definition 1. [8] Consider Ǖ to be an empty set. A PFS ƴ is defined as: ƴ = 𝜚, ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 |𝜚  

where ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 ∈ [0,1]. Truth index is denoted (TI) by the ὕ 𝜚 , abstinence index (AI) 
is denoted by the ἒ 𝜚 , and falsity index (FI) is denoted by the Ὗ 𝜚 , such that: 0 < ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 < 1 

A picture fuzzy value (PFV) represented by 𝒯 = ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 . 

The theory of the following Definition was proposed by Akram et al. [39]. 

Definition 2. [39] A CPFS is formed as: 𝔈 = 𝜚, ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 |𝜚 ∈ Ǖ , 𝑖 = √−1 
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degree of truth index (TI). El-Bably and Abo-Tabl [2,3] presented an innovative concept 
of FSs in the frame work of a rough set under some topological reduction. El Sayed et al. 
[4] explored the theory of topological techniques to handle the current situations of 
COVID-19 by using the model of nano-topology. Atanassov [5] generalized the theory of 
FS in the framework of an intuitionistic fuzzy set (IFS) having TI and falsity index 
(FI),where the sum of TI ὕ 𝜚  and FI Ὗ 𝜚  restricted is less and equal to 0 and 1, i.e., 0 ≤ ὕ 𝜚 + Ὗ 𝜚 ≤ 1. In some scenarios IFS has failed; if the TI is 0.65 and FI is 0.55, then 
the sum of TI and FI is 0.65 + 0.55 = 1.2 ∉ [0, 1]. To cope with this situation, Yager [6] 
presented the concepts of a Pythagorean fuzzy set (PyFS); according to PyFS, the sum of 
the square of TI and FI are less than or equal to 0 and 1, and from the above example, 0 ≤ὕ 𝜚 + Ὗ 𝜚 ≤ 1, so 0.65 + 0.55 = 0.73 ∈ [0, 1]. Yager [7] also developed the con-
cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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With the help of a practical numerical example, we evaluate suitable software for VMS. 
To check validity and compatibility, we study a comprehensive comparative study to con-
trast the results of existing AOs with the results of the discussed technique. 

The structure of this article is organized as follows: In Section 1, we review the history 
of our research work for the improvement of this article. In Section 2, we study all the 
notions related to PFSs, CPFSs, and their basic operations. In Section 3, we recall existing 
concepts of HM and GHM operators and also discuss their basic properties. In Section 4, 
we utilize the basic operations of HM operators to introduce some new AOs such as 
CPFHM and CPFWHM operators with their characteristics. In Section 5, we also present 
some new AOs of CPFGHM and CPFWGHM operators. We also present some numerical 
examples to find the feasibility of our proposed approaches. In Section 6, we establish a 
strategy for the MADM process under the system of CPFSs. We also provide an applica-
tion in the framework of VMS. To check the competitiveness and flexibility of our pro-
posed AOs, we illustrate a numerical example based on CPF information. In Section 7, to 
find the validity and rationality of our proposed work, we make comparison results of 
our proposed approaches with some existing AOs. In Section 8, we summarize the whole 
article in a paragraph. 

2. Preliminaries 
This section aims to recall notions of PFSs, CPFSs, and their basic operational laws. 

We applied these operational laws to develop our proposed methodology. First, we want 
to define the meaning of some symbols and letters in Table 1, as follows. 

Table 1. Symbols and their meanings. 

Symbols Meanings Symbols Meanings Ǖ Universal set 𝜙  Falsity Index of phase term 𝜚 Element belonging to Universal set Ŝ Score function ὕ  Truth Index/ (TI) of amplitude term Ą Accuracy function ἒ  Abstinence Index /(AI) of amplitude 
term 

𝔑  Weight vector Ὗ  Falsity Index/(FI) of amplitude term 𝐶ɰ Binomial Coefficient 𝔈 CPFS  √−1 Unit circle 𝜓  Truth Index of phase term ŕ𝔈 Hesitancy Index 𝜑  Abstinence Index of phase term 𝐼 ̅ Complement of CPFV 

The concepts of PFSs were developed by Cuong [8] and is given as follows: 

Definition 1. [8] Consider Ǖ to be an empty set. A PFS ƴ is defined as: ƴ = 𝜚, ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 |𝜚  

where ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 ∈ [0,1]. Truth index is denoted (TI) by the ὕ 𝜚 , abstinence index (AI) 
is denoted by the ἒ 𝜚 , and falsity index (FI) is denoted by the Ὗ 𝜚 , such that: 0 < ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 < 1 

A picture fuzzy value (PFV) represented by 𝒯 = ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 . 

The theory of the following Definition was proposed by Akram et al. [39]. 

Definition 2. [39] A CPFS is formed as: 𝔈 = 𝜚, ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 |𝜚 ∈ Ǖ , 𝑖 = √−1 
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cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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With the help of a practical numerical example, we evaluate suitable software for VMS. 
To check validity and compatibility, we study a comprehensive comparative study to con-
trast the results of existing AOs with the results of the discussed technique. 

The structure of this article is organized as follows: In Section 1, we review the history 
of our research work for the improvement of this article. In Section 2, we study all the 
notions related to PFSs, CPFSs, and their basic operations. In Section 3, we recall existing 
concepts of HM and GHM operators and also discuss their basic properties. In Section 4, 
we utilize the basic operations of HM operators to introduce some new AOs such as 
CPFHM and CPFWHM operators with their characteristics. In Section 5, we also present 
some new AOs of CPFGHM and CPFWGHM operators. We also present some numerical 
examples to find the feasibility of our proposed approaches. In Section 6, we establish a 
strategy for the MADM process under the system of CPFSs. We also provide an applica-
tion in the framework of VMS. To check the competitiveness and flexibility of our pro-
posed AOs, we illustrate a numerical example based on CPF information. In Section 7, to 
find the validity and rationality of our proposed work, we make comparison results of 
our proposed approaches with some existing AOs. In Section 8, we summarize the whole 
article in a paragraph. 

2. Preliminaries 
This section aims to recall notions of PFSs, CPFSs, and their basic operational laws. 

We applied these operational laws to develop our proposed methodology. First, we want 
to define the meaning of some symbols and letters in Table 1, as follows. 

Table 1. Symbols and their meanings. 

Symbols Meanings Symbols Meanings Ǖ Universal set 𝜙  Falsity Index of phase term 𝜚 Element belonging to Universal set Ŝ Score function ὕ  Truth Index/ (TI) of amplitude term Ą Accuracy function ἒ  Abstinence Index /(AI) of amplitude 
term 

𝔑  Weight vector Ὗ  Falsity Index/(FI) of amplitude term 𝐶ɰ Binomial Coefficient 𝔈 CPFS  √−1 Unit circle 𝜓  Truth Index of phase term ŕ𝔈 Hesitancy Index 𝜑  Abstinence Index of phase term 𝐼 ̅ Complement of CPFV 

The concepts of PFSs were developed by Cuong [8] and is given as follows: 

Definition 1. [8] Consider Ǖ to be an empty set. A PFS ƴ is defined as: ƴ = 𝜚, ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 |𝜚  

where ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 ∈ [0,1]. Truth index is denoted (TI) by the ὕ 𝜚 , abstinence index (AI) 
is denoted by the ἒ 𝜚 , and falsity index (FI) is denoted by the Ὗ 𝜚 , such that: 0 < ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 < 1 

A picture fuzzy value (PFV) represented by 𝒯 = ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 . 

The theory of the following Definition was proposed by Akram et al. [39]. 

Definition 2. [39] A CPFS is formed as: 𝔈 = 𝜚, ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 |𝜚 ∈ Ǖ , 𝑖 = √−1 
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different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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3. Previous Study 
This section aims to recall the concepts of the HM operator since the HM operator is 

a very useful tool to aggregate real numbers. Moreover, we use the concepts of HM oper-
ator for further development of this article. 
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With the help of a practical numerical example, we evaluate suitable software for VMS. 
To check validity and compatibility, we study a comprehensive comparative study to con-
trast the results of existing AOs with the results of the discussed technique. 

The structure of this article is organized as follows: In Section 1, we review the history 
of our research work for the improvement of this article. In Section 2, we study all the 
notions related to PFSs, CPFSs, and their basic operations. In Section 3, we recall existing 
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strategy for the MADM process under the system of CPFSs. We also provide an applica-
tion in the framework of VMS. To check the competitiveness and flexibility of our pro-
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find the validity and rationality of our proposed work, we make comparison results of 
our proposed approaches with some existing AOs. In Section 8, we summarize the whole 
article in a paragraph. 
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We applied these operational laws to develop our proposed methodology. First, we want 
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𝔑  Weight vector Ὗ  Falsity Index/(FI) of amplitude term 𝐶ɰ Binomial Coefficient 𝔈 CPFS  √−1 Unit circle 𝜓  Truth Index of phase term ŕ𝔈 Hesitancy Index 𝜑  Abstinence Index of phase term 𝐼 ̅ Complement of CPFV 

The concepts of PFSs were developed by Cuong [8] and is given as follows: 

Definition 1. [8] Consider Ǖ to be an empty set. A PFS ƴ is defined as: ƴ = 𝜚, ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 |𝜚  

where ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 ∈ [0,1]. Truth index is denoted (TI) by the ὕ 𝜚 , abstinence index (AI) 
is denoted by the ἒ 𝜚 , and falsity index (FI) is denoted by the Ὗ 𝜚 , such that: 0 < ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 < 1 

A picture fuzzy value (PFV) represented by 𝒯 = ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 . 

The theory of the following Definition was proposed by Akram et al. [39]. 

Definition 2. [39] A CPFS is formed as: 𝔈 = 𝜚, ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 |𝜚 ∈ Ǖ , 𝑖 = √−1 
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degree of truth index (TI). El-Bably and Abo-Tabl [2,3] presented an innovative concept 
of FSs in the frame work of a rough set under some topological reduction. El Sayed et al. 
[4] explored the theory of topological techniques to handle the current situations of 
COVID-19 by using the model of nano-topology. Atanassov [5] generalized the theory of 
FS in the framework of an intuitionistic fuzzy set (IFS) having TI and falsity index 
(FI),where the sum of TI ὕ 𝜚  and FI Ὗ 𝜚  restricted is less and equal to 0 and 1, i.e., 0 ≤ ὕ 𝜚 + Ὗ 𝜚 ≤ 1. In some scenarios IFS has failed; if the TI is 0.65 and FI is 0.55, then 
the sum of TI and FI is 0.65 + 0.55 = 1.2 ∉ [0, 1]. To cope with this situation, Yager [6] 
presented the concepts of a Pythagorean fuzzy set (PyFS); according to PyFS, the sum of 
the square of TI and FI are less than or equal to 0 and 1, and from the above example, 0 ≤ὕ 𝜚 + Ὗ 𝜚 ≤ 1, so 0.65 + 0.55 = 0.73 ∈ [0, 1]. Yager [7] also developed the con-
cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 

µ I($)
)

Electronics 2022, 11, x FOR PEER REVIEW 6 of 34 
 

 

Ŝ 𝐼 = 3 + 0.37 − 0.25 − 0.17 + 0.22 − 0.32 − 0.09  6 = 0.5433 ∈ [0,1] 
and Ą 𝐼 = 0.30 + 0.17 + 0.42 + 0.09 + 0.12 + 0.323 = 0.6500 ∈ [0,1] 

Ą 𝐼 = 0.68 + 0.07 + 0.16 + 0.29 + 0.52 + 0.063 = 0.4833 ∈ [0,1] 
Ą 𝐼 = 0.37 + 0.25 + 0.17 + 0.22 + 0.32 + 0.093 = 0.4067 ∈ [0,1] 

Remark 1. Consider  𝐼 = ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒  and 𝐼 =ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒  are two CPFVs. Then some rules of score 
function and accuracy function such as if 𝐼 < 𝐼 , then Ŝ 𝐼 < Ŝ 𝐼 , if 𝐼 > 𝐼 , then Ŝ 𝐼 >Ŝ 𝐼 . Similarly, if Ŝ 𝐼 = Ŝ 𝐼 , then following conditions must be satisfied: 

I. If Ą 𝐼 < Ą 𝐼 , then 𝐼 < 𝐼 . 
II. If Ą 𝐼 = Ą 𝐼 , then 𝐼 = 𝐼 . 

Definition 6. Consider  𝐼 = ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 , 𝐼 =ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 and  𝐼 =ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒  are three CPFVs. The fundamental oper-
ations of CPFSs are defined as: 

I. 𝐼 ⨁𝐼 = ⎝⎜⎜
⎛ ὕ 𝜚 + ὕ 𝜚 − ὕ 𝜚 . ὕ 𝜚 𝑒 . ,ἒ 𝜚 . ἒ 𝜚 𝑒 . ,Ὗ 𝜚 . Ὗ 𝜚 𝑒 . ⎠⎟⎟

⎞
 

II. 𝐼 ⨂𝐼 = ⎝⎜⎜
⎛ ὕ 𝜚 . ὕ 𝜚 𝑒 . ,ἒ 𝜚 + ἒ 𝜚 − ἒ 𝜚 . ἒ 𝜚 𝑒 . ,Ὗ 𝜚 + Ὗ 𝜚 − Ὗ 𝜚 . Ὗ 𝜚 𝑒 . ⎠⎟⎟

⎞
 

III. Ὤ. 𝐼 =
⎝⎜
⎜⎛ 1 − 1 − ὕ 𝜚 Ὤ 𝑒 Ὤ , ἒ 𝜚 Ὤ 𝑒 Ὤ,Ὗ 𝜚 Ὤ 𝑒 Ὤ ⎠⎟

⎟⎞ , Ὤ > 0 

IV. 𝐼Ὤ =
⎝⎜
⎜⎜⎛

ὕ 𝜚 Ὤ 𝑒 Ὤ, 1 − 1 − ἒ 𝜚 Ὤ 𝑒 Ὤ ,1 − 1 − Ὗ 𝜚 Ὤ 𝑒 Ὤ ⎠⎟
⎟⎟⎞ , Ὤ > 0 

3. Previous Study 
This section aims to recall the concepts of the HM operator since the HM operator is 

a very useful tool to aggregate real numbers. Moreover, we use the concepts of HM oper-
ator for further development of this article. 

  

e2πi(ψµI ($))

Electronics 2022, 11, x FOR PEER REVIEW 6 of 34 
 

 

Ŝ 𝐼 = 3 + 0.37 − 0.25 − 0.17 + 0.22 − 0.32 − 0.09  6 = 0.5433 ∈ [0,1] 
and Ą 𝐼 = 0.30 + 0.17 + 0.42 + 0.09 + 0.12 + 0.323 = 0.6500 ∈ [0,1] 

Ą 𝐼 = 0.68 + 0.07 + 0.16 + 0.29 + 0.52 + 0.063 = 0.4833 ∈ [0,1] 
Ą 𝐼 = 0.37 + 0.25 + 0.17 + 0.22 + 0.32 + 0.093 = 0.4067 ∈ [0,1] 

Remark 1. Consider  𝐼 = ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒  and 𝐼 =ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒  are two CPFVs. Then some rules of score 
function and accuracy function such as if 𝐼 < 𝐼 , then Ŝ 𝐼 < Ŝ 𝐼 , if 𝐼 > 𝐼 , then Ŝ 𝐼 >Ŝ 𝐼 . Similarly, if Ŝ 𝐼 = Ŝ 𝐼 , then following conditions must be satisfied: 

I. If Ą 𝐼 < Ą 𝐼 , then 𝐼 < 𝐼 . 
II. If Ą 𝐼 = Ą 𝐼 , then 𝐼 = 𝐼 . 

Definition 6. Consider  𝐼 = ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 , 𝐼 =ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 and  𝐼 =ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒  are three CPFVs. The fundamental oper-
ations of CPFSs are defined as: 

I. 𝐼 ⨁𝐼 = ⎝⎜⎜
⎛ ὕ 𝜚 + ὕ 𝜚 − ὕ 𝜚 . ὕ 𝜚 𝑒 . ,ἒ 𝜚 . ἒ 𝜚 𝑒 . ,Ὗ 𝜚 . Ὗ 𝜚 𝑒 . ⎠⎟⎟

⎞
 

II. 𝐼 ⨂𝐼 = ⎝⎜⎜
⎛ ὕ 𝜚 . ὕ 𝜚 𝑒 . ,ἒ 𝜚 + ἒ 𝜚 − ἒ 𝜚 . ἒ 𝜚 𝑒 . ,Ὗ 𝜚 + Ὗ 𝜚 − Ὗ 𝜚 . Ὗ 𝜚 𝑒 . ⎠⎟⎟

⎞
 

III. Ὤ. 𝐼 =
⎝⎜
⎜⎛ 1 − 1 − ὕ 𝜚 Ὤ 𝑒 Ὤ , ἒ 𝜚 Ὤ 𝑒 Ὤ,Ὗ 𝜚 Ὤ 𝑒 Ὤ ⎠⎟

⎟⎞ , Ὤ > 0 

IV. 𝐼Ὤ =
⎝⎜
⎜⎜⎛

ὕ 𝜚 Ὤ 𝑒 Ὤ, 1 − 1 − ἒ 𝜚 Ὤ 𝑒 Ὤ ,1 − 1 − Ὗ 𝜚 Ὤ 𝑒 Ὤ ⎠⎟
⎟⎟⎞ , Ὤ > 0 

3. Previous Study 
This section aims to recall the concepts of the HM operator since the HM operator is 

a very useful tool to aggregate real numbers. Moreover, we use the concepts of HM oper-
ator for further development of this article. 

  

,(
1−

(
1−

Electronics 2022, 11, x FOR PEER REVIEW 4 of 34 
 

 

With the help of a practical numerical example, we evaluate suitable software for VMS. 
To check validity and compatibility, we study a comprehensive comparative study to con-
trast the results of existing AOs with the results of the discussed technique. 

The structure of this article is organized as follows: In Section 1, we review the history 
of our research work for the improvement of this article. In Section 2, we study all the 
notions related to PFSs, CPFSs, and their basic operations. In Section 3, we recall existing 
concepts of HM and GHM operators and also discuss their basic properties. In Section 4, 
we utilize the basic operations of HM operators to introduce some new AOs such as 
CPFHM and CPFWHM operators with their characteristics. In Section 5, we also present 
some new AOs of CPFGHM and CPFWGHM operators. We also present some numerical 
examples to find the feasibility of our proposed approaches. In Section 6, we establish a 
strategy for the MADM process under the system of CPFSs. We also provide an applica-
tion in the framework of VMS. To check the competitiveness and flexibility of our pro-
posed AOs, we illustrate a numerical example based on CPF information. In Section 7, to 
find the validity and rationality of our proposed work, we make comparison results of 
our proposed approaches with some existing AOs. In Section 8, we summarize the whole 
article in a paragraph. 

2. Preliminaries 
This section aims to recall notions of PFSs, CPFSs, and their basic operational laws. 

We applied these operational laws to develop our proposed methodology. First, we want 
to define the meaning of some symbols and letters in Table 1, as follows. 

Table 1. Symbols and their meanings. 

Symbols Meanings Symbols Meanings Ǖ Universal set 𝜙  Falsity Index of phase term 𝜚 Element belonging to Universal set Ŝ Score function ὕ  Truth Index/ (TI) of amplitude term Ą Accuracy function ἒ  Abstinence Index /(AI) of amplitude 
term 

𝔑  Weight vector Ὗ  Falsity Index/(FI) of amplitude term 𝐶ɰ Binomial Coefficient 𝔈 CPFS  √−1 Unit circle 𝜓  Truth Index of phase term ŕ𝔈 Hesitancy Index 𝜑  Abstinence Index of phase term 𝐼 ̅ Complement of CPFV 

The concepts of PFSs were developed by Cuong [8] and is given as follows: 

Definition 1. [8] Consider Ǖ to be an empty set. A PFS ƴ is defined as: ƴ = 𝜚, ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 |𝜚  

where ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 ∈ [0,1]. Truth index is denoted (TI) by the ὕ 𝜚 , abstinence index (AI) 
is denoted by the ἒ 𝜚 , and falsity index (FI) is denoted by the Ὗ 𝜚 , such that: 0 < ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 < 1 

A picture fuzzy value (PFV) represented by 𝒯 = ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 . 

The theory of the following Definition was proposed by Akram et al. [39]. 

Definition 2. [39] A CPFS is formed as: 𝔈 = 𝜚, ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 |𝜚 ∈ Ǖ , 𝑖 = √−1 
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3. Previous Study

This section aims to recall the concepts of the HM operator since the HM operator is a
very useful tool to aggregate real numbers. Moreover, we use the concepts of HM operator
for further development of this article.

Definition 7. [40] The HM operator is defined as:

HM(
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 
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We established a numerical example to support the CPFWHM operator by using the 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 
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The HM operator must satisfy the following axioms.
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 
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)(I1, I2, . . . , Ik) = I if Ii = I, (i = 1, 2, 3, . . . , k).
2. HM(

Electronics 2022, 11, x FOR PEER REVIEW 11 of 34 
 

 

𝐶𝑃𝐹𝑊𝐻𝑀 ɰ 𝐼 , 𝐼 , … , 𝐼

=

⎝⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎛ 1 − ⎝⎜

⎛ 1 − ὕ𝜇𝑖𝑗 𝜚ɰ
𝑗=1

1ɰ ∏ 𝔑ɰ
1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟

⎞ 1𝐶𝑛ɰ

  𝑒2πi
⎝⎜
⎜⎛1−⎝⎜

⎛∏ 1− ∏ 𝜓𝜇𝑖𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

⎠⎟
⎟⎞

,

⎝⎜
⎛ 1 − 1 − ἒ𝐴𝑗 𝜚ɰ

𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

𝑒
2𝜋𝑖

⎝⎜
⎜⎜⎛⎝⎜⎜

⎛∏ 1− ∏ 1− 𝜑𝐴𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟⎟
⎞

1𝐶𝑛ɰ

⎠⎟
⎟⎟⎞,

⎝⎜
⎛ 1 − 1 − Ὗ𝜈𝑖𝑗 𝜚ɰ

𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

𝑒
2𝜋𝑖

⎝⎜
⎜⎜⎛⎝⎜⎜

⎛∏ 1− ∏ 1− 𝜙𝜈𝑖𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟⎟
⎞

1𝐶𝑛ɰ

⎠⎟
⎟⎟⎞ ⎠⎟

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎞

 
(6)

Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

)(I1, I2, . . . , Ik) ≤ HM(

Electronics 2022, 11, x FOR PEER REVIEW 11 of 34 
 

 

𝐶𝑃𝐹𝑊𝐻𝑀 ɰ 𝐼 , 𝐼 , … , 𝐼

=

⎝⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎛ 1 − ⎝⎜

⎛ 1 − ὕ𝜇𝑖𝑗 𝜚ɰ
𝑗=1

1ɰ ∏ 𝔑ɰ
1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟

⎞ 1𝐶𝑛ɰ

  𝑒2πi
⎝⎜
⎜⎛1−⎝⎜

⎛∏ 1− ∏ 𝜓𝜇𝑖𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

⎠⎟
⎟⎞

,

⎝⎜
⎛ 1 − 1 − ἒ𝐴𝑗 𝜚ɰ

𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

𝑒
2𝜋𝑖

⎝⎜
⎜⎜⎛⎝⎜⎜

⎛∏ 1− ∏ 1− 𝜑𝐴𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟⎟
⎞

1𝐶𝑛ɰ

⎠⎟
⎟⎟⎞,

⎝⎜
⎛ 1 − 1 − Ὗ𝜈𝑖𝑗 𝜚ɰ

𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

𝑒
2𝜋𝑖

⎝⎜
⎜⎜⎛⎝⎜⎜

⎛∏ 1− ∏ 1− 𝜙𝜈𝑖𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟⎟
⎞

1𝐶𝑛ɰ

⎠⎟
⎟⎟⎞ ⎠⎟

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎞

 
(6)

Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

)(
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(6)

Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

)(I1, I2, . . . , Ik) ≤ maxIi.
4. For arithmetic mean operator HM(
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

)(I1, I2, . . . , Ik) =
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k ∑k

i=1 Ii

5. For geometric mean operator HM(
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 
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Now we study the notion of DHM operators given by the [56].

Definition 8. [56] The DHM operator is particularized as:

DHM(
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

)(I1, I2, . . . , In) =

 ∏
1≤i1<, ...,<i
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 
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degree of truth index (TI). El-Bably and Abo-Tabl [2,3] presented an innovative concept 
of FSs in the frame work of a rough set under some topological reduction. El Sayed et al. 
[4] explored the theory of topological techniques to handle the current situations of 
COVID-19 by using the model of nano-topology. Atanassov [5] generalized the theory of 
FS in the framework of an intuitionistic fuzzy set (IFS) having TI and falsity index 
(FI),where the sum of TI ὕ 𝜚  and FI Ὗ 𝜚  restricted is less and equal to 0 and 1, i.e., 0 ≤ ὕ 𝜚 + Ὗ 𝜚 ≤ 1. In some scenarios IFS has failed; if the TI is 0.65 and FI is 0.55, then 
the sum of TI and FI is 0.65 + 0.55 = 1.2 ∉ [0, 1]. To cope with this situation, Yager [6] 
presented the concepts of a Pythagorean fuzzy set (PyFS); according to PyFS, the sum of 
the square of TI and FI are less than or equal to 0 and 1, and from the above example, 0 ≤ὕ 𝜚 + Ὗ 𝜚 ≤ 1, so 0.65 + 0.55 = 0.73 ∈ [0, 1]. Yager [7] also developed the con-
cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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, j = 1, 2, . . . , k be the family of PyFVs. Then
PyF Hamy mean (PyFHM) operator is particularized as:

PyFHM(
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

)(I1, I2, . . . , In) =

⊕
1≤i1<, ...,<i
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 
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methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

∏
j=1

Electronics 2022, 11, x FOR PEER REVIEW 2 of 34 
 

 

degree of truth index (TI). El-Bably and Abo-Tabl [2,3] presented an innovative concept 
of FSs in the frame work of a rough set under some topological reduction. El Sayed et al. 
[4] explored the theory of topological techniques to handle the current situations of 
COVID-19 by using the model of nano-topology. Atanassov [5] generalized the theory of 
FS in the framework of an intuitionistic fuzzy set (IFS) having TI and falsity index 
(FI),where the sum of TI ὕ 𝜚  and FI Ὗ 𝜚  restricted is less and equal to 0 and 1, i.e., 0 ≤ ὕ 𝜚 + Ὗ 𝜚 ≤ 1. In some scenarios IFS has failed; if the TI is 0.65 and FI is 0.55, then 
the sum of TI and FI is 0.65 + 0.55 = 1.2 ∉ [0, 1]. To cope with this situation, Yager [6] 
presented the concepts of a Pythagorean fuzzy set (PyFS); according to PyFS, the sum of 
the square of TI and FI are less than or equal to 0 and 1, and from the above example, 0 ≤ὕ 𝜚 + Ὗ 𝜚 ≤ 1, so 0.65 + 0.55 = 0.73 ∈ [0, 1]. Yager [7] also developed the con-
cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 

µj($)

) 1

Electronics 2022, 11, x FOR PEER REVIEW 11 of 34 
 

 

𝐶𝑃𝐹𝑊𝐻𝑀 ɰ 𝐼 , 𝐼 , … , 𝐼

=

⎝⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎛ 1 − ⎝⎜

⎛ 1 − ὕ𝜇𝑖𝑗 𝜚ɰ
𝑗=1

1ɰ ∏ 𝔑ɰ
1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟

⎞ 1𝐶𝑛ɰ

  𝑒2πi
⎝⎜
⎜⎛1−⎝⎜

⎛∏ 1− ∏ 𝜓𝜇𝑖𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

⎠⎟
⎟⎞

,

⎝⎜
⎛ 1 − 1 − ἒ𝐴𝑗 𝜚ɰ

𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

𝑒
2𝜋𝑖

⎝⎜
⎜⎜⎛⎝⎜⎜

⎛∏ 1− ∏ 1− 𝜑𝐴𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟⎟
⎞

1𝐶𝑛ɰ

⎠⎟
⎟⎟⎞,

⎝⎜
⎛ 1 − 1 − Ὗ𝜈𝑖𝑗 𝜚ɰ

𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

𝑒
2𝜋𝑖

⎝⎜
⎜⎜⎛⎝⎜⎜

⎛∏ 1− ∏ 1− 𝜙𝜈𝑖𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟⎟
⎞

1𝐶𝑛ɰ

⎠⎟
⎟⎟⎞ ⎠⎟

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎞

 
(6)

Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

2


1
C

Electronics 2022, 11, x FOR PEER REVIEW 11 of 34 
 

 

𝐶𝑃𝐹𝑊𝐻𝑀 ɰ 𝐼 , 𝐼 , … , 𝐼

=

⎝⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎛ 1 − ⎝⎜

⎛ 1 − ὕ𝜇𝑖𝑗 𝜚ɰ
𝑗=1

1ɰ ∏ 𝔑ɰ
1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟

⎞ 1𝐶𝑛ɰ

  𝑒2πi
⎝⎜
⎜⎛1−⎝⎜

⎛∏ 1− ∏ 𝜓𝜇𝑖𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

⎠⎟
⎟⎞

,

⎝⎜
⎛ 1 − 1 − ἒ𝐴𝑗 𝜚ɰ

𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

𝑒
2𝜋𝑖

⎝⎜
⎜⎜⎛⎝⎜⎜

⎛∏ 1− ∏ 1− 𝜑𝐴𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟⎟
⎞

1𝐶𝑛ɰ

⎠⎟
⎟⎟⎞,

⎝⎜
⎛ 1 − 1 − Ὗ𝜈𝑖𝑗 𝜚ɰ

𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

𝑒
2𝜋𝑖

⎝⎜
⎜⎜⎛⎝⎜⎜

⎛∏ 1− ∏ 1− 𝜙𝜈𝑖𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟⎟
⎞

1𝐶𝑛ɰ

⎠⎟
⎟⎟⎞ ⎠⎟

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎞

 
(6)

Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 
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formation, for the study of above discussed existing AOs, we analyzed research works to 
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generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 
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rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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])
, j = 1, 2, . . . , k, to be

any collection of interval-valued IFNs (IVIFNs). Then IVIF Hamy mean (IVIFHM) operator is
particularized as:
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

)(I1, I2, . . . , In) =

⊕
1≤i1<, ...,<i
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

∏
j=1

(
1− tµj($)

)) 1
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By utilizing theory of HM tool, we generalized concepts of CPFSs having two aspects
of TI, AI, and FI in amplitude and phase terms. We also introduced some new AOs such as
CPFHM and CPFWHM operators with their basic properties.

4. Complex Picture Fuzzy Hamy Mean Operators

Now we utilize the concept of HM operator to discover some new AOs under the
system of CPF information. We establish AOs of CPFHM and CPFWHM operators with
their basic properties of idempotency, monotonicity, and boundedness.

Definition 11. Consider Ij =
(
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2, . . . , k, to be the any family of CPFVs. Then, the CPFHM operator is given as:

CPFHM(

Electronics 2022, 11, x FOR PEER REVIEW 11 of 34 
 

 

𝐶𝑃𝐹𝑊𝐻𝑀 ɰ 𝐼 , 𝐼 , … , 𝐼

=

⎝⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎛ 1 − ⎝⎜

⎛ 1 − ὕ𝜇𝑖𝑗 𝜚ɰ
𝑗=1

1ɰ ∏ 𝔑ɰ
1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟

⎞ 1𝐶𝑛ɰ

  𝑒2πi
⎝⎜
⎜⎛1−⎝⎜

⎛∏ 1− ∏ 𝜓𝜇𝑖𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

⎠⎟
⎟⎞

,

⎝⎜
⎛ 1 − 1 − ἒ𝐴𝑗 𝜚ɰ

𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

𝑒
2𝜋𝑖

⎝⎜
⎜⎜⎛⎝⎜⎜

⎛∏ 1− ∏ 1− 𝜑𝐴𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟⎟
⎞

1𝐶𝑛ɰ

⎠⎟
⎟⎟⎞,

⎝⎜
⎛ 1 − 1 − Ὗ𝜈𝑖𝑗 𝜚ɰ

𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

𝑒
2𝜋𝑖

⎝⎜
⎜⎜⎛⎝⎜⎜

⎛∏ 1− ∏ 1− 𝜙𝜈𝑖𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟⎟
⎞

1𝐶𝑛ɰ

⎠⎟
⎟⎟⎞ ⎠⎟

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎞

 
(6)

Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 
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are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
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degree of truth index (TI). El-Bably and Abo-Tabl [2,3] presented an innovative concept 
of FSs in the frame work of a rough set under some topological reduction. El Sayed et al. 
[4] explored the theory of topological techniques to handle the current situations of 
COVID-19 by using the model of nano-topology. Atanassov [5] generalized the theory of 
FS in the framework of an intuitionistic fuzzy set (IFS) having TI and falsity index 
(FI),where the sum of TI ὕ 𝜚  and FI Ὗ 𝜚  restricted is less and equal to 0 and 1, i.e., 0 ≤ ὕ 𝜚 + Ὗ 𝜚 ≤ 1. In some scenarios IFS has failed; if the TI is 0.65 and FI is 0.55, then 
the sum of TI and FI is 0.65 + 0.55 = 1.2 ∉ [0, 1]. To cope with this situation, Yager [6] 
presented the concepts of a Pythagorean fuzzy set (PyFS); according to PyFS, the sum of 
the square of TI and FI are less than or equal to 0 and 1, and from the above example, 0 ≤ὕ 𝜚 + Ὗ 𝜚 ≤ 1, so 0.65 + 0.55 = 0.73 ∈ [0, 1]. Yager [7] also developed the con-
cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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With the help of a practical numerical example, we evaluate suitable software for VMS. 
To check validity and compatibility, we study a comprehensive comparative study to con-
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2. Preliminaries 
This section aims to recall notions of PFSs, CPFSs, and their basic operational laws. 

We applied these operational laws to develop our proposed methodology. First, we want 
to define the meaning of some symbols and letters in Table 1, as follows. 

Table 1. Symbols and their meanings. 

Symbols Meanings Symbols Meanings Ǖ Universal set 𝜙  Falsity Index of phase term 𝜚 Element belonging to Universal set Ŝ Score function ὕ  Truth Index/ (TI) of amplitude term Ą Accuracy function ἒ  Abstinence Index /(AI) of amplitude 
term 

𝔑  Weight vector Ὗ  Falsity Index/(FI) of amplitude term 𝐶ɰ Binomial Coefficient 𝔈 CPFS  √−1 Unit circle 𝜓  Truth Index of phase term ŕ𝔈 Hesitancy Index 𝜑  Abstinence Index of phase term 𝐼 ̅ Complement of CPFV 

The concepts of PFSs were developed by Cuong [8] and is given as follows: 

Definition 1. [8] Consider Ǖ to be an empty set. A PFS ƴ is defined as: ƴ = 𝜚, ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 |𝜚  

where ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 ∈ [0,1]. Truth index is denoted (TI) by the ὕ 𝜚 , abstinence index (AI) 
is denoted by the ἒ 𝜚 , and falsity index (FI) is denoted by the Ὗ 𝜚 , such that: 0 < ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 < 1 

A picture fuzzy value (PFV) represented by 𝒯 = ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 . 

The theory of the following Definition was proposed by Akram et al. [39]. 

Definition 2. [39] A CPFS is formed as: 𝔈 = 𝜚, ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 |𝜚 ∈ Ǖ , 𝑖 = √−1 

Aj($)e
2iπϕA j($),

Electronics 2022, 11, x FOR PEER REVIEW 2 of 34 
 

 

degree of truth index (TI). El-Bably and Abo-Tabl [2,3] presented an innovative concept 
of FSs in the frame work of a rough set under some topological reduction. El Sayed et al. 
[4] explored the theory of topological techniques to handle the current situations of 
COVID-19 by using the model of nano-topology. Atanassov [5] generalized the theory of 
FS in the framework of an intuitionistic fuzzy set (IFS) having TI and falsity index 
(FI),where the sum of TI ὕ 𝜚  and FI Ὗ 𝜚  restricted is less and equal to 0 and 1, i.e., 0 ≤ ὕ 𝜚 + Ὗ 𝜚 ≤ 1. In some scenarios IFS has failed; if the TI is 0.65 and FI is 0.55, then 
the sum of TI and FI is 0.65 + 0.55 = 1.2 ∉ [0, 1]. To cope with this situation, Yager [6] 
presented the concepts of a Pythagorean fuzzy set (PyFS); according to PyFS, the sum of 
the square of TI and FI are less than or equal to 0 and 1, and from the above example, 0 ≤ὕ 𝜚 + Ὗ 𝜚 ≤ 1, so 0.65 + 0.55 = 0.73 ∈ [0, 1]. Yager [7] also developed the con-
cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 

νj($)e
2iπφνj ($)

)
, j = 1, 2, . . . , k

to be any family of CPFVs. Then, accumulated value is also a CPFV.
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 
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We established a numerical example to support the CPFWHM operator by using the 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 
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are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

n

)



(4)

Proof of this theorem given in Appendix A.
Further, we have to prove the basic properties of CPFHM operators such as idempo-

tency, monotonicity, and boundedness under the basic operations of CPFHM.

Theorem 2. (Idempotency Property) Consider Ij =
(
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degree of truth index (TI). El-Bably and Abo-Tabl [2,3] presented an innovative concept 
of FSs in the frame work of a rough set under some topological reduction. El Sayed et al. 
[4] explored the theory of topological techniques to handle the current situations of 
COVID-19 by using the model of nano-topology. Atanassov [5] generalized the theory of 
FS in the framework of an intuitionistic fuzzy set (IFS) having TI and falsity index 
(FI),where the sum of TI ὕ 𝜚  and FI Ὗ 𝜚  restricted is less and equal to 0 and 1, i.e., 0 ≤ ὕ 𝜚 + Ὗ 𝜚 ≤ 1. In some scenarios IFS has failed; if the TI is 0.65 and FI is 0.55, then 
the sum of TI and FI is 0.65 + 0.55 = 1.2 ∉ [0, 1]. To cope with this situation, Yager [6] 
presented the concepts of a Pythagorean fuzzy set (PyFS); according to PyFS, the sum of 
the square of TI and FI are less than or equal to 0 and 1, and from the above example, 0 ≤ὕ 𝜚 + Ὗ 𝜚 ≤ 1, so 0.65 + 0.55 = 0.73 ∈ [0, 1]. Yager [7] also developed the con-
cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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The concepts of PFSs were developed by Cuong [8] and is given as follows: 

Definition 1. [8] Consider Ǖ to be an empty set. A PFS ƴ is defined as: ƴ = 𝜚, ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 |𝜚  
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, j = 1, 2, . . . , k to be the family of all same CPFVs. Then, CPFHM is given as:
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

(I1, I2, . . . , In) = I

We studied the proof of this theorem in Appendix A.
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Theorem 3. (Monotonicity Property), Consider Ij =
(
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degree of truth index (TI). El-Bably and Abo-Tabl [2,3] presented an innovative concept 
of FSs in the frame work of a rough set under some topological reduction. El Sayed et al. 
[4] explored the theory of topological techniques to handle the current situations of 
COVID-19 by using the model of nano-topology. Atanassov [5] generalized the theory of 
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the sum of TI and FI is 0.65 + 0.55 = 1.2 ∉ [0, 1]. To cope with this situation, Yager [6] 
presented the concepts of a Pythagorean fuzzy set (PyFS); according to PyFS, the sum of 
the square of TI and FI are less than or equal to 0 and 1, and from the above example, 0 ≤ὕ 𝜚 + Ὗ 𝜚 ≤ 1, so 0.65 + 0.55 = 0.73 ∈ [0, 1]. Yager [7] also developed the con-
cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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We discussed the proof of the Theorem 3 in Appendix A.

Theorem 4. (Boundedness Property), Consider Ij =
(
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𝔑  Weight vector Ὗ  Falsity Index/(FI) of amplitude term 𝐶ɰ Binomial Coefficient 𝔈 CPFS  √−1 Unit circle 𝜓  Truth Index of phase term ŕ𝔈 Hesitancy Index 𝜑  Abstinence Index of phase term 𝐼 ̅ Complement of CPFV 

The concepts of PFSs were developed by Cuong [8] and is given as follows: 

Definition 1. [8] Consider Ǖ to be an empty set. A PFS ƴ is defined as: ƴ = 𝜚, ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 |𝜚  

where ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 ∈ [0,1]. Truth index is denoted (TI) by the ὕ 𝜚 , abstinence index (AI) 
is denoted by the ἒ 𝜚 , and falsity index (FI) is denoted by the Ὗ 𝜚 , such that: 0 < ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 < 1 

A picture fuzzy value (PFV) represented by 𝒯 = ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 . 

The theory of the following Definition was proposed by Akram et al. [39]. 

Definition 2. [39] A CPFS is formed as: 𝔈 = 𝜚, ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 |𝜚 ∈ Ǖ , 𝑖 = √−1 
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recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
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fuzzy environments seen in references [27–30]. 
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)
, j = 1, 2, . . . , k, to be the family of CPFVs, if I−j = min(I1, I2, I3, . . . , In)

and I+j = max(I1, I2, I3, . . . , In) Then:

I− ≤ CPFHM
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(6)

Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

(I1, I2, . . . , In) ≤ I+

Proof: From the Theorem 2:

CPFHM
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

(I1, I2, . . . , In) = I−

CPFHM
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

(I1, I2, . . . , In) = I+

�

From The Theorem 3,

I− ≤ CPFHM
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

(I1, I2, . . . , In) ≤ I+

Now we discuss the CPFWHM operator by utilizing the basic operations of the HM
operator. To solve the MADM techniques, the decision maker uses a weight vector of all
attributes given by the experts.

Definition 12. Consider Ij =
(
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MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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2, . . . , k, to be the family of CPFVs and corresponding weight vectors Ni = (N1,N2, . . . , Nn)
T ,

Ni ∈ [0, 1] and ∑n
i=1 Ni = 1. Then:
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(6)

Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

)(I1, I2, . . . , In) =

⊕
1≤i1<, ...,<i
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

C
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

n
(5)

Theorem 5. Consider Ij =
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degree of truth index (TI). El-Bably and Abo-Tabl [2,3] presented an innovative concept 
of FSs in the frame work of a rough set under some topological reduction. El Sayed et al. 
[4] explored the theory of topological techniques to handle the current situations of 
COVID-19 by using the model of nano-topology. Atanassov [5] generalized the theory of 
FS in the framework of an intuitionistic fuzzy set (IFS) having TI and falsity index 
(FI),where the sum of TI ὕ 𝜚  and FI Ὗ 𝜚  restricted is less and equal to 0 and 1, i.e., 0 ≤ ὕ 𝜚 + Ὗ 𝜚 ≤ 1. In some scenarios IFS has failed; if the TI is 0.65 and FI is 0.55, then 
the sum of TI and FI is 0.65 + 0.55 = 1.2 ∉ [0, 1]. To cope with this situation, Yager [6] 
presented the concepts of a Pythagorean fuzzy set (PyFS); according to PyFS, the sum of 
the square of TI and FI are less than or equal to 0 and 1, and from the above example, 0 ≤ὕ 𝜚 + Ὗ 𝜚 ≤ 1, so 0.65 + 0.55 = 0.73 ∈ [0, 1]. Yager [7] also developed the con-
cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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With the help of a practical numerical example, we evaluate suitable software for VMS. 
To check validity and compatibility, we study a comprehensive comparative study to con-
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2. Preliminaries 
This section aims to recall notions of PFSs, CPFSs, and their basic operational laws. 

We applied these operational laws to develop our proposed methodology. First, we want 
to define the meaning of some symbols and letters in Table 1, as follows. 

Table 1. Symbols and their meanings. 

Symbols Meanings Symbols Meanings Ǖ Universal set 𝜙  Falsity Index of phase term 𝜚 Element belonging to Universal set Ŝ Score function ὕ  Truth Index/ (TI) of amplitude term Ą Accuracy function ἒ  Abstinence Index /(AI) of amplitude 
term 

𝔑  Weight vector Ὗ  Falsity Index/(FI) of amplitude term 𝐶ɰ Binomial Coefficient 𝔈 CPFS  √−1 Unit circle 𝜓  Truth Index of phase term ŕ𝔈 Hesitancy Index 𝜑  Abstinence Index of phase term 𝐼 ̅ Complement of CPFV 

The concepts of PFSs were developed by Cuong [8] and is given as follows: 

Definition 1. [8] Consider Ǖ to be an empty set. A PFS ƴ is defined as: ƴ = 𝜚, ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 |𝜚  

where ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 ∈ [0,1]. Truth index is denoted (TI) by the ὕ 𝜚 , abstinence index (AI) 
is denoted by the ἒ 𝜚 , and falsity index (FI) is denoted by the Ὗ 𝜚 , such that: 0 < ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 < 1 

A picture fuzzy value (PFV) represented by 𝒯 = ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 . 

The theory of the following Definition was proposed by Akram et al. [39]. 

Definition 2. [39] A CPFS is formed as: 𝔈 = 𝜚, ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 |𝜚 ∈ Ǖ , 𝑖 = √−1 
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to be the family of CPFVs, Then the accumulated index of the CPFWHM operator is also a CPFV:
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 
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concepts of HM and GHM operators and also discuss their basic properties. In Section 4, 
we utilize the basic operations of HM operators to introduce some new AOs such as 
CPFHM and CPFWHM operators with their characteristics. In Section 5, we also present 
some new AOs of CPFGHM and CPFWGHM operators. We also present some numerical 
examples to find the feasibility of our proposed approaches. In Section 6, we establish a 
strategy for the MADM process under the system of CPFSs. We also provide an applica-
tion in the framework of VMS. To check the competitiveness and flexibility of our pro-
posed AOs, we illustrate a numerical example based on CPF information. In Section 7, to 
find the validity and rationality of our proposed work, we make comparison results of 
our proposed approaches with some existing AOs. In Section 8, we summarize the whole 
article in a paragraph. 

2. Preliminaries 
This section aims to recall notions of PFSs, CPFSs, and their basic operational laws. 

We applied these operational laws to develop our proposed methodology. First, we want 
to define the meaning of some symbols and letters in Table 1, as follows. 

Table 1. Symbols and their meanings. 

Symbols Meanings Symbols Meanings Ǖ Universal set 𝜙  Falsity Index of phase term 𝜚 Element belonging to Universal set Ŝ Score function ὕ  Truth Index/ (TI) of amplitude term Ą Accuracy function ἒ  Abstinence Index /(AI) of amplitude 
term 

𝔑  Weight vector Ὗ  Falsity Index/(FI) of amplitude term 𝐶ɰ Binomial Coefficient 𝔈 CPFS  √−1 Unit circle 𝜓  Truth Index of phase term ŕ𝔈 Hesitancy Index 𝜑  Abstinence Index of phase term 𝐼 ̅ Complement of CPFV 

The concepts of PFSs were developed by Cuong [8] and is given as follows: 

Definition 1. [8] Consider Ǖ to be an empty set. A PFS ƴ is defined as: ƴ = 𝜚, ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 |𝜚  

where ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 ∈ [0,1]. Truth index is denoted (TI) by the ὕ 𝜚 , abstinence index (AI) 
is denoted by the ἒ 𝜚 , and falsity index (FI) is denoted by the Ὗ 𝜚 , such that: 0 < ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 < 1 

A picture fuzzy value (PFV) represented by 𝒯 = ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 . 

The theory of the following Definition was proposed by Akram et al. [39]. 

Definition 2. [39] A CPFS is formed as: 𝔈 = 𝜚, ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 |𝜚 ∈ Ǖ , 𝑖 = √−1 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 
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Example 2. Let I1 =
(

0.28e2πi(0.42), 0.36e2πi(0.18), 0.33e2πi(0.19)
)

, I2 =
(

0.15e2πi(0.07),

0.52e2πi(0.09), 0.15e2πi(0.66)
)

, I3 =
(

0.64e2πi(0.15), 0.09e2πi(0.42), 0.16e2πi(0.15)
)

are three CPFVs

with corresponding weight vectors N = (0.45, 0.35, 20), suppose that

Electronics 2022, 11, x FOR PEER REVIEW 11 of 34 
 

 

𝐶𝑃𝐹𝑊𝐻𝑀 ɰ 𝐼 , 𝐼 , … , 𝐼

=

⎝⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎛ 1 − ⎝⎜

⎛ 1 − ὕ𝜇𝑖𝑗 𝜚ɰ
𝑗=1

1ɰ ∏ 𝔑ɰ
1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟

⎞ 1𝐶𝑛ɰ

  𝑒2πi
⎝⎜
⎜⎛1−⎝⎜

⎛∏ 1− ∏ 𝜓𝜇𝑖𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

⎠⎟
⎟⎞

,

⎝⎜
⎛ 1 − 1 − ἒ𝐴𝑗 𝜚ɰ

𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

𝑒
2𝜋𝑖

⎝⎜
⎜⎜⎛⎝⎜⎜

⎛∏ 1− ∏ 1− 𝜑𝐴𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟⎟
⎞

1𝐶𝑛ɰ

⎠⎟
⎟⎟⎞,

⎝⎜
⎛ 1 − 1 − Ὗ𝜈𝑖𝑗 𝜚ɰ

𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

𝑒
2𝜋𝑖

⎝⎜
⎜⎜⎛⎝⎜⎜

⎛∏ 1− ∏ 1− 𝜙𝜈𝑖𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟⎟
⎞

1𝐶𝑛ɰ

⎠⎟
⎟⎟⎞ ⎠⎟

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎞

 
(6)

Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 
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[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
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and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
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2. Preliminaries 
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The theory of the following Definition was proposed by Akram et al. [39]. 
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We established a numerical example to support the CPFWHM operator by using the 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 
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We established a numerical example to support the CPFWHM operator by using the 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 
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=



1−


(

1− (0.28× 0.15)0.5
)(1−(0.45×0.35))

.(
1− (0.28× 0.64)0.5

)(1−(0.45×0.20))(
1− (0.15× 0.64)0.5

)(1−(0.35×0.20))


1
6

e

2πi

1−

(1− (0.42× 0.07)0.5)
(1−(1−0.20×0.15))

.

(1− (0.42× 0.15)0.5)
(1−(0.45×0.20))

(1− (0.07× 0.15)0.5)
(1−(0.35×0.20))


1
6


,
(

1− ((1− 0.36)× (1− 0.52))0.5
)(1−(0.45×0.35))

.(
1− ((1− 0.36)× (1− 0.09))0.5

)(1−(0.45×0.20))(
1− ((1− 0.52)× (1− 0.09))0.5

)(1−(0.35×0.20))


1
6

e

2πi


(1− ((1− 0.18)× (1− 0.09))0.5)

(1−(0.45×0.35))
.

(1− ((1− 0.18)× (1− 0.42))0.5)
(1−(0.45×0.20))

(1− ((1− 0.09)× (1− 0.42))0.5)
(1−(0.35×0.20))


1
6


,
(

1− ((1− 0.33)× (1− 0.15))0.5
)(1−(0.45×0.35))

.(
1− ((1− 0.33)× (1− 0.16))0.5

)(1−(0.45×0.20))(
1− ((1− 0.15)× (1− 0.16))0.5

)(1−(0.35×0.20))


1
6

e

2πi


(1− ((1− 0.19)× (1− 0.66))0.5)

(1−(0.45×0.35))
.

(1− ((1− 0.19)× (1− 0.15))0.5)
(1−(0.45×0.20))

(1− ((1− 0.66)× (1− 0.15))0.5)
(1−(0.35×0.20))


1
6



=
(

0.0981e2πi(0.0309), 0.5793e2πi(0.4433), 0.4166e2πi(0.5770)
)

Theorem 6. (Idempotency Property), Consider Ij =
(
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degree of truth index (TI). El-Bably and Abo-Tabl [2,3] presented an innovative concept 
of FSs in the frame work of a rough set under some topological reduction. El Sayed et al. 
[4] explored the theory of topological techniques to handle the current situations of 
COVID-19 by using the model of nano-topology. Atanassov [5] generalized the theory of 
FS in the framework of an intuitionistic fuzzy set (IFS) having TI and falsity index 
(FI),where the sum of TI ὕ 𝜚  and FI Ὗ 𝜚  restricted is less and equal to 0 and 1, i.e., 0 ≤ ὕ 𝜚 + Ὗ 𝜚 ≤ 1. In some scenarios IFS has failed; if the TI is 0.65 and FI is 0.55, then 
the sum of TI and FI is 0.65 + 0.55 = 1.2 ∉ [0, 1]. To cope with this situation, Yager [6] 
presented the concepts of a Pythagorean fuzzy set (PyFS); according to PyFS, the sum of 
the square of TI and FI are less than or equal to 0 and 1, and from the above example, 0 ≤ὕ 𝜚 + Ὗ 𝜚 ≤ 1, so 0.65 + 0.55 = 0.73 ∈ [0, 1]. Yager [7] also developed the con-
cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 

µj($)e
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With the help of a practical numerical example, we evaluate suitable software for VMS. 
To check validity and compatibility, we study a comprehensive comparative study to con-
trast the results of existing AOs with the results of the discussed technique. 

The structure of this article is organized as follows: In Section 1, we review the history 
of our research work for the improvement of this article. In Section 2, we study all the 
notions related to PFSs, CPFSs, and their basic operations. In Section 3, we recall existing 
concepts of HM and GHM operators and also discuss their basic properties. In Section 4, 
we utilize the basic operations of HM operators to introduce some new AOs such as 
CPFHM and CPFWHM operators with their characteristics. In Section 5, we also present 
some new AOs of CPFGHM and CPFWGHM operators. We also present some numerical 
examples to find the feasibility of our proposed approaches. In Section 6, we establish a 
strategy for the MADM process under the system of CPFSs. We also provide an applica-
tion in the framework of VMS. To check the competitiveness and flexibility of our pro-
posed AOs, we illustrate a numerical example based on CPF information. In Section 7, to 
find the validity and rationality of our proposed work, we make comparison results of 
our proposed approaches with some existing AOs. In Section 8, we summarize the whole 
article in a paragraph. 

2. Preliminaries 
This section aims to recall notions of PFSs, CPFSs, and their basic operational laws. 

We applied these operational laws to develop our proposed methodology. First, we want 
to define the meaning of some symbols and letters in Table 1, as follows. 

Table 1. Symbols and their meanings. 

Symbols Meanings Symbols Meanings Ǖ Universal set 𝜙  Falsity Index of phase term 𝜚 Element belonging to Universal set Ŝ Score function ὕ  Truth Index/ (TI) of amplitude term Ą Accuracy function ἒ  Abstinence Index /(AI) of amplitude 
term 

𝔑  Weight vector Ὗ  Falsity Index/(FI) of amplitude term 𝐶ɰ Binomial Coefficient 𝔈 CPFS  √−1 Unit circle 𝜓  Truth Index of phase term ŕ𝔈 Hesitancy Index 𝜑  Abstinence Index of phase term 𝐼 ̅ Complement of CPFV 

The concepts of PFSs were developed by Cuong [8] and is given as follows: 

Definition 1. [8] Consider Ǖ to be an empty set. A PFS ƴ is defined as: ƴ = 𝜚, ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 |𝜚  

where ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 ∈ [0,1]. Truth index is denoted (TI) by the ὕ 𝜚 , abstinence index (AI) 
is denoted by the ἒ 𝜚 , and falsity index (FI) is denoted by the Ὗ 𝜚 , such that: 0 < ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 < 1 

A picture fuzzy value (PFV) represented by 𝒯 = ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 . 

The theory of the following Definition was proposed by Akram et al. [39]. 

Definition 2. [39] A CPFS is formed as: 𝔈 = 𝜚, ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 |𝜚 ∈ Ǖ , 𝑖 = √−1 

Aj($)e
2πiϕA j($),

Electronics 2022, 11, x FOR PEER REVIEW 2 of 34 
 

 

degree of truth index (TI). El-Bably and Abo-Tabl [2,3] presented an innovative concept 
of FSs in the frame work of a rough set under some topological reduction. El Sayed et al. 
[4] explored the theory of topological techniques to handle the current situations of 
COVID-19 by using the model of nano-topology. Atanassov [5] generalized the theory of 
FS in the framework of an intuitionistic fuzzy set (IFS) having TI and falsity index 
(FI),where the sum of TI ὕ 𝜚  and FI Ὗ 𝜚  restricted is less and equal to 0 and 1, i.e., 0 ≤ ὕ 𝜚 + Ὗ 𝜚 ≤ 1. In some scenarios IFS has failed; if the TI is 0.65 and FI is 0.55, then 
the sum of TI and FI is 0.65 + 0.55 = 1.2 ∉ [0, 1]. To cope with this situation, Yager [6] 
presented the concepts of a Pythagorean fuzzy set (PyFS); according to PyFS, the sum of 
the square of TI and FI are less than or equal to 0 and 1, and from the above example, 0 ≤ὕ 𝜚 + Ὗ 𝜚 ≤ 1, so 0.65 + 0.55 = 0.73 ∈ [0, 1]. Yager [7] also developed the con-
cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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, j = 1, 2, . . . , k, to be the family of all identical CPFVs. Then:
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(6)

Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

(I1, I2, . . . , In) = I

Proof: Proof is analogously. �

Theorem 7. (Monotonicity Property), Consider Ij =
(
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cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 
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instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
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tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
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MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
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sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
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dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
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daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
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degree of truth index (TI). El-Bably and Abo-Tabl [2,3] presented an innovative concept 
of FSs in the frame work of a rough set under some topological reduction. El Sayed et al. 
[4] explored the theory of topological techniques to handle the current situations of 
COVID-19 by using the model of nano-topology. Atanassov [5] generalized the theory of 
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(FI),where the sum of TI ὕ 𝜚  and FI Ὗ 𝜚  restricted is less and equal to 0 and 1, i.e., 0 ≤ ὕ 𝜚 + Ὗ 𝜚 ≤ 1. In some scenarios IFS has failed; if the TI is 0.65 and FI is 0.55, then 
the sum of TI and FI is 0.65 + 0.55 = 1.2 ∉ [0, 1]. To cope with this situation, Yager [6] 
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the square of TI and FI are less than or equal to 0 and 1, and from the above example, 0 ≤ὕ 𝜚 + Ὗ 𝜚 ≤ 1, so 0.65 + 0.55 = 0.73 ∈ [0, 1]. Yager [7] also developed the con-
cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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Proof: Straightforward. �
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, j = 1, 2, . . . , k, to be the

family of CPFVs, if:
I−j = min(I1, I2, I3, . . . , In)

and
I+j = max(I1, I2, I3, . . . , In)

then
I− ≤ CPFWHM
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(6)

Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

(I1, I2, . . . , In) ≤ I+

From boundedness property:

CPFWHM
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

(I1, I2, . . . , In) = I−

CPFWHM
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

(I1, I2, . . . , In) = I+

From monotonicity property

I− ≤ CPFWHM
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

(I1, I2, . . . , In) ≤ I+

We explored the proof of the Theorem 8 in Appendix A.

5. Complex Picture Fuzzy Dual Hamy Mean Operators

We establish AOs of CPFDHM and CPFWDHM operators by using the basic idea of
DHM operator under the system of CPF information. To find the validity of our discussion
strategy, we gave a numerical example.

Definition 13. Consider Ij =
(
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degree of truth index (TI). El-Bably and Abo-Tabl [2,3] presented an innovative concept 
of FSs in the frame work of a rough set under some topological reduction. El Sayed et al. 
[4] explored the theory of topological techniques to handle the current situations of 
COVID-19 by using the model of nano-topology. Atanassov [5] generalized the theory of 
FS in the framework of an intuitionistic fuzzy set (IFS) having TI and falsity index 
(FI),where the sum of TI ὕ 𝜚  and FI Ὗ 𝜚  restricted is less and equal to 0 and 1, i.e., 0 ≤ ὕ 𝜚 + Ὗ 𝜚 ≤ 1. In some scenarios IFS has failed; if the TI is 0.65 and FI is 0.55, then 
the sum of TI and FI is 0.65 + 0.55 = 1.2 ∉ [0, 1]. To cope with this situation, Yager [6] 
presented the concepts of a Pythagorean fuzzy set (PyFS); according to PyFS, the sum of 
the square of TI and FI are less than or equal to 0 and 1, and from the above example, 0 ≤ὕ 𝜚 + Ὗ 𝜚 ≤ 1, so 0.65 + 0.55 = 0.73 ∈ [0, 1]. Yager [7] also developed the con-
cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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With the help of a practical numerical example, we evaluate suitable software for VMS. 
To check validity and compatibility, we study a comprehensive comparative study to con-
trast the results of existing AOs with the results of the discussed technique. 
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our proposed approaches with some existing AOs. In Section 8, we summarize the whole 
article in a paragraph. 

2. Preliminaries 
This section aims to recall notions of PFSs, CPFSs, and their basic operational laws. 

We applied these operational laws to develop our proposed methodology. First, we want 
to define the meaning of some symbols and letters in Table 1, as follows. 

Table 1. Symbols and their meanings. 

Symbols Meanings Symbols Meanings Ǖ Universal set 𝜙  Falsity Index of phase term 𝜚 Element belonging to Universal set Ŝ Score function ὕ  Truth Index/ (TI) of amplitude term Ą Accuracy function ἒ  Abstinence Index /(AI) of amplitude 
term 

𝔑  Weight vector Ὗ  Falsity Index/(FI) of amplitude term 𝐶ɰ Binomial Coefficient 𝔈 CPFS  √−1 Unit circle 𝜓  Truth Index of phase term ŕ𝔈 Hesitancy Index 𝜑  Abstinence Index of phase term 𝐼 ̅ Complement of CPFV 

The concepts of PFSs were developed by Cuong [8] and is given as follows: 

Definition 1. [8] Consider Ǖ to be an empty set. A PFS ƴ is defined as: ƴ = 𝜚, ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 |𝜚  

where ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 ∈ [0,1]. Truth index is denoted (TI) by the ὕ 𝜚 , abstinence index (AI) 
is denoted by the ἒ 𝜚 , and falsity index (FI) is denoted by the Ὗ 𝜚 , such that: 0 < ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 < 1 

A picture fuzzy value (PFV) represented by 𝒯 = ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 . 

The theory of the following Definition was proposed by Akram et al. [39]. 

Definition 2. [39] A CPFS is formed as: 𝔈 = 𝜚, ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 |𝜚 ∈ Ǖ , 𝑖 = √−1 
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generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
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2, . . . , k, to be the family of CPFVs. Then CPFDHM operator is given as:

CPFDHM(
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degree of truth index (TI). El-Bably and Abo-Tabl [2,3] presented an innovative concept 
of FSs in the frame work of a rough set under some topological reduction. El Sayed et al. 
[4] explored the theory of topological techniques to handle the current situations of 
COVID-19 by using the model of nano-topology. Atanassov [5] generalized the theory of 
FS in the framework of an intuitionistic fuzzy set (IFS) having TI and falsity index 
(FI),where the sum of TI ὕ 𝜚  and FI Ὗ 𝜚  restricted is less and equal to 0 and 1, i.e., 0 ≤ ὕ 𝜚 + Ὗ 𝜚 ≤ 1. In some scenarios IFS has failed; if the TI is 0.65 and FI is 0.55, then 
the sum of TI and FI is 0.65 + 0.55 = 1.2 ∉ [0, 1]. To cope with this situation, Yager [6] 
presented the concepts of a Pythagorean fuzzy set (PyFS); according to PyFS, the sum of 
the square of TI and FI are less than or equal to 0 and 1, and from the above example, 0 ≤ὕ 𝜚 + Ὗ 𝜚 ≤ 1, so 0.65 + 0.55 = 0.73 ∈ [0, 1]. Yager [7] also developed the con-
cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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With the help of a practical numerical example, we evaluate suitable software for VMS. 
To check validity and compatibility, we study a comprehensive comparative study to con-
trast the results of existing AOs with the results of the discussed technique. 

The structure of this article is organized as follows: In Section 1, we review the history 
of our research work for the improvement of this article. In Section 2, we study all the 
notions related to PFSs, CPFSs, and their basic operations. In Section 3, we recall existing 
concepts of HM and GHM operators and also discuss their basic properties. In Section 4, 
we utilize the basic operations of HM operators to introduce some new AOs such as 
CPFHM and CPFWHM operators with their characteristics. In Section 5, we also present 
some new AOs of CPFGHM and CPFWGHM operators. We also present some numerical 
examples to find the feasibility of our proposed approaches. In Section 6, we establish a 
strategy for the MADM process under the system of CPFSs. We also provide an applica-
tion in the framework of VMS. To check the competitiveness and flexibility of our pro-
posed AOs, we illustrate a numerical example based on CPF information. In Section 7, to 
find the validity and rationality of our proposed work, we make comparison results of 
our proposed approaches with some existing AOs. In Section 8, we summarize the whole 
article in a paragraph. 

2. Preliminaries 
This section aims to recall notions of PFSs, CPFSs, and their basic operational laws. 

We applied these operational laws to develop our proposed methodology. First, we want 
to define the meaning of some symbols and letters in Table 1, as follows. 

Table 1. Symbols and their meanings. 

Symbols Meanings Symbols Meanings Ǖ Universal set 𝜙  Falsity Index of phase term 𝜚 Element belonging to Universal set Ŝ Score function ὕ  Truth Index/ (TI) of amplitude term Ą Accuracy function ἒ  Abstinence Index /(AI) of amplitude 
term 

𝔑  Weight vector Ὗ  Falsity Index/(FI) of amplitude term 𝐶ɰ Binomial Coefficient 𝔈 CPFS  √−1 Unit circle 𝜓  Truth Index of phase term ŕ𝔈 Hesitancy Index 𝜑  Abstinence Index of phase term 𝐼 ̅ Complement of CPFV 

The concepts of PFSs were developed by Cuong [8] and is given as follows: 

Definition 1. [8] Consider Ǖ to be an empty set. A PFS ƴ is defined as: ƴ = 𝜚, ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 |𝜚  

where ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 ∈ [0,1]. Truth index is denoted (TI) by the ὕ 𝜚 , abstinence index (AI) 
is denoted by the ἒ 𝜚 , and falsity index (FI) is denoted by the Ὗ 𝜚 , such that: 0 < ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 < 1 

A picture fuzzy value (PFV) represented by 𝒯 = ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 . 

The theory of the following Definition was proposed by Akram et al. [39]. 

Definition 2. [39] A CPFS is formed as: 𝔈 = 𝜚, ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 |𝜚 ∈ Ǖ , 𝑖 = √−1 
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FS in the framework of an intuitionistic fuzzy set (IFS) having TI and falsity index 
(FI),where the sum of TI ὕ 𝜚  and FI Ὗ 𝜚  restricted is less and equal to 0 and 1, i.e., 0 ≤ ὕ 𝜚 + Ὗ 𝜚 ≤ 1. In some scenarios IFS has failed; if the TI is 0.65 and FI is 0.55, then 
the sum of TI and FI is 0.65 + 0.55 = 1.2 ∉ [0, 1]. To cope with this situation, Yager [6] 
presented the concepts of a Pythagorean fuzzy set (PyFS); according to PyFS, the sum of 
the square of TI and FI are less than or equal to 0 and 1, and from the above example, 0 ≤ὕ 𝜚 + Ὗ 𝜚 ≤ 1, so 0.65 + 0.55 = 0.73 ∈ [0, 1]. Yager [7] also developed the con-
cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 

νj($)e
2πiφνj ($)

)
, j = 1, 2, . . . , k,

to be the family of CPFVs. Then CPFDHM operator is given as:

CPFDHM(
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

)(I1, I2, . . . , In) =
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1≤i1<, ...,<i
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

n

(8)

Proof: The proof is analogous to the proof of Theorem 1. �

Remark 2. All the properties of CPFWHM operator such as idempotency, monotonicity, and
boundedness are prove similar to Theorems 2, 3 and 4.

We elaborated the concept of DHM tool to establish a new AOs of CPFDHM operator
under the system of CPFSs.
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Definition 14. Consider Ij =
(

Electronics 2022, 11, x FOR PEER REVIEW 2 of 34 
 

 

degree of truth index (TI). El-Bably and Abo-Tabl [2,3] presented an innovative concept 
of FSs in the frame work of a rough set under some topological reduction. El Sayed et al. 
[4] explored the theory of topological techniques to handle the current situations of 
COVID-19 by using the model of nano-topology. Atanassov [5] generalized the theory of 
FS in the framework of an intuitionistic fuzzy set (IFS) having TI and falsity index 
(FI),where the sum of TI ὕ 𝜚  and FI Ὗ 𝜚  restricted is less and equal to 0 and 1, i.e., 0 ≤ ὕ 𝜚 + Ὗ 𝜚 ≤ 1. In some scenarios IFS has failed; if the TI is 0.65 and FI is 0.55, then 
the sum of TI and FI is 0.65 + 0.55 = 1.2 ∉ [0, 1]. To cope with this situation, Yager [6] 
presented the concepts of a Pythagorean fuzzy set (PyFS); according to PyFS, the sum of 
the square of TI and FI are less than or equal to 0 and 1, and from the above example, 0 ≤ὕ 𝜚 + Ὗ 𝜚 ≤ 1, so 0.65 + 0.55 = 0.73 ∈ [0, 1]. Yager [7] also developed the con-
cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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2, . . . , k, to be the family of CPFVs, with corresponding weight vectors Ni = (N1,N2, . . . , Nn)
T ,

Ni ∈ [0, 1] and ∑n
i=1 Ni = 1. Then:
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(6)

Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

)(I1, I2, . . . , In) =

⊗
1≤i1<, ...,<i
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

⊕
j=1

(
Iij
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degree of truth index (TI). El-Bably and Abo-Tabl [2,3] presented an innovative concept 
of FSs in the frame work of a rough set under some topological reduction. El Sayed et al. 
[4] explored the theory of topological techniques to handle the current situations of 
COVID-19 by using the model of nano-topology. Atanassov [5] generalized the theory of 
FS in the framework of an intuitionistic fuzzy set (IFS) having TI and falsity index 
(FI),where the sum of TI ὕ 𝜚  and FI Ὗ 𝜚  restricted is less and equal to 0 and 1, i.e., 0 ≤ ὕ 𝜚 + Ὗ 𝜚 ≤ 1. In some scenarios IFS has failed; if the TI is 0.65 and FI is 0.55, then 
the sum of TI and FI is 0.65 + 0.55 = 1.2 ∉ [0, 1]. To cope with this situation, Yager [6] 
presented the concepts of a Pythagorean fuzzy set (PyFS); according to PyFS, the sum of 
the square of TI and FI are less than or equal to 0 and 1, and from the above example, 0 ≤ὕ 𝜚 + Ὗ 𝜚 ≤ 1, so 0.65 + 0.55 = 0.73 ∈ [0, 1]. Yager [7] also developed the con-
cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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With the help of a practical numerical example, we evaluate suitable software for VMS. 
To check validity and compatibility, we study a comprehensive comparative study to con-
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article in a paragraph. 

2. Preliminaries 
This section aims to recall notions of PFSs, CPFSs, and their basic operational laws. 

We applied these operational laws to develop our proposed methodology. First, we want 
to define the meaning of some symbols and letters in Table 1, as follows. 

Table 1. Symbols and their meanings. 

Symbols Meanings Symbols Meanings Ǖ Universal set 𝜙  Falsity Index of phase term 𝜚 Element belonging to Universal set Ŝ Score function ὕ  Truth Index/ (TI) of amplitude term Ą Accuracy function ἒ  Abstinence Index /(AI) of amplitude 
term 

𝔑  Weight vector Ὗ  Falsity Index/(FI) of amplitude term 𝐶ɰ Binomial Coefficient 𝔈 CPFS  √−1 Unit circle 𝜓  Truth Index of phase term ŕ𝔈 Hesitancy Index 𝜑  Abstinence Index of phase term 𝐼 ̅ Complement of CPFV 

The concepts of PFSs were developed by Cuong [8] and is given as follows: 

Definition 1. [8] Consider Ǖ to be an empty set. A PFS ƴ is defined as: ƴ = 𝜚, ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 |𝜚  

where ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 ∈ [0,1]. Truth index is denoted (TI) by the ὕ 𝜚 , abstinence index (AI) 
is denoted by the ἒ 𝜚 , and falsity index (FI) is denoted by the Ὗ 𝜚 , such that: 0 < ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 < 1 

A picture fuzzy value (PFV) represented by 𝒯 = ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 . 

The theory of the following Definition was proposed by Akram et al. [39]. 

Definition 2. [39] A CPFS is formed as: 𝔈 = 𝜚, ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 |𝜚 ∈ Ǖ , 𝑖 = √−1 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 
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Proof: The proof is similar to the proof of Theorem 5. �

To support Definition 14, we establish the following practice Example 3 by utilizing
the idea of CPFWDHM operator.

Example 3. Let I1 =
(

0.42e2πi(0.18), 0.04e2πi(0.36), 0.16e2πi(0.23)
)

, I2 =
(

0.08e2πi(0.16),

0.62e2πi(0.27), 0.26e2πi(0.19)
)

, I3 =
(

0.53e2πi(0.22), 0.12e2πi(0.32), 0.33e2πi(0.22)
)

are three CPFVs

with corresponding weight vectors N = (0.45, 0.35, 0.20), and suppose that
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MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 
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2. Preliminaries 
This section aims to recall notions of PFSs, CPFSs, and their basic operational laws. 

We applied these operational laws to develop our proposed methodology. First, we want 
to define the meaning of some symbols and letters in Table 1, as follows. 
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The concepts of PFSs were developed by Cuong [8] and is given as follows: 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

n




=
(

0.6149e2πi(0.3800), 0.0320e2πi(0.0896), 0.0546e2πi(0.0407)
)

Remark 3. All the properties of CPFWDHM operator like idempotency, monotonicity, and bound-
edness are proved similar to Theorems 2, 3 and 4.

6. MADM Techniques and Its Algorithm

In this section, we study a method to solve the procedure of the MADM technique
under the system of PFSs. We also apply our discussed approaches like CPFWHM and
CPFWDHM operators. Consider
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Remark 3. All the properties of CPFWDHM operator like idempotency, monotonicity, and bound-
edness are proved similar to Theorems 2, 3 and 4. 
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In this section, we study a method to solve the procedure of the MADM technique 

under the system of PFSs. We also apply our discussed approaches like CPFWHM and 
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which can be evaluated by using characteristics (set of attributes) Æ = Æ𝟏, Æ𝟐, … , Æ𝒏  
with corresponding weight vectors 𝔑 = 𝔑 , 𝔑 , … , 𝔑 , 𝔑 ∈ [0,1] and  ∑ 𝔑 = 1 . 
Each alternative has information on the environment of CPFSs. After accumulation of the 
information results in the state of CPFVs, 𝐼 = ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 , 𝑗 = 1,2, … , 𝑘 , these results 
must satisfy such conditions: 0 ≤ ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 ≤ 1 and 0 ≤ 𝜓 𝜚 + 𝜑 𝜚 + 𝜙 𝜚 ≤ 1. 

A decision matrix Đ = å × is depicted in the following form: 

Đ = 𝐼𝐼⋮𝐼
𝐼𝐼⋮𝐼

⋯⋯⋱⋯
𝐼𝐼⋮𝐼  

To solve a MADM technique, we follow the steps of the following algorithm. 
Steps 1: A decision maker constructs a decision matrix having information in form 

of alternative  ͷ = ͷ , ͷ , … , ͷ   and attributes Æ = Æ , Æ , … , Æ  with correspond-
ing weight vectors𝔑 = 𝔑 , 𝔑 , … , 𝔑 , 𝑖 = 1, 2, 3, … , 𝑛. All above-discussed information 
is packed in a decision matrix Đ = å × . 

= (
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= 0.6149𝑒 . , 0.0320𝑒 . , 0.0546𝑒 .  

Remark 3. All the properties of CPFWDHM operator like idempotency, monotonicity, and bound-
edness are proved similar to Theorems 2, 3 and 4. 

6. MADM Techniques and Its Algorithm 
In this section, we study a method to solve the procedure of the MADM technique 

under the system of PFSs. We also apply our discussed approaches like CPFWHM and 
CPFWDHM operators. Consider ͷ = ͷ , ͷ , … , ͷ   be a discrete set of alternatives, 
which can be evaluated by using characteristics (set of attributes) Æ = Æ𝟏, Æ𝟐, … , Æ𝒏  
with corresponding weight vectors 𝔑 = 𝔑 , 𝔑 , … , 𝔑 , 𝔑 ∈ [0,1] and  ∑ 𝔑 = 1 . 
Each alternative has information on the environment of CPFSs. After accumulation of the 
information results in the state of CPFVs, 𝐼 = ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 , 𝑗 = 1,2, … , 𝑘 , these results 
must satisfy such conditions: 0 ≤ ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 ≤ 1 and 0 ≤ 𝜓 𝜚 + 𝜑 𝜚 + 𝜙 𝜚 ≤ 1. 

A decision matrix Đ = å × is depicted in the following form: 

Đ = 𝐼𝐼⋮𝐼
𝐼𝐼⋮𝐼

⋯⋯⋱⋯
𝐼𝐼⋮𝐼  

To solve a MADM technique, we follow the steps of the following algorithm. 
Steps 1: A decision maker constructs a decision matrix having information in form 

of alternative  ͷ = ͷ , ͷ , … , ͷ   and attributes Æ = Æ , Æ , … , Æ  with correspond-
ing weight vectors𝔑 = 𝔑 , 𝔑 , … , 𝔑 , 𝑖 = 1, 2, 3, … , 𝑛. All above-discussed information 
is packed in a decision matrix Đ = å × . 

1,
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= 0.6149𝑒 . , 0.0320𝑒 . , 0.0546𝑒 .  

Remark 3. All the properties of CPFWDHM operator like idempotency, monotonicity, and bound-
edness are proved similar to Theorems 2, 3 and 4. 

6. MADM Techniques and Its Algorithm 
In this section, we study a method to solve the procedure of the MADM technique 

under the system of PFSs. We also apply our discussed approaches like CPFWHM and 
CPFWDHM operators. Consider ͷ = ͷ , ͷ , … , ͷ   be a discrete set of alternatives, 
which can be evaluated by using characteristics (set of attributes) Æ = Æ𝟏, Æ𝟐, … , Æ𝒏  
with corresponding weight vectors 𝔑 = 𝔑 , 𝔑 , … , 𝔑 , 𝔑 ∈ [0,1] and  ∑ 𝔑 = 1 . 
Each alternative has information on the environment of CPFSs. After accumulation of the 
information results in the state of CPFVs, 𝐼 = ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 , 𝑗 = 1,2, … , 𝑘 , these results 
must satisfy such conditions: 0 ≤ ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 ≤ 1 and 0 ≤ 𝜓 𝜚 + 𝜑 𝜚 + 𝜙 𝜚 ≤ 1. 

A decision matrix Đ = å × is depicted in the following form: 

Đ = 𝐼𝐼⋮𝐼
𝐼𝐼⋮𝐼

⋯⋯⋱⋯
𝐼𝐼⋮𝐼  

To solve a MADM technique, we follow the steps of the following algorithm. 
Steps 1: A decision maker constructs a decision matrix having information in form 

of alternative  ͷ = ͷ , ͷ , … , ͷ   and attributes Æ = Æ , Æ , … , Æ  with correspond-
ing weight vectors𝔑 = 𝔑 , 𝔑 , … , 𝔑 , 𝑖 = 1, 2, 3, … , 𝑛. All above-discussed information 
is packed in a decision matrix Đ = å × . 

2, . . . ,
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= 0.6149𝑒 . , 0.0320𝑒 . , 0.0546𝑒 .  

Remark 3. All the properties of CPFWDHM operator like idempotency, monotonicity, and bound-
edness are proved similar to Theorems 2, 3 and 4. 

6. MADM Techniques and Its Algorithm 
In this section, we study a method to solve the procedure of the MADM technique 

under the system of PFSs. We also apply our discussed approaches like CPFWHM and 
CPFWDHM operators. Consider ͷ = ͷ , ͷ , … , ͷ   be a discrete set of alternatives, 
which can be evaluated by using characteristics (set of attributes) Æ = Æ𝟏, Æ𝟐, … , Æ𝒏  
with corresponding weight vectors 𝔑 = 𝔑 , 𝔑 , … , 𝔑 , 𝔑 ∈ [0,1] and  ∑ 𝔑 = 1 . 
Each alternative has information on the environment of CPFSs. After accumulation of the 
information results in the state of CPFVs, 𝐼 = ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 , 𝑗 = 1,2, … , 𝑘 , these results 
must satisfy such conditions: 0 ≤ ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 ≤ 1 and 0 ≤ 𝜓 𝜚 + 𝜑 𝜚 + 𝜙 𝜚 ≤ 1. 

A decision matrix Đ = å × is depicted in the following form: 

Đ = 𝐼𝐼⋮𝐼
𝐼𝐼⋮𝐼

⋯⋯⋱⋯
𝐼𝐼⋮𝐼  

To solve a MADM technique, we follow the steps of the following algorithm. 
Steps 1: A decision maker constructs a decision matrix having information in form 

of alternative  ͷ = ͷ , ͷ , … , ͷ   and attributes Æ = Æ , Æ , … , Æ  with correspond-
ing weight vectors𝔑 = 𝔑 , 𝔑 , … , 𝔑 , 𝑖 = 1, 2, 3, … , 𝑛. All above-discussed information 
is packed in a decision matrix Đ = å × . 

n) be a discrete set of alternatives,
which can be evaluated by using characteristics (set of attributes)
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= 0.6149𝑒 . , 0.0320𝑒 . , 0.0546𝑒 .  

Remark 3. All the properties of CPFWDHM operator like idempotency, monotonicity, and bound-
edness are proved similar to Theorems 2, 3 and 4. 

6. MADM Techniques and Its Algorithm 
In this section, we study a method to solve the procedure of the MADM technique 

under the system of PFSs. We also apply our discussed approaches like CPFWHM and 
CPFWDHM operators. Consider ͷ = ͷ , ͷ , … , ͷ   be a discrete set of alternatives, 
which can be evaluated by using characteristics (set of attributes) Æ = Æ𝟏, Æ𝟐, … , Æ𝒏  
with corresponding weight vectors 𝔑 = 𝔑 , 𝔑 , … , 𝔑 , 𝔑 ∈ [0,1] and  ∑ 𝔑 = 1 . 
Each alternative has information on the environment of CPFSs. After accumulation of the 
information results in the state of CPFVs, 𝐼 = ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 , 𝑗 = 1,2, … , 𝑘 , these results 
must satisfy such conditions: 0 ≤ ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 ≤ 1 and 0 ≤ 𝜓 𝜚 + 𝜑 𝜚 + 𝜙 𝜚 ≤ 1. 

A decision matrix Đ = å × is depicted in the following form: 

Đ = 𝐼𝐼⋮𝐼
𝐼𝐼⋮𝐼

⋯⋯⋱⋯
𝐼𝐼⋮𝐼  

To solve a MADM technique, we follow the steps of the following algorithm. 
Steps 1: A decision maker constructs a decision matrix having information in form 

of alternative  ͷ = ͷ , ͷ , … , ͷ   and attributes Æ = Æ , Æ , … , Æ  with correspond-
ing weight vectors𝔑 = 𝔑 , 𝔑 , … , 𝔑 , 𝑖 = 1, 2, 3, … , 𝑛. All above-discussed information 
is packed in a decision matrix Đ = å × . 

= (
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= 0.6149𝑒 . , 0.0320𝑒 . , 0.0546𝑒 .  

Remark 3. All the properties of CPFWDHM operator like idempotency, monotonicity, and bound-
edness are proved similar to Theorems 2, 3 and 4. 

6. MADM Techniques and Its Algorithm 
In this section, we study a method to solve the procedure of the MADM technique 

under the system of PFSs. We also apply our discussed approaches like CPFWHM and 
CPFWDHM operators. Consider ͷ = ͷ , ͷ , … , ͷ   be a discrete set of alternatives, 
which can be evaluated by using characteristics (set of attributes) Æ = Æ𝟏, Æ𝟐, … , Æ𝒏  
with corresponding weight vectors 𝔑 = 𝔑 , 𝔑 , … , 𝔑 , 𝔑 ∈ [0,1] and  ∑ 𝔑 = 1 . 
Each alternative has information on the environment of CPFSs. After accumulation of the 
information results in the state of CPFVs, 𝐼 = ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 , 𝑗 = 1,2, … , 𝑘 , these results 
must satisfy such conditions: 0 ≤ ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 ≤ 1 and 0 ≤ 𝜓 𝜚 + 𝜑 𝜚 + 𝜙 𝜚 ≤ 1. 

A decision matrix Đ = å × is depicted in the following form: 

Đ = 𝐼𝐼⋮𝐼
𝐼𝐼⋮𝐼

⋯⋯⋱⋯
𝐼𝐼⋮𝐼  

To solve a MADM technique, we follow the steps of the following algorithm. 
Steps 1: A decision maker constructs a decision matrix having information in form 

of alternative  ͷ = ͷ , ͷ , … , ͷ   and attributes Æ = Æ , Æ , … , Æ  with correspond-
ing weight vectors𝔑 = 𝔑 , 𝔑 , … , 𝔑 , 𝑖 = 1, 2, 3, … , 𝑛. All above-discussed information 
is packed in a decision matrix Đ = å × . 

1,
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= 0.6149𝑒 . , 0.0320𝑒 . , 0.0546𝑒 .  

Remark 3. All the properties of CPFWDHM operator like idempotency, monotonicity, and bound-
edness are proved similar to Theorems 2, 3 and 4. 

6. MADM Techniques and Its Algorithm 
In this section, we study a method to solve the procedure of the MADM technique 

under the system of PFSs. We also apply our discussed approaches like CPFWHM and 
CPFWDHM operators. Consider ͷ = ͷ , ͷ , … , ͷ   be a discrete set of alternatives, 
which can be evaluated by using characteristics (set of attributes) Æ = Æ𝟏, Æ𝟐, … , Æ𝒏  
with corresponding weight vectors 𝔑 = 𝔑 , 𝔑 , … , 𝔑 , 𝔑 ∈ [0,1] and  ∑ 𝔑 = 1 . 
Each alternative has information on the environment of CPFSs. After accumulation of the 
information results in the state of CPFVs, 𝐼 = ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 , 𝑗 = 1,2, … , 𝑘 , these results 
must satisfy such conditions: 0 ≤ ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 ≤ 1 and 0 ≤ 𝜓 𝜚 + 𝜑 𝜚 + 𝜙 𝜚 ≤ 1. 

A decision matrix Đ = å × is depicted in the following form: 

Đ = 𝐼𝐼⋮𝐼
𝐼𝐼⋮𝐼

⋯⋯⋱⋯
𝐼𝐼⋮𝐼  

To solve a MADM technique, we follow the steps of the following algorithm. 
Steps 1: A decision maker constructs a decision matrix having information in form 

of alternative  ͷ = ͷ , ͷ , … , ͷ   and attributes Æ = Æ , Æ , … , Æ  with correspond-
ing weight vectors𝔑 = 𝔑 , 𝔑 , … , 𝔑 , 𝑖 = 1, 2, 3, … , 𝑛. All above-discussed information 
is packed in a decision matrix Đ = å × . 

2, . . . ,
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= 0.6149𝑒 . , 0.0320𝑒 . , 0.0546𝑒 .  

Remark 3. All the properties of CPFWDHM operator like idempotency, monotonicity, and bound-
edness are proved similar to Theorems 2, 3 and 4. 

6. MADM Techniques and Its Algorithm 
In this section, we study a method to solve the procedure of the MADM technique 

under the system of PFSs. We also apply our discussed approaches like CPFWHM and 
CPFWDHM operators. Consider ͷ = ͷ , ͷ , … , ͷ   be a discrete set of alternatives, 
which can be evaluated by using characteristics (set of attributes) Æ = Æ𝟏, Æ𝟐, … , Æ𝒏  
with corresponding weight vectors 𝔑 = 𝔑 , 𝔑 , … , 𝔑 , 𝔑 ∈ [0,1] and  ∑ 𝔑 = 1 . 
Each alternative has information on the environment of CPFSs. After accumulation of the 
information results in the state of CPFVs, 𝐼 = ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 , 𝑗 = 1,2, … , 𝑘 , these results 
must satisfy such conditions: 0 ≤ ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 ≤ 1 and 0 ≤ 𝜓 𝜚 + 𝜑 𝜚 + 𝜙 𝜚 ≤ 1. 

A decision matrix Đ = å × is depicted in the following form: 

Đ = 𝐼𝐼⋮𝐼
𝐼𝐼⋮𝐼

⋯⋯⋱⋯
𝐼𝐼⋮𝐼  

To solve a MADM technique, we follow the steps of the following algorithm. 
Steps 1: A decision maker constructs a decision matrix having information in form 

of alternative  ͷ = ͷ , ͷ , … , ͷ   and attributes Æ = Æ , Æ , … , Æ  with correspond-
ing weight vectors𝔑 = 𝔑 , 𝔑 , … , 𝔑 , 𝑖 = 1, 2, 3, … , 𝑛. All above-discussed information 
is packed in a decision matrix Đ = å × . 

n)

with corresponding weight vectors
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= 0.6149𝑒 . , 0.0320𝑒 . , 0.0546𝑒 .  

Remark 3. All the properties of CPFWDHM operator like idempotency, monotonicity, and bound-
edness are proved similar to Theorems 2, 3 and 4. 

6. MADM Techniques and Its Algorithm 
In this section, we study a method to solve the procedure of the MADM technique 

under the system of PFSs. We also apply our discussed approaches like CPFWHM and 
CPFWDHM operators. Consider ͷ = ͷ , ͷ , … , ͷ   be a discrete set of alternatives, 
which can be evaluated by using characteristics (set of attributes) Æ = Æ𝟏, Æ𝟐, … , Æ𝒏  
with corresponding weight vectors 𝔑 = 𝔑 , 𝔑 , … , 𝔑 , 𝔑 ∈ [0,1] and  ∑ 𝔑 = 1 . 
Each alternative has information on the environment of CPFSs. After accumulation of the 
information results in the state of CPFVs, 𝐼 = ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 , 𝑗 = 1,2, … , 𝑘 , these results 
must satisfy such conditions: 0 ≤ ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 ≤ 1 and 0 ≤ 𝜓 𝜚 + 𝜑 𝜚 + 𝜙 𝜚 ≤ 1. 

A decision matrix Đ = å × is depicted in the following form: 

Đ = 𝐼𝐼⋮𝐼
𝐼𝐼⋮𝐼

⋯⋯⋱⋯
𝐼𝐼⋮𝐼  

To solve a MADM technique, we follow the steps of the following algorithm. 
Steps 1: A decision maker constructs a decision matrix having information in form 

of alternative  ͷ = ͷ , ͷ , … , ͷ   and attributes Æ = Æ , Æ , … , Æ  with correspond-
ing weight vectors𝔑 = 𝔑 , 𝔑 , … , 𝔑 , 𝑖 = 1, 2, 3, … , 𝑛. All above-discussed information 
is packed in a decision matrix Đ = å × . 

= (N1, N2, . . . , Nn)
T ,N,∈ [0, 1] and ∑n

i=1 Ni = 1.
Each alternative has information on the environment of CPFSs. After accumulation of the
information results in the state of CPFVs,

Iij =
(
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Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 

νj($) ≤ 1 and 0 ≤ ψµ j($) + ϕA j($) + φνj($) ≤ 1.
A decision matrix Ð =

(
åij
)

m×n is depicted in the following form:

Ð =


I11
I21
...

Im1

I12
I22
...

Im2

· · ·
· · ·
. . .
· · ·

I1n
I2n
...

Imn


To solve a MADM technique, we follow the steps of the following algorithm.
Steps 1: A decision maker constructs a decision matrix having information in form

of alternative
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(6)

Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

= (
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

1,
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

2, . . . ,
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

n) and attributes
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= 0.6149𝑒 . , 0.0320𝑒 . , 0.0546𝑒 .  

Remark 3. All the properties of CPFWDHM operator like idempotency, monotonicity, and bound-
edness are proved similar to Theorems 2, 3 and 4. 

6. MADM Techniques and Its Algorithm 
In this section, we study a method to solve the procedure of the MADM technique 

under the system of PFSs. We also apply our discussed approaches like CPFWHM and 
CPFWDHM operators. Consider ͷ = ͷ , ͷ , … , ͷ   be a discrete set of alternatives, 
which can be evaluated by using characteristics (set of attributes) Æ = Æ𝟏, Æ𝟐, … , Æ𝒏  
with corresponding weight vectors 𝔑 = 𝔑 , 𝔑 , … , 𝔑 , 𝔑 ∈ [0,1] and  ∑ 𝔑 = 1 . 
Each alternative has information on the environment of CPFSs. After accumulation of the 
information results in the state of CPFVs, 𝐼 = ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 , 𝑗 = 1,2, … , 𝑘 , these results 
must satisfy such conditions: 0 ≤ ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 ≤ 1 and 0 ≤ 𝜓 𝜚 + 𝜑 𝜚 + 𝜙 𝜚 ≤ 1. 

A decision matrix Đ = å × is depicted in the following form: 

Đ = 𝐼𝐼⋮𝐼
𝐼𝐼⋮𝐼

⋯⋯⋱⋯
𝐼𝐼⋮𝐼  

To solve a MADM technique, we follow the steps of the following algorithm. 
Steps 1: A decision maker constructs a decision matrix having information in form 

of alternative  ͷ = ͷ , ͷ , … , ͷ   and attributes Æ = Æ , Æ , … , Æ  with correspond-
ing weight vectors𝔑 = 𝔑 , 𝔑 , … , 𝔑 , 𝑖 = 1, 2, 3, … , 𝑛. All above-discussed information 
is packed in a decision matrix Đ = å × . 

= (
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= 0.6149𝑒 . , 0.0320𝑒 . , 0.0546𝑒 .  

Remark 3. All the properties of CPFWDHM operator like idempotency, monotonicity, and bound-
edness are proved similar to Theorems 2, 3 and 4. 

6. MADM Techniques and Its Algorithm 
In this section, we study a method to solve the procedure of the MADM technique 

under the system of PFSs. We also apply our discussed approaches like CPFWHM and 
CPFWDHM operators. Consider ͷ = ͷ , ͷ , … , ͷ   be a discrete set of alternatives, 
which can be evaluated by using characteristics (set of attributes) Æ = Æ𝟏, Æ𝟐, … , Æ𝒏  
with corresponding weight vectors 𝔑 = 𝔑 , 𝔑 , … , 𝔑 , 𝔑 ∈ [0,1] and  ∑ 𝔑 = 1 . 
Each alternative has information on the environment of CPFSs. After accumulation of the 
information results in the state of CPFVs, 𝐼 = ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 , 𝑗 = 1,2, … , 𝑘 , these results 
must satisfy such conditions: 0 ≤ ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 ≤ 1 and 0 ≤ 𝜓 𝜚 + 𝜑 𝜚 + 𝜙 𝜚 ≤ 1. 

A decision matrix Đ = å × is depicted in the following form: 

Đ = 𝐼𝐼⋮𝐼
𝐼𝐼⋮𝐼

⋯⋯⋱⋯
𝐼𝐼⋮𝐼  

To solve a MADM technique, we follow the steps of the following algorithm. 
Steps 1: A decision maker constructs a decision matrix having information in form 

of alternative  ͷ = ͷ , ͷ , … , ͷ   and attributes Æ = Æ , Æ , … , Æ  with correspond-
ing weight vectors𝔑 = 𝔑 , 𝔑 , … , 𝔑 , 𝑖 = 1, 2, 3, … , 𝑛. All above-discussed information 
is packed in a decision matrix Đ = å × . 
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= 0.6149𝑒 . , 0.0320𝑒 . , 0.0546𝑒 .  

Remark 3. All the properties of CPFWDHM operator like idempotency, monotonicity, and bound-
edness are proved similar to Theorems 2, 3 and 4. 

6. MADM Techniques and Its Algorithm 
In this section, we study a method to solve the procedure of the MADM technique 

under the system of PFSs. We also apply our discussed approaches like CPFWHM and 
CPFWDHM operators. Consider ͷ = ͷ , ͷ , … , ͷ   be a discrete set of alternatives, 
which can be evaluated by using characteristics (set of attributes) Æ = Æ𝟏, Æ𝟐, … , Æ𝒏  
with corresponding weight vectors 𝔑 = 𝔑 , 𝔑 , … , 𝔑 , 𝔑 ∈ [0,1] and  ∑ 𝔑 = 1 . 
Each alternative has information on the environment of CPFSs. After accumulation of the 
information results in the state of CPFVs, 𝐼 = ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 , 𝑗 = 1,2, … , 𝑘 , these results 
must satisfy such conditions: 0 ≤ ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 ≤ 1 and 0 ≤ 𝜓 𝜚 + 𝜑 𝜚 + 𝜙 𝜚 ≤ 1. 

A decision matrix Đ = å × is depicted in the following form: 

Đ = 𝐼𝐼⋮𝐼
𝐼𝐼⋮𝐼

⋯⋯⋱⋯
𝐼𝐼⋮𝐼  

To solve a MADM technique, we follow the steps of the following algorithm. 
Steps 1: A decision maker constructs a decision matrix having information in form 

of alternative  ͷ = ͷ , ͷ , … , ͷ   and attributes Æ = Æ , Æ , … , Æ  with correspond-
ing weight vectors𝔑 = 𝔑 , 𝔑 , … , 𝔑 , 𝑖 = 1, 2, 3, … , 𝑛. All above-discussed information 
is packed in a decision matrix Đ = å × . 
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= 0.6149𝑒 . , 0.0320𝑒 . , 0.0546𝑒 .  

Remark 3. All the properties of CPFWDHM operator like idempotency, monotonicity, and bound-
edness are proved similar to Theorems 2, 3 and 4. 

6. MADM Techniques and Its Algorithm 
In this section, we study a method to solve the procedure of the MADM technique 

under the system of PFSs. We also apply our discussed approaches like CPFWHM and 
CPFWDHM operators. Consider ͷ = ͷ , ͷ , … , ͷ   be a discrete set of alternatives, 
which can be evaluated by using characteristics (set of attributes) Æ = Æ𝟏, Æ𝟐, … , Æ𝒏  
with corresponding weight vectors 𝔑 = 𝔑 , 𝔑 , … , 𝔑 , 𝔑 ∈ [0,1] and  ∑ 𝔑 = 1 . 
Each alternative has information on the environment of CPFSs. After accumulation of the 
information results in the state of CPFVs, 𝐼 = ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 , 𝑗 = 1,2, … , 𝑘 , these results 
must satisfy such conditions: 0 ≤ ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 ≤ 1 and 0 ≤ 𝜓 𝜚 + 𝜑 𝜚 + 𝜙 𝜚 ≤ 1. 

A decision matrix Đ = å × is depicted in the following form: 

Đ = 𝐼𝐼⋮𝐼
𝐼𝐼⋮𝐼

⋯⋯⋱⋯
𝐼𝐼⋮𝐼  

To solve a MADM technique, we follow the steps of the following algorithm. 
Steps 1: A decision maker constructs a decision matrix having information in form 

of alternative  ͷ = ͷ , ͷ , … , ͷ   and attributes Æ = Æ , Æ , … , Æ  with correspond-
ing weight vectors𝔑 = 𝔑 , 𝔑 , … , 𝔑 , 𝑖 = 1, 2, 3, … , 𝑛. All above-discussed information 
is packed in a decision matrix Đ = å × . 

n) with correspond-
ing weight vectors Ni = (N1,N2, . . . , Nn)

T , i = 1, 2, 3, . . . , n. All above-discussed
information is packed in a decision matrix Ð =

(
åij
)

m×n.
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Step 2: Transformation of a decision matrix into a normalization matrix. The attributes
can be divided into two types of criteria, cost type, and benefit type. If the cost factor
involves then we have to transform the decision matrix into a normalizing matrix otherwise
there is no need to transform the decision matrix. We can normalize the decision matrix by
using the following technique.

Ð =
(
åij
)
=


(
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degree of truth index (TI). El-Bably and Abo-Tabl [2,3] presented an innovative concept 
of FSs in the frame work of a rough set under some topological reduction. El Sayed et al. 
[4] explored the theory of topological techniques to handle the current situations of 
COVID-19 by using the model of nano-topology. Atanassov [5] generalized the theory of 
FS in the framework of an intuitionistic fuzzy set (IFS) having TI and falsity index 
(FI),where the sum of TI ὕ 𝜚  and FI Ὗ 𝜚  restricted is less and equal to 0 and 1, i.e., 0 ≤ ὕ 𝜚 + Ὗ 𝜚 ≤ 1. In some scenarios IFS has failed; if the TI is 0.65 and FI is 0.55, then 
the sum of TI and FI is 0.65 + 0.55 = 1.2 ∉ [0, 1]. To cope with this situation, Yager [6] 
presented the concepts of a Pythagorean fuzzy set (PyFS); according to PyFS, the sum of 
the square of TI and FI are less than or equal to 0 and 1, and from the above example, 0 ≤ὕ 𝜚 + Ὗ 𝜚 ≤ 1, so 0.65 + 0.55 = 0.73 ∈ [0, 1]. Yager [7] also developed the con-
cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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With the help of a practical numerical example, we evaluate suitable software for VMS. 
To check validity and compatibility, we study a comprehensive comparative study to con-
trast the results of existing AOs with the results of the discussed technique. 

The structure of this article is organized as follows: In Section 1, we review the history 
of our research work for the improvement of this article. In Section 2, we study all the 
notions related to PFSs, CPFSs, and their basic operations. In Section 3, we recall existing 
concepts of HM and GHM operators and also discuss their basic properties. In Section 4, 
we utilize the basic operations of HM operators to introduce some new AOs such as 
CPFHM and CPFWHM operators with their characteristics. In Section 5, we also present 
some new AOs of CPFGHM and CPFWGHM operators. We also present some numerical 
examples to find the feasibility of our proposed approaches. In Section 6, we establish a 
strategy for the MADM process under the system of CPFSs. We also provide an applica-
tion in the framework of VMS. To check the competitiveness and flexibility of our pro-
posed AOs, we illustrate a numerical example based on CPF information. In Section 7, to 
find the validity and rationality of our proposed work, we make comparison results of 
our proposed approaches with some existing AOs. In Section 8, we summarize the whole 
article in a paragraph. 

2. Preliminaries 
This section aims to recall notions of PFSs, CPFSs, and their basic operational laws. 

We applied these operational laws to develop our proposed methodology. First, we want 
to define the meaning of some symbols and letters in Table 1, as follows. 

Table 1. Symbols and their meanings. 

Symbols Meanings Symbols Meanings Ǖ Universal set 𝜙  Falsity Index of phase term 𝜚 Element belonging to Universal set Ŝ Score function ὕ  Truth Index/ (TI) of amplitude term Ą Accuracy function ἒ  Abstinence Index /(AI) of amplitude 
term 

𝔑  Weight vector Ὗ  Falsity Index/(FI) of amplitude term 𝐶ɰ Binomial Coefficient 𝔈 CPFS  √−1 Unit circle 𝜓  Truth Index of phase term ŕ𝔈 Hesitancy Index 𝜑  Abstinence Index of phase term 𝐼 ̅ Complement of CPFV 

The concepts of PFSs were developed by Cuong [8] and is given as follows: 

Definition 1. [8] Consider Ǖ to be an empty set. A PFS ƴ is defined as: ƴ = 𝜚, ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 |𝜚  

where ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 ∈ [0,1]. Truth index is denoted (TI) by the ὕ 𝜚 , abstinence index (AI) 
is denoted by the ἒ 𝜚 , and falsity index (FI) is denoted by the Ὗ 𝜚 , such that: 0 < ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 < 1 

A picture fuzzy value (PFV) represented by 𝒯 = ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 . 

The theory of the following Definition was proposed by Akram et al. [39]. 

Definition 2. [39] A CPFS is formed as: 𝔈 = 𝜚, ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 |𝜚 ∈ Ǖ , 𝑖 = √−1 

Aj($)e
2πiϕA j($),

Electronics 2022, 11, x FOR PEER REVIEW 2 of 34 
 

 

degree of truth index (TI). El-Bably and Abo-Tabl [2,3] presented an innovative concept 
of FSs in the frame work of a rough set under some topological reduction. El Sayed et al. 
[4] explored the theory of topological techniques to handle the current situations of 
COVID-19 by using the model of nano-topology. Atanassov [5] generalized the theory of 
FS in the framework of an intuitionistic fuzzy set (IFS) having TI and falsity index 
(FI),where the sum of TI ὕ 𝜚  and FI Ὗ 𝜚  restricted is less and equal to 0 and 1, i.e., 0 ≤ ὕ 𝜚 + Ὗ 𝜚 ≤ 1. In some scenarios IFS has failed; if the TI is 0.65 and FI is 0.55, then 
the sum of TI and FI is 0.65 + 0.55 = 1.2 ∉ [0, 1]. To cope with this situation, Yager [6] 
presented the concepts of a Pythagorean fuzzy set (PyFS); according to PyFS, the sum of 
the square of TI and FI are less than or equal to 0 and 1, and from the above example, 0 ≤ὕ 𝜚 + Ὗ 𝜚 ≤ 1, so 0.65 + 0.55 = 0.73 ∈ [0, 1]. Yager [7] also developed the con-
cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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Steps 3: Accumulate CPF information depicted in the decision matrix by using our

discussed approaches of CPFWHM and CPFWDHM operators.
Step 4: Investigate score values of the consequences of CPFWHM and CPFWDHM

operators by using Definition 4.
Step 5: To find a suitable alternative, we have to make ranking and ordering of the

score values.
A compressive flowchart explaining all the steps of algorithm is given below in

Figure 1.

Figure 1. Flowchart of algorithm.

6.1. Application

A VMS is a program or piece of software that automates all of an organization’s
vendor-related tasks. An organization’s communication and collaboration with vendors
can be an important mechanism for these systems. On a VMS, a business can also effectively
approve and monitor a vendor’s portfolio and performance. A VMS enables your business
to collect purchase orders from managers, optimize flexible worker onboarding, automate
transactions, save and collect data from every stage of your contingent worker hiring
process, and compile key performance indicators such as spending tracking, candidate
information, payroll and invoice data. A vendor management system is often adopted by
a business directly to manage its independent talent pool or by an MSP on its behalf. By
improving the supply chain system and reducing the risk of operational disruptions, vendor
management also enables firms to better controls and management of vendors. Additionally,
it helps businesses ensure quality and timely delivery of various goods and services, which
improves customer satisfaction levels. As a last advantage, the vendor management
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process enables companies in developing long-lasting and reputable relationships with
their vendors, which leads to better rates being secured. A lot of research scholars worked
on the theory of VMS to try to improve the mechanism of the VMS. Savaşaneril and
Erkip [57] analyzed the purpose and advantages of vendor management software. Solyal
and Süral [58] proposed the solution for inventory control under the system of VMS.

6.2. Numerical Example

In this numerical example, we evaluate the suitable software for VMS by observing
the various qualities of different software presented by different multinational companies.
The reliability and lifespan of a software for VMS depend on manufacturing and the
degree of testing qualities. Consider we have to choose a suitable software for VMS from
four different types of software ß
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Step 4: Evaluate score values by using the results of CPFWHM and CPFWDHM 
operators depicted in Table 3. Computed score values are presented in Table 4. 
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3
represents product performance and warranty.

The experts assign different weight vectors N = (0.35, 0.40, 0.25) to the attributes
according to their characteristics. By using our proposed methodology, we select a suitable
object from the given information by the decision maker. To investigate the best software
for a VMS, we follow the above-discussed algorithm and its steps.

Step 1: The decision maker collects information under the system of CPFNs (this
information is present in Table 2 which contains alternative and attributes).

Step 2: There is no need to transform the decision matrix because the cost factor does
not involve the types of attributes.

Step 3: Accumulate the given information of CPFNs which is displayed in Table 2
by using CPFWHM and CPFWDHM operators. These AOs are used to deduce results of
alternatives in form of CPFNs depicted in Table 3. The results of CPFNs representing in
Table 3 for the parametric value of
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(6)

Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

= 2.

Table 2. The decision matrix in the form of CPFVs.
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Step 1: The decision maker collects information under the system of CPFNs (this 
information is present in Table 2 which contains alternative and attributes). 

Step 2: There is no need to transform the decision matrix because the cost factor does 
not involve the types of attributes. 

Step 3: Accumulate the given information of CPFNs which is displayed in Table 2 by 
using CPFWHM and CPFWDHM operators. These AOs are used to deduce results of 
alternatives in form of CPFNs depicted in Table 3. The results of CPFNs representing in 
Table 3 for the parametric value of ɰ = 2. 

Table 2. The decision matrix in the form of CPFVs. 
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ß1
(

0.36e2πi(0.09), 0.15e2πi(0.36), 0.09e2πi(0.19)
)

ß1
(

0.56e2πi(0.09), 0.12e2πi(0.44), 0.17e2πi(0.23)
)

ß2
(

0.17e2πi(0.46), 0.35e2πi(0.09), 0.45e2πi(0.32)
)

ß2
(

0.24e2πi(0.42), 0.17e2πi(0.38), 0.42e2πi(0.16)
)

ß3
(

0.15e2πi(0.08), 0.45e2πi(0.36), 0.18e2πi(0.43)
)

ß3
(

0.03e2πi(0.39), 0.07e2πi(0.15), 0.35e2πi(0.41)
)

ß4
(

0.48e2πi(0.47), 0.07e2πi(0.15), 0.25e2πi(0.28)
)

ß4
(

0.23e2πi(0.37), 0.17e2πi(0.34), 0.07e2πi(0.26)
)
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ß1

(
0.43e2πi(0.42), 0.15e2πi(0.27), 0.06e2πi(0.09)

)
ß2

(
0.09e2πi(0.12), 0.09e2πi(0.06), 0.42e2πi(0.24)

)
ß3

(
0.33e2πi(0.17), 0.28e2πi(0.33), 0.07e2πi(0.38)

)
ß4

(
0.38e2πi(0.62), 0.37e2πi(0.26), 0.05e2πi(0.07)

)
Table 3. Aggregated values by the CPFWHM and CPFWDHM.

CPFWHM CPFWDHM(
0.4087e2πi(0.1459), 0.1736e2πi(0.3995), 0.1334e2πi(0.2047)

) (
0.4931e2πi(0.2291), 0.1254e2πi(0.3202), 0.0888e2πi(0.1448)

)(
0.1415e2πi(0.2765), 0.2379e2πi(0.1982), 0.4715e2πi(0.2804)

) (
0.2007e2πi(0.3803), 0.1641e2πi(0.1227), 0.3938e2πi(0.2115)

)(
0.1201e2πi(0.1670), 0.3093e2πi(0.3235), 0.2335e2πi(0.4486)

) (
0.1201e2πi(0.1670), 0.3093e2πi(0.3235), 0.2335e2πi(0.4486)

)(
0.3232e2πi(0.4436), 0.2391e2πi(0.2907), 0.1457e2πi(0.2406)

) (
0.4088e2πi(0.5326), 0.1590e2πi(0.2182), 0.0907e2πi(0.1643)

)
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Step 4: Evaluate score values by using the results of CPFWHM and CPFWDHM
operators depicted in Table 3. Computed score values are presented in Table 4.

Table 4. Score values of different software applications for a VMS.

Operators Ŝ(ß1) Ŝ(ß2) Ŝ(ß3) Ŝ(ß4) Ranking and Ordering

CPFWHM 0.4406 0.3717 0.3287 0.4751 ß4 > ß1 > ß2 > ß3
CPFWDHM 0.5072 0.4482 0.4112 0.5515 ß4 > ß1 > ß2 > ß3

Step 5: Rearrange the results of score values to determine a suitable alternative by
ordering and ranking the score values.

The following graphical representation explores the results of score values of CPFWHM
and CPFWDHM operators in Figure 2.

Figure 2. Score values of tourist destinations.

6.3. Influence Study

To find flexibility and reliability of our proposed methodologies, we use a different
value of
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(6)

Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

in binomial coefficient C
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 
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Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

n = n!
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

)! . We observe if the parametric value of
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(6)

Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

increases, then the score values are obtained by the CPFWHM and CPFWDHM operators.
We also observed if we increase the magnitude of the parametric value of
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(6)

Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

, then there is
no change in the ordering and ranking of the score values. All the score values which are
obtained by the CPFWHM and CPFWDHM operators are shown in the following Table 5.
After evaluating the score values, we see ß4 is a suitable alternative for both AOs. Moreover,
we represent score values geometrically in Figures 3 and 4 obtained by the CPFWHM and
CPFWDHM operators, respectively.

Table 5. Ranking and ordering of the consequences of CPFWHM and CPFWDHM operators.

Operators Parameters Ŝ(ß1) Ŝ(ß2) Ŝ(ß3) Ŝ(ß4) Ranking and Ordering

CPFWHM
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(6)

Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

= 1 0.3734 0.3093 0.2788 0.4087 ß4 > ß1 > ß2 > ß3
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(6)

Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

= 2 0.4406 0.3717 0.3287 0.4751 ß4 > ß1 > ß2 > ß3
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(6)

Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

= 3 0.4589 0.3838 0.3407 0.4919 ß4 > ß1 > ß2 > ß3

CPFWDHM
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

= 1 0.5565 0.4916 0.4533 0.5935 ß4 > ß1 > ß2 > ß3
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(6)

Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

= 2 0.5072 0.4482 0.4112 0.5515 ß4 > ß1 > ß2 > ß3
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

= 3 0.4817 0.4569 0.3974 0.5181 ß4 > ß1 > ß2 > ß3
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Figure 3. Results of the CPFWHM operator for different values of
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(6)

Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

.

Figure 4. Results of the CPFWDHM operator for different values of
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(6)

Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

.

7. Comparative Analysis

In this section, we contrast the results of existing AOs with the results of our proposed
methodology. We applied existing AOs to the decision matrix developed by Garg and
Rani [59], Akram et al. [39,60], Zhang et al. [61] and Ullah et al. [36]. We observed some
existing AOs are unable to deal with the decision matrix shown in Table 2. The existing
AOs [59–61] and [36] failed with the information given by the decision maker. We also
study the consequences of AOs [39] shown in the following Table 6, which is obtained by
the decision matrix shown in Table 2.
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Table 6. Results of the comparative study.

Operator Environment Results

CIFWHM operator (current work) CPFSs ß3 > ß3 > ß3 > ß3
CIFWDHM operator (current work) CPFSs ß3 > ß3 > ß3 > ß3

CPFHWA Akram et al. [39] CPFSs ß4 > ß1 > ß2 > ß3
CPFHWG Akram et al. [39] CPFSs ß4 > ß1 > ß2 > ß3

Akram et al. [60] CIFSs Failed
Akram et al. [60] CIFSs Failed
Ullah et al. [36] CPyFSs Failed

Garg and Rani [59] CIVIFSs Failed
Zhang et al. [61] PFSs Failed

The following graphical interpretation shows results of our proposed AOs and CPF
Hamacher weighted (CPFHW) averaging (CPFHWA) and CPFHW geometric (CPFHWG)
operators in the Figure 5.

Figure 5. Comparison of existing AOs with our proposed methodologies.

8. Conclusions

To cope with uncertainty and vagueness, we established a series of new AOs under
the system of CPFSs. A CPFS contains two aspects of MV, AV, and NMV in the form
of amplitude and phase terms. A CPFS is superior and flexible because CPFSs are the
extension of IFSs, PyFSs, q-ROFSs, CIFSs, CPyFSs, and PFSs. We deduced some new
AOs of CPFHM and CPFWDHM operators by using the operational laws of the HM tool
under the environment of CPFS with some basic characteristics such as idempotency,
monotonicity, and boundedness. We also generalized concepts of HM operators in the
framework of CPFDHM and CPFWDHM operators. To support our proposed methodology,
we interpreted some examples. We established an application based on VMS under the
system of CPFSs. A VMS is a software application that is utilized to handle vendors,
ordering, invoices, and delivery procedures in several shopping malls, restaurants, and
other numerous companies. To find the reliability and validity of our proposed AOs,
we evaluated a numerical example to show usefulness and compatibility by using the
technique of the MADM process under VMS. We also demonstrated a comprehensive
comparative study to compare the results of our proposed methodology with existing AOs.

In future, we will elaborate our proposed work in the framework of picture fuzzy
Maclaurin symmetric operators [62] and a further extension in the environment of a bipolar



Electronics 2022, 11, 3841 20 of 30

soft set [63]. Further, we will also extend our invented approaches in the framework of
rough sets under the system of topological techniques [64].

Author Contributions: Conceptualization, A.H., D.P., Ð.V. and K.U.; methodology, A.H. and Ð.V.;
software, A.H.; validation, D.P. and A.H.; formal analysis, K.U.; investigation, A.H.; resources, K.U.;
data curation, K.U.; writing—original draft preparation, A.H.; writing—review and editing, A.H.;
visualization, A.H.; supervision, K.U.; project administration, D.P.; funding acquisition, Ð.V. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
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Appendix A

Proof of Theorem 1. This theorem has two parts. First, we derive the formula given in
Equation (6) as follows:
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Proof of this theorem is given in Appendix A. 
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degree of truth index (TI). El-Bably and Abo-Tabl [2,3] presented an innovative concept 
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ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
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tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 
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With the help of a practical numerical example, we evaluate suitable software for VMS. 
To check validity and compatibility, we study a comprehensive comparative study to con-
trast the results of existing AOs with the results of the discussed technique. 

The structure of this article is organized as follows: In Section 1, we review the history 
of our research work for the improvement of this article. In Section 2, we study all the 
notions related to PFSs, CPFSs, and their basic operations. In Section 3, we recall existing 
concepts of HM and GHM operators and also discuss their basic properties. In Section 4, 
we utilize the basic operations of HM operators to introduce some new AOs such as 
CPFHM and CPFWHM operators with their characteristics. In Section 5, we also present 
some new AOs of CPFGHM and CPFWGHM operators. We also present some numerical 
examples to find the feasibility of our proposed approaches. In Section 6, we establish a 
strategy for the MADM process under the system of CPFSs. We also provide an applica-
tion in the framework of VMS. To check the competitiveness and flexibility of our pro-
posed AOs, we illustrate a numerical example based on CPF information. In Section 7, to 
find the validity and rationality of our proposed work, we make comparison results of 
our proposed approaches with some existing AOs. In Section 8, we summarize the whole 
article in a paragraph. 

2. Preliminaries 
This section aims to recall notions of PFSs, CPFSs, and their basic operational laws. 

We applied these operational laws to develop our proposed methodology. First, we want 
to define the meaning of some symbols and letters in Table 1, as follows. 

Table 1. Symbols and their meanings. 

Symbols Meanings Symbols Meanings Ǖ Universal set 𝜙  Falsity Index of phase term 𝜚 Element belonging to Universal set Ŝ Score function ὕ  Truth Index/ (TI) of amplitude term Ą Accuracy function ἒ  Abstinence Index /(AI) of amplitude 
term 

𝔑  Weight vector Ὗ  Falsity Index/(FI) of amplitude term 𝐶ɰ Binomial Coefficient 𝔈 CPFS  √−1 Unit circle 𝜓  Truth Index of phase term ŕ𝔈 Hesitancy Index 𝜑  Abstinence Index of phase term 𝐼 ̅ Complement of CPFV 

The concepts of PFSs were developed by Cuong [8] and is given as follows: 

Definition 1. [8] Consider Ǖ to be an empty set. A PFS ƴ is defined as: ƴ = 𝜚, ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 |𝜚  

where ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 ∈ [0,1]. Truth index is denoted (TI) by the ὕ 𝜚 , abstinence index (AI) 
is denoted by the ἒ 𝜚 , and falsity index (FI) is denoted by the Ὗ 𝜚 , such that: 0 < ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 < 1 

A picture fuzzy value (PFV) represented by 𝒯 = ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 . 

The theory of the following Definition was proposed by Akram et al. [39]. 

Definition 2. [39] A CPFS is formed as: 𝔈 = 𝜚, ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 |𝜚 ∈ Ǖ , 𝑖 = √−1 

Aj($)
))

.e
2πi

(
1−∏

Electronics 2022, 11, x FOR PEER REVIEW 11 of 34 
 

 

𝐶𝑃𝐹𝑊𝐻𝑀 ɰ 𝐼 , 𝐼 , … , 𝐼

=

⎝⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎛ 1 − ⎝⎜

⎛ 1 − ὕ𝜇𝑖𝑗 𝜚ɰ
𝑗=1

1ɰ ∏ 𝔑ɰ
1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟

⎞ 1𝐶𝑛ɰ

  𝑒2πi
⎝⎜
⎜⎛1−⎝⎜

⎛∏ 1− ∏ 𝜓𝜇𝑖𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

⎠⎟
⎟⎞

,

⎝⎜
⎛ 1 − 1 − ἒ𝐴𝑗 𝜚ɰ

𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

𝑒
2𝜋𝑖

⎝⎜
⎜⎜⎛⎝⎜⎜

⎛∏ 1− ∏ 1− 𝜑𝐴𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟⎟
⎞

1𝐶𝑛ɰ

⎠⎟
⎟⎟⎞,

⎝⎜
⎛ 1 − 1 − Ὗ𝜈𝑖𝑗 𝜚ɰ

𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

𝑒
2𝜋𝑖

⎝⎜
⎜⎜⎛⎝⎜⎜

⎛∏ 1− ∏ 1− 𝜙𝜈𝑖𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟⎟
⎞

1𝐶𝑛ɰ

⎠⎟
⎟⎟⎞ ⎠⎟

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎞

 
(6)

Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

j=1

(
1−ϕA j($)

))
,

(
1−

Electronics 2022, 11, x FOR PEER REVIEW 11 of 34 
 

 

𝐶𝑃𝐹𝑊𝐻𝑀 ɰ 𝐼 , 𝐼 , … , 𝐼

=

⎝⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎛ 1 − ⎝⎜

⎛ 1 − ὕ𝜇𝑖𝑗 𝜚ɰ
𝑗=1

1ɰ ∏ 𝔑ɰ
1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟

⎞ 1𝐶𝑛ɰ

  𝑒2πi
⎝⎜
⎜⎛1−⎝⎜

⎛∏ 1− ∏ 𝜓𝜇𝑖𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

⎠⎟
⎟⎞

,

⎝⎜
⎛ 1 − 1 − ἒ𝐴𝑗 𝜚ɰ

𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

𝑒
2𝜋𝑖

⎝⎜
⎜⎜⎛⎝⎜⎜

⎛∏ 1− ∏ 1− 𝜑𝐴𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟⎟
⎞

1𝐶𝑛ɰ

⎠⎟
⎟⎟⎞,

⎝⎜
⎛ 1 − 1 − Ὗ𝜈𝑖𝑗 𝜚ɰ

𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

𝑒
2𝜋𝑖

⎝⎜
⎜⎜⎛⎝⎜⎜

⎛∏ 1− ∏ 1− 𝜙𝜈𝑖𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟⎟
⎞

1𝐶𝑛ɰ

⎠⎟
⎟⎟⎞ ⎠⎟

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎞

 
(6)

Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
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2. Preliminaries 
This section aims to recall notions of PFSs, CPFSs, and their basic operational laws. 

We applied these operational laws to develop our proposed methodology. First, we want 
to define the meaning of some symbols and letters in Table 1, as follows. 

Table 1. Symbols and their meanings. 
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The concepts of PFSs were developed by Cuong [8] and is given as follows: 

Definition 1. [8] Consider Ǖ to be an empty set. A PFS ƴ is defined as: ƴ = 𝜚, ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 |𝜚  
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A picture fuzzy value (PFV) represented by 𝒯 = ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 . 

The theory of the following Definition was proposed by Akram et al. [39]. 

Definition 2. [39] A CPFS is formed as: 𝔈 = 𝜚, ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 |𝜚 ∈ Ǖ , 𝑖 = √−1 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 
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of FSs in the frame work of a rough set under some topological reduction. El Sayed et al. 
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COVID-19 by using the model of nano-topology. Atanassov [5] generalized the theory of 
FS in the framework of an intuitionistic fuzzy set (IFS) having TI and falsity index 
(FI),where the sum of TI ὕ 𝜚  and FI Ὗ 𝜚  restricted is less and equal to 0 and 1, i.e., 0 ≤ ὕ 𝜚 + Ὗ 𝜚 ≤ 1. In some scenarios IFS has failed; if the TI is 0.65 and FI is 0.55, then 
the sum of TI and FI is 0.65 + 0.55 = 1.2 ∉ [0, 1]. To cope with this situation, Yager [6] 
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[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
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range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 
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With the help of a practical numerical example, we evaluate suitable software for VMS. 
To check validity and compatibility, we study a comprehensive comparative study to con-
trast the results of existing AOs with the results of the discussed technique. 

The structure of this article is organized as follows: In Section 1, we review the history 
of our research work for the improvement of this article. In Section 2, we study all the 
notions related to PFSs, CPFSs, and their basic operations. In Section 3, we recall existing 
concepts of HM and GHM operators and also discuss their basic properties. In Section 4, 
we utilize the basic operations of HM operators to introduce some new AOs such as 
CPFHM and CPFWHM operators with their characteristics. In Section 5, we also present 
some new AOs of CPFGHM and CPFWGHM operators. We also present some numerical 
examples to find the feasibility of our proposed approaches. In Section 6, we establish a 
strategy for the MADM process under the system of CPFSs. We also provide an applica-
tion in the framework of VMS. To check the competitiveness and flexibility of our pro-
posed AOs, we illustrate a numerical example based on CPF information. In Section 7, to 
find the validity and rationality of our proposed work, we make comparison results of 
our proposed approaches with some existing AOs. In Section 8, we summarize the whole 
article in a paragraph. 

2. Preliminaries 
This section aims to recall notions of PFSs, CPFSs, and their basic operational laws. 

We applied these operational laws to develop our proposed methodology. First, we want 
to define the meaning of some symbols and letters in Table 1, as follows. 

Table 1. Symbols and their meanings. 

Symbols Meanings Symbols Meanings Ǖ Universal set 𝜙  Falsity Index of phase term 𝜚 Element belonging to Universal set Ŝ Score function ὕ  Truth Index/ (TI) of amplitude term Ą Accuracy function ἒ  Abstinence Index /(AI) of amplitude 
term 

𝔑  Weight vector Ὗ  Falsity Index/(FI) of amplitude term 𝐶ɰ Binomial Coefficient 𝔈 CPFS  √−1 Unit circle 𝜓  Truth Index of phase term ŕ𝔈 Hesitancy Index 𝜑  Abstinence Index of phase term 𝐼 ̅ Complement of CPFV 

The concepts of PFSs were developed by Cuong [8] and is given as follows: 

Definition 1. [8] Consider Ǖ to be an empty set. A PFS ƴ is defined as: ƴ = 𝜚, ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 |𝜚  

where ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 ∈ [0,1]. Truth index is denoted (TI) by the ὕ 𝜚 , abstinence index (AI) 
is denoted by the ἒ 𝜚 , and falsity index (FI) is denoted by the Ὗ 𝜚 , such that: 0 < ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 < 1 

A picture fuzzy value (PFV) represented by 𝒯 = ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 . 

The theory of the following Definition was proposed by Akram et al. [39]. 

Definition 2. [39] A CPFS is formed as: 𝔈 = 𝜚, ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 |𝜚 ∈ Ǖ , 𝑖 = √−1 

Aj($)
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[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
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The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
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and their variations at a specific point in the time during implementation, however, is 
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ambiguity that is present in the data. There is information loss during the process as a 
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come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 
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With the help of a practical numerical example, we evaluate suitable software for VMS. 
To check validity and compatibility, we study a comprehensive comparative study to con-
trast the results of existing AOs with the results of the discussed technique. 

The structure of this article is organized as follows: In Section 1, we review the history 
of our research work for the improvement of this article. In Section 2, we study all the 
notions related to PFSs, CPFSs, and their basic operations. In Section 3, we recall existing 
concepts of HM and GHM operators and also discuss their basic properties. In Section 4, 
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2. Preliminaries 
This section aims to recall notions of PFSs, CPFSs, and their basic operational laws. 

We applied these operational laws to develop our proposed methodology. First, we want 
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The concepts of PFSs were developed by Cuong [8] and is given as follows: 

Definition 1. [8] Consider Ǖ to be an empty set. A PFS ƴ is defined as: ƴ = 𝜚, ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 |𝜚  

where ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 ∈ [0,1]. Truth index is denoted (TI) by the ὕ 𝜚 , abstinence index (AI) 
is denoted by the ἒ 𝜚 , and falsity index (FI) is denoted by the Ὗ 𝜚 , such that: 0 < ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 < 1 

A picture fuzzy value (PFV) represented by 𝒯 = ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 . 

The theory of the following Definition was proposed by Akram et al. [39]. 

Definition 2. [39] A CPFS is formed as: 𝔈 = 𝜚, ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 |𝜚 ∈ Ǖ , 𝑖 = √−1 

Aj($)
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

j=1

(
1− ϕA j($)

)) 1

Electronics 2022, 11, x FOR PEER REVIEW 11 of 34 
 

 

𝐶𝑃𝐹𝑊𝐻𝑀 ɰ 𝐼 , 𝐼 , … , 𝐼

=

⎝⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎛ 1 − ⎝⎜

⎛ 1 − ὕ𝜇𝑖𝑗 𝜚ɰ
𝑗=1

1ɰ ∏ 𝔑ɰ
1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟

⎞ 1𝐶𝑛ɰ

  𝑒2πi
⎝⎜
⎜⎛1−⎝⎜

⎛∏ 1− ∏ 𝜓𝜇𝑖𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

⎠⎟
⎟⎞

,

⎝⎜
⎛ 1 − 1 − ἒ𝐴𝑗 𝜚ɰ

𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

𝑒
2𝜋𝑖

⎝⎜
⎜⎜⎛⎝⎜⎜

⎛∏ 1− ∏ 1− 𝜑𝐴𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟⎟
⎞

1𝐶𝑛ɰ

⎠⎟
⎟⎟⎞,

⎝⎜
⎛ 1 − 1 − Ὗ𝜈𝑖𝑗 𝜚ɰ

𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

𝑒
2𝜋𝑖

⎝⎜
⎜⎜⎛⎝⎜⎜

⎛∏ 1− ∏ 1− 𝜙𝜈𝑖𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟⎟
⎞

1𝐶𝑛ɰ

⎠⎟
⎟⎟⎞ ⎠⎟

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎞

 
(6)

Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

)
1

C

Electronics 2022, 11, x FOR PEER REVIEW 11 of 34 
 

 

𝐶𝑃𝐹𝑊𝐻𝑀 ɰ 𝐼 , 𝐼 , … , 𝐼

=

⎝⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎛ 1 − ⎝⎜

⎛ 1 − ὕ𝜇𝑖𝑗 𝜚ɰ
𝑗=1

1ɰ ∏ 𝔑ɰ
1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟

⎞ 1𝐶𝑛ɰ

  𝑒2πi
⎝⎜
⎜⎛1−⎝⎜

⎛∏ 1− ∏ 𝜓𝜇𝑖𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

⎠⎟
⎟⎞

,

⎝⎜
⎛ 1 − 1 − ἒ𝐴𝑗 𝜚ɰ

𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

𝑒
2𝜋𝑖

⎝⎜
⎜⎜⎛⎝⎜⎜

⎛∏ 1− ∏ 1− 𝜑𝐴𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟⎟
⎞

1𝐶𝑛ɰ

⎠⎟
⎟⎟⎞,

⎝⎜
⎛ 1 − 1 − Ὗ𝜈𝑖𝑗 𝜚ɰ

𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

𝑒
2𝜋𝑖

⎝⎜
⎜⎜⎛⎝⎜⎜

⎛∏ 1− ∏ 1− 𝜙𝜈𝑖𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟⎟
⎞

1𝐶𝑛ɰ

⎠⎟
⎟⎟⎞ ⎠⎟

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎞

 
(6)

Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

n

 ∏
1≤i1<, ...,<i

Electronics 2022, 11, x FOR PEER REVIEW 11 of 34 
 

 

𝐶𝑃𝐹𝑊𝐻𝑀 ɰ 𝐼 , 𝐼 , … , 𝐼

=

⎝⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎛ 1 − ⎝⎜

⎛ 1 − ὕ𝜇𝑖𝑗 𝜚ɰ
𝑗=1

1ɰ ∏ 𝔑ɰ
1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟

⎞ 1𝐶𝑛ɰ

  𝑒2πi
⎝⎜
⎜⎛1−⎝⎜

⎛∏ 1− ∏ 𝜓𝜇𝑖𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

⎠⎟
⎟⎞

,

⎝⎜
⎛ 1 − 1 − ἒ𝐴𝑗 𝜚ɰ

𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

𝑒
2𝜋𝑖

⎝⎜
⎜⎜⎛⎝⎜⎜

⎛∏ 1− ∏ 1− 𝜑𝐴𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟⎟
⎞

1𝐶𝑛ɰ

⎠⎟
⎟⎟⎞,

⎝⎜
⎛ 1 − 1 − Ὗ𝜈𝑖𝑗 𝜚ɰ

𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

𝑒
2𝜋𝑖

⎝⎜
⎜⎜⎛⎝⎜⎜

⎛∏ 1− ∏ 1− 𝜙𝜈𝑖𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟⎟
⎞

1𝐶𝑛ɰ

⎠⎟
⎟⎟⎞ ⎠⎟

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎞

 
(6)

Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

≤n

1−
(

n
∏
j=1

(
1−

Electronics 2022, 11, x FOR PEER REVIEW 2 of 34 
 

 

degree of truth index (TI). El-Bably and Abo-Tabl [2,3] presented an innovative concept 
of FSs in the frame work of a rough set under some topological reduction. El Sayed et al. 
[4] explored the theory of topological techniques to handle the current situations of 
COVID-19 by using the model of nano-topology. Atanassov [5] generalized the theory of 
FS in the framework of an intuitionistic fuzzy set (IFS) having TI and falsity index 
(FI),where the sum of TI ὕ 𝜚  and FI Ὗ 𝜚  restricted is less and equal to 0 and 1, i.e., 0 ≤ ὕ 𝜚 + Ὗ 𝜚 ≤ 1. In some scenarios IFS has failed; if the TI is 0.65 and FI is 0.55, then 
the sum of TI and FI is 0.65 + 0.55 = 1.2 ∉ [0, 1]. To cope with this situation, Yager [6] 
presented the concepts of a Pythagorean fuzzy set (PyFS); according to PyFS, the sum of 
the square of TI and FI are less than or equal to 0 and 1, and from the above example, 0 ≤ὕ 𝜚 + Ὗ 𝜚 ≤ 1, so 0.65 + 0.55 = 0.73 ∈ [0, 1]. Yager [7] also developed the con-
cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 

νj($)
)) 1

Electronics 2022, 11, x FOR PEER REVIEW 11 of 34 
 

 

𝐶𝑃𝐹𝑊𝐻𝑀 ɰ 𝐼 , 𝐼 , … , 𝐼

=

⎝⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎛ 1 − ⎝⎜

⎛ 1 − ὕ𝜇𝑖𝑗 𝜚ɰ
𝑗=1

1ɰ ∏ 𝔑ɰ
1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟

⎞ 1𝐶𝑛ɰ

  𝑒2πi
⎝⎜
⎜⎛1−⎝⎜

⎛∏ 1− ∏ 𝜓𝜇𝑖𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

⎠⎟
⎟⎞

,

⎝⎜
⎛ 1 − 1 − ἒ𝐴𝑗 𝜚ɰ

𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

𝑒
2𝜋𝑖

⎝⎜
⎜⎜⎛⎝⎜⎜

⎛∏ 1− ∏ 1− 𝜑𝐴𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟⎟
⎞

1𝐶𝑛ɰ

⎠⎟
⎟⎟⎞,

⎝⎜
⎛ 1 − 1 − Ὗ𝜈𝑖𝑗 𝜚ɰ

𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

𝑒
2𝜋𝑖

⎝⎜
⎜⎜⎛⎝⎜⎜

⎛∏ 1− ∏ 1− 𝜙𝜈𝑖𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟⎟
⎞

1𝐶𝑛ɰ

⎠⎟
⎟⎟⎞ ⎠⎟

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎞

 
(6)

Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 


1

C

Electronics 2022, 11, x FOR PEER REVIEW 11 of 34 
 

 

𝐶𝑃𝐹𝑊𝐻𝑀 ɰ 𝐼 , 𝐼 , … , 𝐼

=

⎝⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎛ 1 − ⎝⎜

⎛ 1 − ὕ𝜇𝑖𝑗 𝜚ɰ
𝑗=1

1ɰ ∏ 𝔑ɰ
1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟

⎞ 1𝐶𝑛ɰ

  𝑒2πi
⎝⎜
⎜⎛1−⎝⎜

⎛∏ 1− ∏ 𝜓𝜇𝑖𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

⎠⎟
⎟⎞

,

⎝⎜
⎛ 1 − 1 − ἒ𝐴𝑗 𝜚ɰ

𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

𝑒
2𝜋𝑖

⎝⎜
⎜⎜⎛⎝⎜⎜

⎛∏ 1− ∏ 1− 𝜑𝐴𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟⎟
⎞

1𝐶𝑛ɰ

⎠⎟
⎟⎟⎞,

⎝⎜
⎛ 1 − 1 − Ὗ𝜈𝑖𝑗 𝜚ɰ

𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

𝑒
2𝜋𝑖

⎝⎜
⎜⎜⎛⎝⎜⎜

⎛∏ 1− ∏ 1− 𝜙𝜈𝑖𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟⎟
⎞

1𝐶𝑛ɰ

⎠⎟
⎟⎟⎞ ⎠⎟

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎞

 
(6)

Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

n

e
2πi

∏1≤i1<, ...,<i

Electronics 2022, 11, x FOR PEER REVIEW 11 of 34 
 

 

𝐶𝑃𝐹𝑊𝐻𝑀 ɰ 𝐼 , 𝐼 , … , 𝐼

=

⎝⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎛ 1 − ⎝⎜

⎛ 1 − ὕ𝜇𝑖𝑗 𝜚ɰ
𝑗=1

1ɰ ∏ 𝔑ɰ
1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟

⎞ 1𝐶𝑛ɰ

  𝑒2πi
⎝⎜
⎜⎛1−⎝⎜

⎛∏ 1− ∏ 𝜓𝜇𝑖𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

⎠⎟
⎟⎞

,

⎝⎜
⎛ 1 − 1 − ἒ𝐴𝑗 𝜚ɰ

𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

𝑒
2𝜋𝑖

⎝⎜
⎜⎜⎛⎝⎜⎜

⎛∏ 1− ∏ 1− 𝜑𝐴𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟⎟
⎞

1𝐶𝑛ɰ

⎠⎟
⎟⎟⎞,

⎝⎜
⎛ 1 − 1 − Ὗ𝜈𝑖𝑗 𝜚ɰ

𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

𝑒
2𝜋𝑖

⎝⎜
⎜⎜⎛⎝⎜⎜

⎛∏ 1− ∏ 1− 𝜙𝜈𝑖𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟⎟
⎞

1𝐶𝑛ɰ

⎠⎟
⎟⎟⎞ ⎠⎟

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎞

 
(6)

Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

≤n

(
1−

(
∏

Electronics 2022, 11, x FOR PEER REVIEW 11 of 34 
 

 

𝐶𝑃𝐹𝑊𝐻𝑀 ɰ 𝐼 , 𝐼 , … , 𝐼

=

⎝⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎛ 1 − ⎝⎜

⎛ 1 − ὕ𝜇𝑖𝑗 𝜚ɰ
𝑗=1

1ɰ ∏ 𝔑ɰ
1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟

⎞ 1𝐶𝑛ɰ

  𝑒2πi
⎝⎜
⎜⎛1−⎝⎜

⎛∏ 1− ∏ 𝜓𝜇𝑖𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

⎠⎟
⎟⎞

,

⎝⎜
⎛ 1 − 1 − ἒ𝐴𝑗 𝜚ɰ

𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

𝑒
2𝜋𝑖

⎝⎜
⎜⎜⎛⎝⎜⎜

⎛∏ 1− ∏ 1− 𝜑𝐴𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟⎟
⎞

1𝐶𝑛ɰ

⎠⎟
⎟⎟⎞,

⎝⎜
⎛ 1 − 1 − Ὗ𝜈𝑖𝑗 𝜚ɰ

𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

𝑒
2𝜋𝑖

⎝⎜
⎜⎜⎛⎝⎜⎜

⎛∏ 1− ∏ 1− 𝜙𝜈𝑖𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟⎟
⎞

1𝐶𝑛ɰ

⎠⎟
⎟⎟⎞ ⎠⎟

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎞

 
(6)

Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

j=1

(
1− φνj($)

)) 1

Electronics 2022, 11, x FOR PEER REVIEW 11 of 34 
 

 

𝐶𝑃𝐹𝑊𝐻𝑀 ɰ 𝐼 , 𝐼 , … , 𝐼

=

⎝⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎛ 1 − ⎝⎜

⎛ 1 − ὕ𝜇𝑖𝑗 𝜚ɰ
𝑗=1

1ɰ ∏ 𝔑ɰ
1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟

⎞ 1𝐶𝑛ɰ

  𝑒2πi
⎝⎜
⎜⎛1−⎝⎜

⎛∏ 1− ∏ 𝜓𝜇𝑖𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

⎠⎟
⎟⎞

,

⎝⎜
⎛ 1 − 1 − ἒ𝐴𝑗 𝜚ɰ

𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

𝑒
2𝜋𝑖

⎝⎜
⎜⎜⎛⎝⎜⎜

⎛∏ 1− ∏ 1− 𝜑𝐴𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟⎟
⎞

1𝐶𝑛ɰ

⎠⎟
⎟⎟⎞,

⎝⎜
⎛ 1 − 1 − Ὗ𝜈𝑖𝑗 𝜚ɰ

𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

𝑒
2𝜋𝑖

⎝⎜
⎜⎜⎛⎝⎜⎜

⎛∏ 1− ∏ 1− 𝜙𝜈𝑖𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟⎟
⎞

1𝐶𝑛ɰ

⎠⎟
⎟⎟⎞ ⎠⎟

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎞

 
(6)

Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 
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We established a numerical example to support the CPFWHM operator by using the 
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Now, we prove that Equation (6) represents a CPFV, as follows:

(1)
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degree of truth index (TI). El-Bably and Abo-Tabl [2,3] presented an innovative concept 
of FSs in the frame work of a rough set under some topological reduction. El Sayed et al. 
[4] explored the theory of topological techniques to handle the current situations of 
COVID-19 by using the model of nano-topology. Atanassov [5] generalized the theory of 
FS in the framework of an intuitionistic fuzzy set (IFS) having TI and falsity index 
(FI),where the sum of TI ὕ 𝜚  and FI Ὗ 𝜚  restricted is less and equal to 0 and 1, i.e., 0 ≤ ὕ 𝜚 + Ὗ 𝜚 ≤ 1. In some scenarios IFS has failed; if the TI is 0.65 and FI is 0.55, then 
the sum of TI and FI is 0.65 + 0.55 = 1.2 ∉ [0, 1]. To cope with this situation, Yager [6] 
presented the concepts of a Pythagorean fuzzy set (PyFS); according to PyFS, the sum of 
the square of TI and FI are less than or equal to 0 and 1, and from the above example, 0 ≤ὕ 𝜚 + Ὗ 𝜚 ≤ 1, so 0.65 + 0.55 = 0.73 ∈ [0, 1]. Yager [7] also developed the con-
cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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With the help of a practical numerical example, we evaluate suitable software for VMS. 
To check validity and compatibility, we study a comprehensive comparative study to con-
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find the validity and rationality of our proposed work, we make comparison results of 
our proposed approaches with some existing AOs. In Section 8, we summarize the whole 
article in a paragraph. 

2. Preliminaries 
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We applied these operational laws to develop our proposed methodology. First, we want 
to define the meaning of some symbols and letters in Table 1, as follows. 
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The concepts of PFSs were developed by Cuong [8] and is given as follows: 

Definition 1. [8] Consider Ǖ to be an empty set. A PFS ƴ is defined as: ƴ = 𝜚, ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 |𝜚  
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is denoted by the ἒ 𝜚 , and falsity index (FI) is denoted by the Ὗ 𝜚 , such that: 0 < ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 < 1 
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The theory of the following Definition was proposed by Akram et al. [39]. 

Definition 2. [39] A CPFS is formed as: 𝔈 = 𝜚, ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 |𝜚 ∈ Ǖ , 𝑖 = √−1 
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degree of truth index (TI). El-Bably and Abo-Tabl [2,3] presented an innovative concept 
of FSs in the frame work of a rough set under some topological reduction. El Sayed et al. 
[4] explored the theory of topological techniques to handle the current situations of 
COVID-19 by using the model of nano-topology. Atanassov [5] generalized the theory of 
FS in the framework of an intuitionistic fuzzy set (IFS) having TI and falsity index 
(FI),where the sum of TI ὕ 𝜚  and FI Ὗ 𝜚  restricted is less and equal to 0 and 1, i.e., 0 ≤ ὕ 𝜚 + Ὗ 𝜚 ≤ 1. In some scenarios IFS has failed; if the TI is 0.65 and FI is 0.55, then 
the sum of TI and FI is 0.65 + 0.55 = 1.2 ∉ [0, 1]. To cope with this situation, Yager [6] 
presented the concepts of a Pythagorean fuzzy set (PyFS); according to PyFS, the sum of 
the square of TI and FI are less than or equal to 0 and 1, and from the above example, 0 ≤ὕ 𝜚 + Ὗ 𝜚 ≤ 1, so 0.65 + 0.55 = 0.73 ∈ [0, 1]. Yager [7] also developed the con-
cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
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With the help of a practical numerical example, we evaluate suitable software for VMS. 
To check validity and compatibility, we study a comprehensive comparative study to con-
trast the results of existing AOs with the results of the discussed technique. 

The structure of this article is organized as follows: In Section 1, we review the history 
of our research work for the improvement of this article. In Section 2, we study all the 
notions related to PFSs, CPFSs, and their basic operations. In Section 3, we recall existing 
concepts of HM and GHM operators and also discuss their basic properties. In Section 4, 
we utilize the basic operations of HM operators to introduce some new AOs such as 
CPFHM and CPFWHM operators with their characteristics. In Section 5, we also present 
some new AOs of CPFGHM and CPFWGHM operators. We also present some numerical 
examples to find the feasibility of our proposed approaches. In Section 6, we establish a 
strategy for the MADM process under the system of CPFSs. We also provide an applica-
tion in the framework of VMS. To check the competitiveness and flexibility of our pro-
posed AOs, we illustrate a numerical example based on CPF information. In Section 7, to 
find the validity and rationality of our proposed work, we make comparison results of 
our proposed approaches with some existing AOs. In Section 8, we summarize the whole 
article in a paragraph. 

2. Preliminaries 
This section aims to recall notions of PFSs, CPFSs, and their basic operational laws. 

We applied these operational laws to develop our proposed methodology. First, we want 
to define the meaning of some symbols and letters in Table 1, as follows. 

Table 1. Symbols and their meanings. 

Symbols Meanings Symbols Meanings Ǖ Universal set 𝜙  Falsity Index of phase term 𝜚 Element belonging to Universal set Ŝ Score function ὕ  Truth Index/ (TI) of amplitude term Ą Accuracy function ἒ  Abstinence Index /(AI) of amplitude 
term 

𝔑  Weight vector Ὗ  Falsity Index/(FI) of amplitude term 𝐶ɰ Binomial Coefficient 𝔈 CPFS  √−1 Unit circle 𝜓  Truth Index of phase term ŕ𝔈 Hesitancy Index 𝜑  Abstinence Index of phase term 𝐼 ̅ Complement of CPFV 

The concepts of PFSs were developed by Cuong [8] and is given as follows: 

Definition 1. [8] Consider Ǖ to be an empty set. A PFS ƴ is defined as: ƴ = 𝜚, ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 |𝜚  

where ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 ∈ [0,1]. Truth index is denoted (TI) by the ὕ 𝜚 , abstinence index (AI) 
is denoted by the ἒ 𝜚 , and falsity index (FI) is denoted by the Ὗ 𝜚 , such that: 0 < ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 < 1 

A picture fuzzy value (PFV) represented by 𝒯 = ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 . 

The theory of the following Definition was proposed by Akram et al. [39]. 

Definition 2. [39] A CPFS is formed as: 𝔈 = 𝜚, ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 |𝜚 ∈ Ǖ , 𝑖 = √−1 

A($) =

 ∏
1≤i1<, ...,<i
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 
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are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 
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degree of truth index (TI). El-Bably and Abo-Tabl [2,3] presented an innovative concept 
of FSs in the frame work of a rough set under some topological reduction. El Sayed et al. 
[4] explored the theory of topological techniques to handle the current situations of 
COVID-19 by using the model of nano-topology. Atanassov [5] generalized the theory of 
FS in the framework of an intuitionistic fuzzy set (IFS) having TI and falsity index 
(FI),where the sum of TI ὕ 𝜚  and FI Ὗ 𝜚  restricted is less and equal to 0 and 1, i.e., 0 ≤ ὕ 𝜚 + Ὗ 𝜚 ≤ 1. In some scenarios IFS has failed; if the TI is 0.65 and FI is 0.55, then 
the sum of TI and FI is 0.65 + 0.55 = 1.2 ∉ [0, 1]. To cope with this situation, Yager [6] 
presented the concepts of a Pythagorean fuzzy set (PyFS); according to PyFS, the sum of 
the square of TI and FI are less than or equal to 0 and 1, and from the above example, 0 ≤ὕ 𝜚 + Ὗ 𝜚 ≤ 1, so 0.65 + 0.55 = 0.73 ∈ [0, 1]. Yager [7] also developed the con-
cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 
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company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

∏
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 
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and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 
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FS in the framework of an intuitionistic fuzzy set (IFS) having TI and falsity index 
(FI),where the sum of TI ὕ 𝜚  and FI Ὗ 𝜚  restricted is less and equal to 0 and 1, i.e., 0 ≤ ὕ 𝜚 + Ὗ 𝜚 ≤ 1. In some scenarios IFS has failed; if the TI is 0.65 and FI is 0.55, then 
the sum of TI and FI is 0.65 + 0.55 = 1.2 ∉ [0, 1]. To cope with this situation, Yager [6] 
presented the concepts of a Pythagorean fuzzy set (PyFS); according to PyFS, the sum of 
the square of TI and FI are less than or equal to 0 and 1, and from the above example, 0 ≤ὕ 𝜚 + Ὗ 𝜚 ≤ 1, so 0.65 + 0.55 = 0.73 ∈ [0, 1]. Yager [7] also developed the con-
cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

n


≤ 1
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With the help of a practical numerical example, we evaluate suitable software for VMS. 
To check validity and compatibility, we study a comprehensive comparative study to con-
trast the results of existing AOs with the results of the discussed technique. 

The structure of this article is organized as follows: In Section 1, we review the history 
of our research work for the improvement of this article. In Section 2, we study all the 
notions related to PFSs, CPFSs, and their basic operations. In Section 3, we recall existing 
concepts of HM and GHM operators and also discuss their basic properties. In Section 4, 
we utilize the basic operations of HM operators to introduce some new AOs such as 
CPFHM and CPFWHM operators with their characteristics. In Section 5, we also present 
some new AOs of CPFGHM and CPFWGHM operators. We also present some numerical 
examples to find the feasibility of our proposed approaches. In Section 6, we establish a 
strategy for the MADM process under the system of CPFSs. We also provide an applica-
tion in the framework of VMS. To check the competitiveness and flexibility of our pro-
posed AOs, we illustrate a numerical example based on CPF information. In Section 7, to 
find the validity and rationality of our proposed work, we make comparison results of 
our proposed approaches with some existing AOs. In Section 8, we summarize the whole 
article in a paragraph. 

2. Preliminaries 
This section aims to recall notions of PFSs, CPFSs, and their basic operational laws. 

We applied these operational laws to develop our proposed methodology. First, we want 
to define the meaning of some symbols and letters in Table 1, as follows. 

Table 1. Symbols and their meanings. 

Symbols Meanings Symbols Meanings Ǖ Universal set 𝜙  Falsity Index of phase term 𝜚 Element belonging to Universal set Ŝ Score function ὕ  Truth Index/ (TI) of amplitude term Ą Accuracy function ἒ  Abstinence Index /(AI) of amplitude 
term 

𝔑  Weight vector Ὗ  Falsity Index/(FI) of amplitude term 𝐶ɰ Binomial Coefficient 𝔈 CPFS  √−1 Unit circle 𝜓  Truth Index of phase term ŕ𝔈 Hesitancy Index 𝜑  Abstinence Index of phase term 𝐼 ̅ Complement of CPFV 

The concepts of PFSs were developed by Cuong [8] and is given as follows: 

Definition 1. [8] Consider Ǖ to be an empty set. A PFS ƴ is defined as: ƴ = 𝜚, ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 |𝜚  

where ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 ∈ [0,1]. Truth index is denoted (TI) by the ὕ 𝜚 , abstinence index (AI) 
is denoted by the ἒ 𝜚 , and falsity index (FI) is denoted by the Ὗ 𝜚 , such that: 0 < ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 < 1 

A picture fuzzy value (PFV) represented by 𝒯 = ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 . 

The theory of the following Definition was proposed by Akram et al. [39]. 

Definition 2. [39] A CPFS is formed as: 𝔈 = 𝜚, ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 |𝜚 ∈ Ǖ , 𝑖 = √−1 
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degree of truth index (TI). El-Bably and Abo-Tabl [2,3] presented an innovative concept 
of FSs in the frame work of a rough set under some topological reduction. El Sayed et al. 
[4] explored the theory of topological techniques to handle the current situations of 
COVID-19 by using the model of nano-topology. Atanassov [5] generalized the theory of 
FS in the framework of an intuitionistic fuzzy set (IFS) having TI and falsity index 
(FI),where the sum of TI ὕ 𝜚  and FI Ὗ 𝜚  restricted is less and equal to 0 and 1, i.e., 0 ≤ ὕ 𝜚 + Ὗ 𝜚 ≤ 1. In some scenarios IFS has failed; if the TI is 0.65 and FI is 0.55, then 
the sum of TI and FI is 0.65 + 0.55 = 1.2 ∉ [0, 1]. To cope with this situation, Yager [6] 
presented the concepts of a Pythagorean fuzzy set (PyFS); according to PyFS, the sum of 
the square of TI and FI are less than or equal to 0 and 1, and from the above example, 0 ≤ὕ 𝜚 + Ὗ 𝜚 ≤ 1, so 0.65 + 0.55 = 0.73 ∈ [0, 1]. Yager [7] also developed the con-
cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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degree of truth index (TI). El-Bably and Abo-Tabl [2,3] presented an innovative concept 
of FSs in the frame work of a rough set under some topological reduction. El Sayed et al. 
[4] explored the theory of topological techniques to handle the current situations of 
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cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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With the help of a practical numerical example, we evaluate suitable software for VMS. 
To check validity and compatibility, we study a comprehensive comparative study to con-
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degree of truth index (TI). El-Bably and Abo-Tabl [2,3] presented an innovative concept 
of FSs in the frame work of a rough set under some topological reduction. El Sayed et al. 
[4] explored the theory of topological techniques to handle the current situations of 
COVID-19 by using the model of nano-topology. Atanassov [5] generalized the theory of 
FS in the framework of an intuitionistic fuzzy set (IFS) having TI and falsity index 
(FI),where the sum of TI ὕ 𝜚  and FI Ὗ 𝜚  restricted is less and equal to 0 and 1, i.e., 0 ≤ ὕ 𝜚 + Ὗ 𝜚 ≤ 1. In some scenarios IFS has failed; if the TI is 0.65 and FI is 0.55, then 
the sum of TI and FI is 0.65 + 0.55 = 1.2 ∉ [0, 1]. To cope with this situation, Yager [6] 
presented the concepts of a Pythagorean fuzzy set (PyFS); according to PyFS, the sum of 
the square of TI and FI are less than or equal to 0 and 1, and from the above example, 0 ≤ὕ 𝜚 + Ὗ 𝜚 ≤ 1, so 0.65 + 0.55 = 0.73 ∈ [0, 1]. Yager [7] also developed the con-
cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
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cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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degree of truth index (TI). El-Bably and Abo-Tabl [2,3] presented an innovative concept 
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[4] explored the theory of topological techniques to handle the current situations of 
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instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
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[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
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2, . . . , k be the family of all same CPFVs. Then CPFHM operator is as follows:

CPFHM(
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(6)

Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 
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With the help of a practical numerical example, we evaluate suitable software for VMS. 
To check validity and compatibility, we study a comprehensive comparative study to con-
trast the results of existing AOs with the results of the discussed technique. 

The structure of this article is organized as follows: In Section 1, we review the history 
of our research work for the improvement of this article. In Section 2, we study all the 
notions related to PFSs, CPFSs, and their basic operations. In Section 3, we recall existing 
concepts of HM and GHM operators and also discuss their basic properties. In Section 4, 
we utilize the basic operations of HM operators to introduce some new AOs such as 
CPFHM and CPFWHM operators with their characteristics. In Section 5, we also present 
some new AOs of CPFGHM and CPFWGHM operators. We also present some numerical 
examples to find the feasibility of our proposed approaches. In Section 6, we establish a 
strategy for the MADM process under the system of CPFSs. We also provide an applica-
tion in the framework of VMS. To check the competitiveness and flexibility of our pro-
posed AOs, we illustrate a numerical example based on CPF information. In Section 7, to 
find the validity and rationality of our proposed work, we make comparison results of 
our proposed approaches with some existing AOs. In Section 8, we summarize the whole 
article in a paragraph. 

2. Preliminaries 
This section aims to recall notions of PFSs, CPFSs, and their basic operational laws. 

We applied these operational laws to develop our proposed methodology. First, we want 
to define the meaning of some symbols and letters in Table 1, as follows. 

Table 1. Symbols and their meanings. 

Symbols Meanings Symbols Meanings Ǖ Universal set 𝜙  Falsity Index of phase term 𝜚 Element belonging to Universal set Ŝ Score function ὕ  Truth Index/ (TI) of amplitude term Ą Accuracy function ἒ  Abstinence Index /(AI) of amplitude 
term 

𝔑  Weight vector Ὗ  Falsity Index/(FI) of amplitude term 𝐶ɰ Binomial Coefficient 𝔈 CPFS  √−1 Unit circle 𝜓  Truth Index of phase term ŕ𝔈 Hesitancy Index 𝜑  Abstinence Index of phase term 𝐼 ̅ Complement of CPFV 

The concepts of PFSs were developed by Cuong [8] and is given as follows: 

Definition 1. [8] Consider Ǖ to be an empty set. A PFS ƴ is defined as: ƴ = 𝜚, ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 |𝜚  

where ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 ∈ [0,1]. Truth index is denoted (TI) by the ὕ 𝜚 , abstinence index (AI) 
is denoted by the ἒ 𝜚 , and falsity index (FI) is denoted by the Ὗ 𝜚 , such that: 0 < ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 < 1 

A picture fuzzy value (PFV) represented by 𝒯 = ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 . 

The theory of the following Definition was proposed by Akram et al. [39]. 

Definition 2. [39] A CPFS is formed as: 𝔈 = 𝜚, ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 |𝜚 ∈ Ǖ , 𝑖 = √−1 

Aj ($)
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methodology of the Definition 12. 
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research scholars presented their research methodologies to solve MADM techniques. For 
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tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 
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degree of truth index (TI). El-Bably and Abo-Tabl [2,3] presented an innovative concept 
of FSs in the frame work of a rough set under some topological reduction. El Sayed et al. 
[4] explored the theory of topological techniques to handle the current situations of 
COVID-19 by using the model of nano-topology. Atanassov [5] generalized the theory of 
FS in the framework of an intuitionistic fuzzy set (IFS) having TI and falsity index 
(FI),where the sum of TI ὕ 𝜚  and FI Ὗ 𝜚  restricted is less and equal to 0 and 1, i.e., 0 ≤ ὕ 𝜚 + Ὗ 𝜚 ≤ 1. In some scenarios IFS has failed; if the TI is 0.65 and FI is 0.55, then 
the sum of TI and FI is 0.65 + 0.55 = 1.2 ∉ [0, 1]. To cope with this situation, Yager [6] 
presented the concepts of a Pythagorean fuzzy set (PyFS); according to PyFS, the sum of 
the square of TI and FI are less than or equal to 0 and 1, and from the above example, 0 ≤ὕ 𝜚 + Ὗ 𝜚 ≤ 1, so 0.65 + 0.55 = 0.73 ∈ [0, 1]. Yager [7] also developed the con-
cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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With the help of a practical numerical example, we evaluate suitable software for VMS. 
To check validity and compatibility, we study a comprehensive comparative study to con-
trast the results of existing AOs with the results of the discussed technique. 

The structure of this article is organized as follows: In Section 1, we review the history 
of our research work for the improvement of this article. In Section 2, we study all the 
notions related to PFSs, CPFSs, and their basic operations. In Section 3, we recall existing 
concepts of HM and GHM operators and also discuss their basic properties. In Section 4, 
we utilize the basic operations of HM operators to introduce some new AOs such as 
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examples to find the feasibility of our proposed approaches. In Section 6, we establish a 
strategy for the MADM process under the system of CPFSs. We also provide an applica-
tion in the framework of VMS. To check the competitiveness and flexibility of our pro-
posed AOs, we illustrate a numerical example based on CPF information. In Section 7, to 
find the validity and rationality of our proposed work, we make comparison results of 
our proposed approaches with some existing AOs. In Section 8, we summarize the whole 
article in a paragraph. 

2. Preliminaries 
This section aims to recall notions of PFSs, CPFSs, and their basic operational laws. 

We applied these operational laws to develop our proposed methodology. First, we want 
to define the meaning of some symbols and letters in Table 1, as follows. 

Table 1. Symbols and their meanings. 

Symbols Meanings Symbols Meanings Ǖ Universal set 𝜙  Falsity Index of phase term 𝜚 Element belonging to Universal set Ŝ Score function ὕ  Truth Index/ (TI) of amplitude term Ą Accuracy function ἒ  Abstinence Index /(AI) of amplitude 
term 

𝔑  Weight vector Ὗ  Falsity Index/(FI) of amplitude term 𝐶ɰ Binomial Coefficient 𝔈 CPFS  √−1 Unit circle 𝜓  Truth Index of phase term ŕ𝔈 Hesitancy Index 𝜑  Abstinence Index of phase term 𝐼 ̅ Complement of CPFV 

The concepts of PFSs were developed by Cuong [8] and is given as follows: 

Definition 1. [8] Consider Ǖ to be an empty set. A PFS ƴ is defined as: ƴ = 𝜚, ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 |𝜚  

where ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 ∈ [0,1]. Truth index is denoted (TI) by the ὕ 𝜚 , abstinence index (AI) 
is denoted by the ἒ 𝜚 , and falsity index (FI) is denoted by the Ὗ 𝜚 , such that: 0 < ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 < 1 

A picture fuzzy value (PFV) represented by 𝒯 = ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 . 

The theory of the following Definition was proposed by Akram et al. [39]. 

Definition 2. [39] A CPFS is formed as: 𝔈 = 𝜚, ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 |𝜚 ∈ Ǖ , 𝑖 = √−1 
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degree of truth index (TI). El-Bably and Abo-Tabl [2,3] presented an innovative concept 
of FSs in the frame work of a rough set under some topological reduction. El Sayed et al. 
[4] explored the theory of topological techniques to handle the current situations of 
COVID-19 by using the model of nano-topology. Atanassov [5] generalized the theory of 
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ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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degree of truth index (TI). El-Bably and Abo-Tabl [2,3] presented an innovative concept 
of FSs in the frame work of a rough set under some topological reduction. El Sayed et al. 
[4] explored the theory of topological techniques to handle the current situations of 
COVID-19 by using the model of nano-topology. Atanassov [5] generalized the theory of 
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(FI),where the sum of TI ὕ 𝜚  and FI Ὗ 𝜚  restricted is less and equal to 0 and 1, i.e., 0 ≤ ὕ 𝜚 + Ὗ 𝜚 ≤ 1. In some scenarios IFS has failed; if the TI is 0.65 and FI is 0.55, then 
the sum of TI and FI is 0.65 + 0.55 = 1.2 ∉ [0, 1]. To cope with this situation, Yager [6] 
presented the concepts of a Pythagorean fuzzy set (PyFS); according to PyFS, the sum of 
the square of TI and FI are less than or equal to 0 and 1, and from the above example, 0 ≤ὕ 𝜚 + Ὗ 𝜚 ≤ 1, so 0.65 + 0.55 = 0.73 ∈ [0, 1]. Yager [7] also developed the con-
cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 

ν j($) ≤ hν j($), φν j($) ≤ βν j($), then:

Electronics 2022, 11, x FOR PEER REVIEW 11 of 34 
 

 

𝐶𝑃𝐹𝑊𝐻𝑀 ɰ 𝐼 , 𝐼 , … , 𝐼

=

⎝⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎛ 1 − ⎝⎜

⎛ 1 − ὕ𝜇𝑖𝑗 𝜚ɰ
𝑗=1

1ɰ ∏ 𝔑ɰ
1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟

⎞ 1𝐶𝑛ɰ

  𝑒2πi
⎝⎜
⎜⎛1−⎝⎜

⎛∏ 1− ∏ 𝜓𝜇𝑖𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

⎠⎟
⎟⎞

,

⎝⎜
⎛ 1 − 1 − ἒ𝐴𝑗 𝜚ɰ

𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

𝑒
2𝜋𝑖

⎝⎜
⎜⎜⎛⎝⎜⎜

⎛∏ 1− ∏ 1− 𝜑𝐴𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟⎟
⎞

1𝐶𝑛ɰ

⎠⎟
⎟⎟⎞,

⎝⎜
⎛ 1 − 1 − Ὗ𝜈𝑖𝑗 𝜚ɰ

𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

𝑒
2𝜋𝑖

⎝⎜
⎜⎜⎛⎝⎜⎜

⎛∏ 1− ∏ 1− 𝜙𝜈𝑖𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟⎟
⎞

1𝐶𝑛ɰ

⎠⎟
⎟⎟⎞ ⎠⎟

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎞

 
(6)

Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

∏
j=1
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 
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AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

(I1, I2, . . . , In) < CPFHM
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

(R1, R2, . . . , Rn)
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degree of truth index (TI). El-Bably and Abo-Tabl [2,3] presented an innovative concept 
of FSs in the frame work of a rough set under some topological reduction. El Sayed et al. 
[4] explored the theory of topological techniques to handle the current situations of 
COVID-19 by using the model of nano-topology. Atanassov [5] generalized the theory of 
FS in the framework of an intuitionistic fuzzy set (IFS) having TI and falsity index 
(FI),where the sum of TI ὕ 𝜚  and FI Ὗ 𝜚  restricted is less and equal to 0 and 1, i.e., 0 ≤ ὕ 𝜚 + Ὗ 𝜚 ≤ 1. In some scenarios IFS has failed; if the TI is 0.65 and FI is 0.55, then 
the sum of TI and FI is 0.65 + 0.55 = 1.2 ∉ [0, 1]. To cope with this situation, Yager [6] 
presented the concepts of a Pythagorean fuzzy set (PyFS); according to PyFS, the sum of 
the square of TI and FI are less than or equal to 0 and 1, and from the above example, 0 ≤ὕ 𝜚 + Ὗ 𝜚 ≤ 1, so 0.65 + 0.55 = 0.73 ∈ [0, 1]. Yager [7] also developed the con-
cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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With the help of a practical numerical example, we evaluate suitable software for VMS. 
To check validity and compatibility, we study a comprehensive comparative study to con-
trast the results of existing AOs with the results of the discussed technique. 

The structure of this article is organized as follows: In Section 1, we review the history 
of our research work for the improvement of this article. In Section 2, we study all the 
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posed AOs, we illustrate a numerical example based on CPF information. In Section 7, to 
find the validity and rationality of our proposed work, we make comparison results of 
our proposed approaches with some existing AOs. In Section 8, we summarize the whole 
article in a paragraph. 

2. Preliminaries 
This section aims to recall notions of PFSs, CPFSs, and their basic operational laws. 

We applied these operational laws to develop our proposed methodology. First, we want 
to define the meaning of some symbols and letters in Table 1, as follows. 

Table 1. Symbols and their meanings. 

Symbols Meanings Symbols Meanings Ǖ Universal set 𝜙  Falsity Index of phase term 𝜚 Element belonging to Universal set Ŝ Score function ὕ  Truth Index/ (TI) of amplitude term Ą Accuracy function ἒ  Abstinence Index /(AI) of amplitude 
term 

𝔑  Weight vector Ὗ  Falsity Index/(FI) of amplitude term 𝐶ɰ Binomial Coefficient 𝔈 CPFS  √−1 Unit circle 𝜓  Truth Index of phase term ŕ𝔈 Hesitancy Index 𝜑  Abstinence Index of phase term 𝐼 ̅ Complement of CPFV 

The concepts of PFSs were developed by Cuong [8] and is given as follows: 

Definition 1. [8] Consider Ǖ to be an empty set. A PFS ƴ is defined as: ƴ = 𝜚, ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 |𝜚  

where ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 ∈ [0,1]. Truth index is denoted (TI) by the ὕ 𝜚 , abstinence index (AI) 
is denoted by the ἒ 𝜚 , and falsity index (FI) is denoted by the Ὗ 𝜚 , such that: 0 < ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 < 1 

A picture fuzzy value (PFV) represented by 𝒯 = ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 . 

The theory of the following Definition was proposed by Akram et al. [39]. 

Definition 2. [39] A CPFS is formed as: 𝔈 = 𝜚, ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 |𝜚 ∈ Ǖ , 𝑖 = √−1 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

(I1, I2, . . . , In) = CPFHM
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

(R1, R2, . . . , Rn)

�
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
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ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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With the help of a practical numerical example, we evaluate suitable software for VMS. 
To check validity and compatibility, we study a comprehensive comparative study to con-
trast the results of existing AOs with the results of the discussed technique. 

The structure of this article is organized as follows: In Section 1, we review the history 
of our research work for the improvement of this article. In Section 2, we study all the 
notions related to PFSs, CPFSs, and their basic operations. In Section 3, we recall existing 
concepts of HM and GHM operators and also discuss their basic properties. In Section 4, 
we utilize the basic operations of HM operators to introduce some new AOs such as 
CPFHM and CPFWHM operators with their characteristics. In Section 5, we also present 
some new AOs of CPFGHM and CPFWGHM operators. We also present some numerical 
examples to find the feasibility of our proposed approaches. In Section 6, we establish a 
strategy for the MADM process under the system of CPFSs. We also provide an applica-
tion in the framework of VMS. To check the competitiveness and flexibility of our pro-
posed AOs, we illustrate a numerical example based on CPF information. In Section 7, to 
find the validity and rationality of our proposed work, we make comparison results of 
our proposed approaches with some existing AOs. In Section 8, we summarize the whole 
article in a paragraph. 

2. Preliminaries 
This section aims to recall notions of PFSs, CPFSs, and their basic operational laws. 

We applied these operational laws to develop our proposed methodology. First, we want 
to define the meaning of some symbols and letters in Table 1, as follows. 

Table 1. Symbols and their meanings. 

Symbols Meanings Symbols Meanings Ǖ Universal set 𝜙  Falsity Index of phase term 𝜚 Element belonging to Universal set Ŝ Score function ὕ  Truth Index/ (TI) of amplitude term Ą Accuracy function ἒ  Abstinence Index /(AI) of amplitude 
term 

𝔑  Weight vector Ὗ  Falsity Index/(FI) of amplitude term 𝐶ɰ Binomial Coefficient 𝔈 CPFS  √−1 Unit circle 𝜓  Truth Index of phase term ŕ𝔈 Hesitancy Index 𝜑  Abstinence Index of phase term 𝐼 ̅ Complement of CPFV 

The concepts of PFSs were developed by Cuong [8] and is given as follows: 

Definition 1. [8] Consider Ǖ to be an empty set. A PFS ƴ is defined as: ƴ = 𝜚, ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 |𝜚  

where ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 ∈ [0,1]. Truth index is denoted (TI) by the ὕ 𝜚 , abstinence index (AI) 
is denoted by the ἒ 𝜚 , and falsity index (FI) is denoted by the Ὗ 𝜚 , such that: 0 < ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 < 1 

A picture fuzzy value (PFV) represented by 𝒯 = ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 . 

The theory of the following Definition was proposed by Akram et al. [39]. 

Definition 2. [39] A CPFS is formed as: 𝔈 = 𝜚, ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 |𝜚 ∈ Ǖ , 𝑖 = √−1 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 
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are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
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Proof of this theorem is given in Appendix A. 
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With the help of a practical numerical example, we evaluate suitable software for VMS. 
To check validity and compatibility, we study a comprehensive comparative study to con-
trast the results of existing AOs with the results of the discussed technique. 

The structure of this article is organized as follows: In Section 1, we review the history 
of our research work for the improvement of this article. In Section 2, we study all the 
notions related to PFSs, CPFSs, and their basic operations. In Section 3, we recall existing 
concepts of HM and GHM operators and also discuss their basic properties. In Section 4, 
we utilize the basic operations of HM operators to introduce some new AOs such as 
CPFHM and CPFWHM operators with their characteristics. In Section 5, we also present 
some new AOs of CPFGHM and CPFWGHM operators. We also present some numerical 
examples to find the feasibility of our proposed approaches. In Section 6, we establish a 
strategy for the MADM process under the system of CPFSs. We also provide an applica-
tion in the framework of VMS. To check the competitiveness and flexibility of our pro-
posed AOs, we illustrate a numerical example based on CPF information. In Section 7, to 
find the validity and rationality of our proposed work, we make comparison results of 
our proposed approaches with some existing AOs. In Section 8, we summarize the whole 
article in a paragraph. 

2. Preliminaries 
This section aims to recall notions of PFSs, CPFSs, and their basic operational laws. 

We applied these operational laws to develop our proposed methodology. First, we want 
to define the meaning of some symbols and letters in Table 1, as follows. 

Table 1. Symbols and their meanings. 

Symbols Meanings Symbols Meanings Ǖ Universal set 𝜙  Falsity Index of phase term 𝜚 Element belonging to Universal set Ŝ Score function ὕ  Truth Index/ (TI) of amplitude term Ą Accuracy function ἒ  Abstinence Index /(AI) of amplitude 
term 

𝔑  Weight vector Ὗ  Falsity Index/(FI) of amplitude term 𝐶ɰ Binomial Coefficient 𝔈 CPFS  √−1 Unit circle 𝜓  Truth Index of phase term ŕ𝔈 Hesitancy Index 𝜑  Abstinence Index of phase term 𝐼 ̅ Complement of CPFV 

The concepts of PFSs were developed by Cuong [8] and is given as follows: 

Definition 1. [8] Consider Ǖ to be an empty set. A PFS ƴ is defined as: ƴ = 𝜚, ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 |𝜚  

where ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 ∈ [0,1]. Truth index is denoted (TI) by the ὕ 𝜚 , abstinence index (AI) 
is denoted by the ἒ 𝜚 , and falsity index (FI) is denoted by the Ὗ 𝜚 , such that: 0 < ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 < 1 

A picture fuzzy value (PFV) represented by 𝒯 = ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 . 

The theory of the following Definition was proposed by Akram et al. [39]. 

Definition 2. [39] A CPFS is formed as: 𝔈 = 𝜚, ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 |𝜚 ∈ Ǖ , 𝑖 = √−1 

Aj($)
)n)) 1

Electronics 2022, 11, x FOR PEER REVIEW 11 of 34 
 

 

𝐶𝑃𝐹𝑊𝐻𝑀 ɰ 𝐼 , 𝐼 , … , 𝐼

=

⎝⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎛ 1 − ⎝⎜

⎛ 1 − ὕ𝜇𝑖𝑗 𝜚ɰ
𝑗=1

1ɰ ∏ 𝔑ɰ
1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟

⎞ 1𝐶𝑛ɰ

  𝑒2πi
⎝⎜
⎜⎛1−⎝⎜

⎛∏ 1− ∏ 𝜓𝜇𝑖𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

⎠⎟
⎟⎞

,

⎝⎜
⎛ 1 − 1 − ἒ𝐴𝑗 𝜚ɰ

𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

𝑒
2𝜋𝑖

⎝⎜
⎜⎜⎛⎝⎜⎜

⎛∏ 1− ∏ 1− 𝜑𝐴𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟⎟
⎞

1𝐶𝑛ɰ

⎠⎟
⎟⎟⎞,

⎝⎜
⎛ 1 − 1 − Ὗ𝜈𝑖𝑗 𝜚ɰ

𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

𝑒
2𝜋𝑖

⎝⎜
⎜⎜⎛⎝⎜⎜

⎛∏ 1− ∏ 1− 𝜙𝜈𝑖𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟⎟
⎞

1𝐶𝑛ɰ

⎠⎟
⎟⎟⎞ ⎠⎟

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎞

 
(6)

Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
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quently utilized by researchers, but it has been determined from these studies that these 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 
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tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 
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2. Preliminaries 
This section aims to recall notions of PFSs, CPFSs, and their basic operational laws. 

We applied these operational laws to develop our proposed methodology. First, we want 
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Table 1. Symbols and their meanings. 
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The concepts of PFSs were developed by Cuong [8] and is given as follows: 

Definition 1. [8] Consider Ǖ to be an empty set. A PFS ƴ is defined as: ƴ = 𝜚, ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 |𝜚  
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 
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degree of truth index (TI). El-Bably and Abo-Tabl [2,3] presented an innovative concept 
of FSs in the frame work of a rough set under some topological reduction. El Sayed et al. 
[4] explored the theory of topological techniques to handle the current situations of 
COVID-19 by using the model of nano-topology. Atanassov [5] generalized the theory of 
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cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
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fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

(1−∏

Electronics 2022, 11, x FOR PEER REVIEW 11 of 34 
 

 

𝐶𝑃𝐹𝑊𝐻𝑀 ɰ 𝐼 , 𝐼 , … , 𝐼

=

⎝⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎛ 1 − ⎝⎜

⎛ 1 − ὕ𝜇𝑖𝑗 𝜚ɰ
𝑗=1

1ɰ ∏ 𝔑ɰ
1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟

⎞ 1𝐶𝑛ɰ

  𝑒2πi
⎝⎜
⎜⎛1−⎝⎜

⎛∏ 1− ∏ 𝜓𝜇𝑖𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

⎠⎟
⎟⎞

,

⎝⎜
⎛ 1 − 1 − ἒ𝐴𝑗 𝜚ɰ

𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

𝑒
2𝜋𝑖

⎝⎜
⎜⎜⎛⎝⎜⎜

⎛∏ 1− ∏ 1− 𝜑𝐴𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟⎟
⎞

1𝐶𝑛ɰ

⎠⎟
⎟⎟⎞,

⎝⎜
⎛ 1 − 1 − Ὗ𝜈𝑖𝑗 𝜚ɰ

𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

𝑒
2𝜋𝑖

⎝⎜
⎜⎜⎛⎝⎜⎜

⎛∏ 1− ∏ 1− 𝜙𝜈𝑖𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟⎟
⎞

1𝐶𝑛ɰ

⎠⎟
⎟⎟⎞ ⎠⎟

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎞

 
(6)

Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

j=1 Nij
)


e

2πi


(

∏1≤i1<, ...,<i

Electronics 2022, 11, x FOR PEER REVIEW 11 of 34 
 

 

𝐶𝑃𝐹𝑊𝐻𝑀 ɰ 𝐼 , 𝐼 , … , 𝐼

=

⎝⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎛ 1 − ⎝⎜

⎛ 1 − ὕ𝜇𝑖𝑗 𝜚ɰ
𝑗=1

1ɰ ∏ 𝔑ɰ
1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟

⎞ 1𝐶𝑛ɰ

  𝑒2πi
⎝⎜
⎜⎛1−⎝⎜

⎛∏ 1− ∏ 𝜓𝜇𝑖𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

⎠⎟
⎟⎞

,

⎝⎜
⎛ 1 − 1 − ἒ𝐴𝑗 𝜚ɰ

𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

𝑒
2𝜋𝑖

⎝⎜
⎜⎜⎛⎝⎜⎜

⎛∏ 1− ∏ 1− 𝜑𝐴𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟⎟
⎞

1𝐶𝑛ɰ

⎠⎟
⎟⎟⎞,

⎝⎜
⎛ 1 − 1 − Ὗ𝜈𝑖𝑗 𝜚ɰ

𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

𝑒
2𝜋𝑖

⎝⎜
⎜⎜⎛⎝⎜⎜

⎛∏ 1− ∏ 1− 𝜙𝜈𝑖𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟⎟
⎞

1𝐶𝑛ɰ

⎠⎟
⎟⎟⎞ ⎠⎟

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎞

 
(6)

Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

≤n

(
1−

(
∏

Electronics 2022, 11, x FOR PEER REVIEW 11 of 34 
 

 

𝐶𝑃𝐹𝑊𝐻𝑀 ɰ 𝐼 , 𝐼 , … , 𝐼

=

⎝⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎛ 1 − ⎝⎜

⎛ 1 − ὕ𝜇𝑖𝑗 𝜚ɰ
𝑗=1

1ɰ ∏ 𝔑ɰ
1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟

⎞ 1𝐶𝑛ɰ

  𝑒2πi
⎝⎜
⎜⎛1−⎝⎜

⎛∏ 1− ∏ 𝜓𝜇𝑖𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

⎠⎟
⎟⎞

,

⎝⎜
⎛ 1 − 1 − ἒ𝐴𝑗 𝜚ɰ

𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

𝑒
2𝜋𝑖

⎝⎜
⎜⎜⎛⎝⎜⎜

⎛∏ 1− ∏ 1− 𝜑𝐴𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟⎟
⎞

1𝐶𝑛ɰ

⎠⎟
⎟⎟⎞,

⎝⎜
⎛ 1 − 1 − Ὗ𝜈𝑖𝑗 𝜚ɰ

𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

𝑒
2𝜋𝑖

⎝⎜
⎜⎜⎛⎝⎜⎜

⎛∏ 1− ∏ 1− 𝜙𝜈𝑖𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟⎟
⎞

1𝐶𝑛ɰ

⎠⎟
⎟⎟⎞ ⎠⎟

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎞

 
(6)

Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

j=1 (1− φνij
($))

) 1

Electronics 2022, 11, x FOR PEER REVIEW 11 of 34 
 

 

𝐶𝑃𝐹𝑊𝐻𝑀 ɰ 𝐼 , 𝐼 , … , 𝐼

=

⎝⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎛ 1 − ⎝⎜

⎛ 1 − ὕ𝜇𝑖𝑗 𝜚ɰ
𝑗=1

1ɰ ∏ 𝔑ɰ
1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟

⎞ 1𝐶𝑛ɰ

  𝑒2πi
⎝⎜
⎜⎛1−⎝⎜

⎛∏ 1− ∏ 𝜓𝜇𝑖𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

⎠⎟
⎟⎞

,

⎝⎜
⎛ 1 − 1 − ἒ𝐴𝑗 𝜚ɰ

𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

𝑒
2𝜋𝑖

⎝⎜
⎜⎜⎛⎝⎜⎜

⎛∏ 1− ∏ 1− 𝜑𝐴𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟⎟
⎞

1𝐶𝑛ɰ

⎠⎟
⎟⎟⎞,

⎝⎜
⎛ 1 − 1 − Ὗ𝜈𝑖𝑗 𝜚ɰ

𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

𝑒
2𝜋𝑖

⎝⎜
⎜⎜⎛⎝⎜⎜

⎛∏ 1− ∏ 1− 𝜙𝜈𝑖𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟⎟
⎞

1𝐶𝑛ɰ

⎠⎟
⎟⎟⎞ ⎠⎟

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎞

 
(6)

Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

)(1−∏

Electronics 2022, 11, x FOR PEER REVIEW 11 of 34 
 

 

𝐶𝑃𝐹𝑊𝐻𝑀 ɰ 𝐼 , 𝐼 , … , 𝐼

=

⎝⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎛ 1 − ⎝⎜

⎛ 1 − ὕ𝜇𝑖𝑗 𝜚ɰ
𝑗=1

1ɰ ∏ 𝔑ɰ
1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟

⎞ 1𝐶𝑛ɰ

  𝑒2πi
⎝⎜
⎜⎛1−⎝⎜

⎛∏ 1− ∏ 𝜓𝜇𝑖𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

⎠⎟
⎟⎞

,

⎝⎜
⎛ 1 − 1 − ἒ𝐴𝑗 𝜚ɰ

𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

𝑒
2𝜋𝑖

⎝⎜
⎜⎜⎛⎝⎜⎜

⎛∏ 1− ∏ 1− 𝜑𝐴𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟⎟
⎞

1𝐶𝑛ɰ

⎠⎟
⎟⎟⎞,

⎝⎜
⎛ 1 − 1 − Ὗ𝜈𝑖𝑗 𝜚ɰ

𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

𝑒
2𝜋𝑖

⎝⎜
⎜⎜⎛⎝⎜⎜

⎛∏ 1− ∏ 1− 𝜙𝜈𝑖𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟⎟
⎞

1𝐶𝑛ɰ

⎠⎟
⎟⎟⎞ ⎠⎟

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎞

 
(6)

Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

j=1 Nij
))



⊕
1≤i1<, ...,<i

Electronics 2022, 11, x FOR PEER REVIEW 11 of 34 
 

 

𝐶𝑃𝐹𝑊𝐻𝑀 ɰ 𝐼 , 𝐼 , … , 𝐼

=

⎝⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎛ 1 − ⎝⎜

⎛ 1 − ὕ𝜇𝑖𝑗 𝜚ɰ
𝑗=1

1ɰ ∏ 𝔑ɰ
1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟

⎞ 1𝐶𝑛ɰ

  𝑒2πi
⎝⎜
⎜⎛1−⎝⎜

⎛∏ 1− ∏ 𝜓𝜇𝑖𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

⎠⎟
⎟⎞

,

⎝⎜
⎛ 1 − 1 − ἒ𝐴𝑗 𝜚ɰ

𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

𝑒
2𝜋𝑖

⎝⎜
⎜⎜⎛⎝⎜⎜

⎛∏ 1− ∏ 1− 𝜑𝐴𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟⎟
⎞

1𝐶𝑛ɰ

⎠⎟
⎟⎟⎞,

⎝⎜
⎛ 1 − 1 − Ὗ𝜈𝑖𝑗 𝜚ɰ

𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

𝑒
2𝜋𝑖

⎝⎜
⎜⎜⎛⎝⎜⎜

⎛∏ 1− ∏ 1− 𝜙𝜈𝑖𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟⎟
⎞

1𝐶𝑛ɰ

⎠⎟
⎟⎟⎞ ⎠⎟

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎞

 
(6)

Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 
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With the help of a practical numerical example, we evaluate suitable software for VMS. 
To check validity and compatibility, we study a comprehensive comparative study to con-
trast the results of existing AOs with the results of the discussed technique. 

The structure of this article is organized as follows: In Section 1, we review the history 
of our research work for the improvement of this article. In Section 2, we study all the 
notions related to PFSs, CPFSs, and their basic operations. In Section 3, we recall existing 
concepts of HM and GHM operators and also discuss their basic properties. In Section 4, 
we utilize the basic operations of HM operators to introduce some new AOs such as 
CPFHM and CPFWHM operators with their characteristics. In Section 5, we also present 
some new AOs of CPFGHM and CPFWGHM operators. We also present some numerical 
examples to find the feasibility of our proposed approaches. In Section 6, we establish a 
strategy for the MADM process under the system of CPFSs. We also provide an applica-
tion in the framework of VMS. To check the competitiveness and flexibility of our pro-
posed AOs, we illustrate a numerical example based on CPF information. In Section 7, to 
find the validity and rationality of our proposed work, we make comparison results of 
our proposed approaches with some existing AOs. In Section 8, we summarize the whole 
article in a paragraph. 

2. Preliminaries 
This section aims to recall notions of PFSs, CPFSs, and their basic operational laws. 

We applied these operational laws to develop our proposed methodology. First, we want 
to define the meaning of some symbols and letters in Table 1, as follows. 

Table 1. Symbols and their meanings. 

Symbols Meanings Symbols Meanings Ǖ Universal set 𝜙  Falsity Index of phase term 𝜚 Element belonging to Universal set Ŝ Score function ὕ  Truth Index/ (TI) of amplitude term Ą Accuracy function ἒ  Abstinence Index /(AI) of amplitude 
term 

𝔑  Weight vector Ὗ  Falsity Index/(FI) of amplitude term 𝐶ɰ Binomial Coefficient 𝔈 CPFS  √−1 Unit circle 𝜓  Truth Index of phase term ŕ𝔈 Hesitancy Index 𝜑  Abstinence Index of phase term 𝐼 ̅ Complement of CPFV 

The concepts of PFSs were developed by Cuong [8] and is given as follows: 

Definition 1. [8] Consider Ǖ to be an empty set. A PFS ƴ is defined as: ƴ = 𝜚, ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 |𝜚  

where ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 ∈ [0,1]. Truth index is denoted (TI) by the ὕ 𝜚 , abstinence index (AI) 
is denoted by the ἒ 𝜚 , and falsity index (FI) is denoted by the Ὗ 𝜚 , such that: 0 < ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 < 1 

A picture fuzzy value (PFV) represented by 𝒯 = ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 . 

The theory of the following Definition was proposed by Akram et al. [39]. 

Definition 2. [39] A CPFS is formed as: 𝔈 = 𝜚, ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 |𝜚 ∈ Ǖ , 𝑖 = √−1 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 
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[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 
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Now, we have to show that is a CPFV.
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of FSs in the frame work of a rough set under some topological reduction. El Sayed et al. 
[4] explored the theory of topological techniques to handle the current situations of 
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presented the concepts of a Pythagorean fuzzy set (PyFS); according to PyFS, the sum of 
the square of TI and FI are less than or equal to 0 and 1, and from the above example, 0 ≤ὕ 𝜚 + Ὗ 𝜚 ≤ 1, so 0.65 + 0.55 = 0.73 ∈ [0, 1]. Yager [7] also developed the con-
cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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To check validity and compatibility, we study a comprehensive comparative study to con-
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find the validity and rationality of our proposed work, we make comparison results of 
our proposed approaches with some existing AOs. In Section 8, we summarize the whole 
article in a paragraph. 
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The concepts of PFSs were developed by Cuong [8] and is given as follows: 

Definition 1. [8] Consider Ǖ to be an empty set. A PFS ƴ is defined as: ƴ = 𝜚, ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 |𝜚  
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tion in the framework of VMS. To check the competitiveness and flexibility of our pro-
posed AOs, we illustrate a numerical example based on CPF information. In Section 7, to 
find the validity and rationality of our proposed work, we make comparison results of 
our proposed approaches with some existing AOs. In Section 8, we summarize the whole 
article in a paragraph. 

2. Preliminaries 
This section aims to recall notions of PFSs, CPFSs, and their basic operational laws. 

We applied these operational laws to develop our proposed methodology. First, we want 
to define the meaning of some symbols and letters in Table 1, as follows. 

Table 1. Symbols and their meanings. 

Symbols Meanings Symbols Meanings Ǖ Universal set 𝜙  Falsity Index of phase term 𝜚 Element belonging to Universal set Ŝ Score function ὕ  Truth Index/ (TI) of amplitude term Ą Accuracy function ἒ  Abstinence Index /(AI) of amplitude 
term 

𝔑  Weight vector Ὗ  Falsity Index/(FI) of amplitude term 𝐶ɰ Binomial Coefficient 𝔈 CPFS  √−1 Unit circle 𝜓  Truth Index of phase term ŕ𝔈 Hesitancy Index 𝜑  Abstinence Index of phase term 𝐼 ̅ Complement of CPFV 

The concepts of PFSs were developed by Cuong [8] and is given as follows: 

Definition 1. [8] Consider Ǖ to be an empty set. A PFS ƴ is defined as: ƴ = 𝜚, ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 |𝜚  

where ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 ∈ [0,1]. Truth index is denoted (TI) by the ὕ 𝜚 , abstinence index (AI) 
is denoted by the ἒ 𝜚 , and falsity index (FI) is denoted by the Ὗ 𝜚 , such that: 0 < ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 < 1 

A picture fuzzy value (PFV) represented by 𝒯 = ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 . 

The theory of the following Definition was proposed by Akram et al. [39]. 

Definition 2. [39] A CPFS is formed as: 𝔈 = 𝜚, ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 |𝜚 ∈ Ǖ , 𝑖 = √−1 
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degree of truth index (TI). El-Bably and Abo-Tabl [2,3] presented an innovative concept 
of FSs in the frame work of a rough set under some topological reduction. El Sayed et al. 
[4] explored the theory of topological techniques to handle the current situations of 
COVID-19 by using the model of nano-topology. Atanassov [5] generalized the theory of 
FS in the framework of an intuitionistic fuzzy set (IFS) having TI and falsity index 
(FI),where the sum of TI ὕ 𝜚  and FI Ὗ 𝜚  restricted is less and equal to 0 and 1, i.e., 0 ≤ ὕ 𝜚 + Ὗ 𝜚 ≤ 1. In some scenarios IFS has failed; if the TI is 0.65 and FI is 0.55, then 
the sum of TI and FI is 0.65 + 0.55 = 1.2 ∉ [0, 1]. To cope with this situation, Yager [6] 
presented the concepts of a Pythagorean fuzzy set (PyFS); according to PyFS, the sum of 
the square of TI and FI are less than or equal to 0 and 1, and from the above example, 0 ≤ὕ 𝜚 + Ὗ 𝜚 ≤ 1, so 0.65 + 0.55 = 0.73 ∈ [0, 1]. Yager [7] also developed the con-
cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 

ν($) ≤ 1 and 0 ≤ ψµ($) + ϕA($) + φν($) ≤ 1
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

n
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the sum of TI and FI is 0.65 + 0.55 = 1.2 ∉ [0, 1]. To cope with this situation, Yager [6] 
presented the concepts of a Pythagorean fuzzy set (PyFS); according to PyFS, the sum of 
the square of TI and FI are less than or equal to 0 and 1, and from the above example, 0 ≤ὕ 𝜚 + Ὗ 𝜚 ≤ 1, so 0.65 + 0.55 = 0.73 ∈ [0, 1]. Yager [7] also developed the con-
cept of a q-rung orthopair fuzzy set (q-ROFS) by generalizing the idea of PyFS. Cuong 
[8,9] introduced a new concept of picture fuzzy (PF) set (PFS), which contains four types 
of characteristic functions, TI, abstinence index (AI), FI, and refusal index (RI). The struc-
ture of PFS has the sum of three terms, and TI, AI, and FI are restricted in [0, 1]. Lu et al. 
[10] generalized the concepts of PFSs in the framework of PF rough sets to solve real-life 
problems under the system of MADM techniques. Several research scholars worked in 
different fields of research to find the limitations of the above-discussed phenomenon seen 
in [11–14]. 

Aggregation operators are convenient mathematical models to investigate fuzzy in-
formation, for the study of above discussed existing AOs, we analyzed research works to 
recognize how to deal with ambiguity and uncertainty in complex information. Several 
research scholars presented their research methodologies to solve MADM techniques. For 
instance, Xu [15] presented some AOs of IFS to investigate fuzziness data. Xu and Xia [16] 
generalized IFSs and developed a list of AOs to solve the MADM process. Biswas and Deb 
[17] introduced a list of new AOs by utilizing the Schweizer and Sklar power operations 
under the system of PyFSs. Garg [18] presented some AOs of PyFSs by using the opera-
tions of Einstein T-norm (TNM) and T-conorm (TCNM). Mahmood and Ali [19] explained 
a new technique of AOs by using the VIKOR method in the environment of complex q-
rung orthopair sets. Riaz and Hashmi [20] elaborated on AOs based on Linear Diophan-
tine FSs and solve a MADM technique to investigate a suitable candidate for a multina-
tional company. Liu [21] extended algebraic AOs and Einstein AOs to develop some new 
AOs by using the operations of Hamacher TNM and TCNM under the system interval-
valued IFSs (IVIFSs). Hussain et al. [22] presented some AOs by utilizing the basic opera-
tions of Aczel Alsina TNM and TCNM to select a suitable candidate for a multinational 
company. Liu et al. [23] generalized similarity measures based on interval-valued PFS 
(IVPFS) and studied a MADM technique to solve real-life problems. Mahmood et al. [24] 
established a series of new AOs based on the bipolar valued fuzzy hesitant system and 
their special cases. Garg [25] explained some new AOs based on PFSs and also studied a 
MADM technique to solve a numerical example related to our daily life. Wei [26] pre-
sented some AOs of arithmetic and geometric operators by utilizing the basic operations 
of Hamacher TNM and TCNM. We also studied the theory of generalized FS in different 
fuzzy environments seen in references [27–30]. 

The preceding aggregation operators and their associated methodologies are fre-
quently utilized by researchers, but it has been determined from these studies that these 
works consider the data under the FS, IFSs, or their modifications, which are only to han-
dle the uncertainty and vagueness that exist in the data. The partial ignorance of the data 
and their variations at a specific point in the time during implementation, however, is 
something that none of the existing models is capable of recognizing. Additionally, in 
daily life, change in the phase (periodicity) of the data corresponds with uncertainty and 
ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

j=1 ψµj ($)

)
≤ 1

0 ≤
(

Electronics 2022, 11, x FOR PEER REVIEW 11 of 34 
 

 

𝐶𝑃𝐹𝑊𝐻𝑀 ɰ 𝐼 , 𝐼 , … , 𝐼

=

⎝⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎛ 1 − ⎝⎜

⎛ 1 − ὕ𝜇𝑖𝑗 𝜚ɰ
𝑗=1

1ɰ ∏ 𝔑ɰ
1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟

⎞ 1𝐶𝑛ɰ

  𝑒2πi
⎝⎜
⎜⎛1−⎝⎜

⎛∏ 1− ∏ 𝜓𝜇𝑖𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

⎠⎟
⎟⎞

,

⎝⎜
⎛ 1 − 1 − ἒ𝐴𝑗 𝜚ɰ

𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

𝑒
2𝜋𝑖

⎝⎜
⎜⎜⎛⎝⎜⎜

⎛∏ 1− ∏ 1− 𝜑𝐴𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟⎟
⎞

1𝐶𝑛ɰ

⎠⎟
⎟⎟⎞,

⎝⎜
⎛ 1 − 1 − Ὗ𝜈𝑖𝑗 𝜚ɰ

𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟
⎞ 1𝐶𝑛ɰ

𝑒
2𝜋𝑖

⎝⎜
⎜⎜⎛⎝⎜⎜

⎛∏ 1− ∏ 1− 𝜙𝜈𝑖𝑗 𝜚ɰ𝑗=1
1ɰ ∏ 𝔑ɰ

1≤𝑖1<,…,<𝑖ɰ≤𝑛 ⎠⎟⎟
⎞

1𝐶𝑛ɰ

⎠⎟
⎟⎟⎞ ⎠⎟

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎞

 
(6)

Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 
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are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
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ambiguity that is present in the data. There is information loss during the process as a 
result of the present theories’ inability to adequately account for this information. To over-
come this situation, Ramot et al. [31] introduced the complex fuzzy set (CFS), in which the 
range of the TI is expanding from real numbers to complex numbers with the unit circle. 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 
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methodology of the Definition 12. 
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Similarly, we can prove the following equations.
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posed AOs, we illustrate a numerical example based on CPF information. In Section 7, to 
find the validity and rationality of our proposed work, we make comparison results of 
our proposed approaches with some existing AOs. In Section 8, we summarize the whole 
article in a paragraph. 

2. Preliminaries 
This section aims to recall notions of PFSs, CPFSs, and their basic operational laws. 

We applied these operational laws to develop our proposed methodology. First, we want 
to define the meaning of some symbols and letters in Table 1, as follows. 

Table 1. Symbols and their meanings. 

Symbols Meanings Symbols Meanings Ǖ Universal set 𝜙  Falsity Index of phase term 𝜚 Element belonging to Universal set Ŝ Score function ὕ  Truth Index/ (TI) of amplitude term Ą Accuracy function ἒ  Abstinence Index /(AI) of amplitude 
term 

𝔑  Weight vector Ὗ  Falsity Index/(FI) of amplitude term 𝐶ɰ Binomial Coefficient 𝔈 CPFS  √−1 Unit circle 𝜓  Truth Index of phase term ŕ𝔈 Hesitancy Index 𝜑  Abstinence Index of phase term 𝐼 ̅ Complement of CPFV 

The concepts of PFSs were developed by Cuong [8] and is given as follows: 

Definition 1. [8] Consider Ǖ to be an empty set. A PFS ƴ is defined as: ƴ = 𝜚, ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 |𝜚  

where ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 ∈ [0,1]. Truth index is denoted (TI) by the ὕ 𝜚 , abstinence index (AI) 
is denoted by the ἒ 𝜚 , and falsity index (FI) is denoted by the Ὗ 𝜚 , such that: 0 < ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 < 1 

A picture fuzzy value (PFV) represented by 𝒯 = ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 . 

The theory of the following Definition was proposed by Akram et al. [39]. 

Definition 2. [39] A CPFS is formed as: 𝔈 = 𝜚, ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 |𝜚 ∈ Ǖ , 𝑖 = √−1 
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Proof of Theorem 8. We prove this theorem by using previous Theorems 2 and 3.
From Theorem 5, we have:
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

)
(

I−1 , I−2 , . . . , I−n
)
=
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 
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2. Preliminaries 
This section aims to recall notions of PFSs, CPFSs, and their basic operational laws. 
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to define the meaning of some symbols and letters in Table 1, as follows. 

Table 1. Symbols and their meanings. 
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The concepts of PFSs were developed by Cuong [8] and is given as follows: 

Definition 1. [8] Consider Ǖ to be an empty set. A PFS ƴ is defined as: ƴ = 𝜚, ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 |𝜚  
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The theory of the following Definition was proposed by Akram et al. [39]. 

Definition 2. [39] A CPFS is formed as: 𝔈 = 𝜚, ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 |𝜚 ∈ Ǖ , 𝑖 = √−1 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

∏
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Proof of this theorem is given in Appendix A. 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 
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With the help of a practical numerical example, we evaluate suitable software for VMS. 
To check validity and compatibility, we study a comprehensive comparative study to con-
trast the results of existing AOs with the results of the discussed technique. 

The structure of this article is organized as follows: In Section 1, we review the history 
of our research work for the improvement of this article. In Section 2, we study all the 
notions related to PFSs, CPFSs, and their basic operations. In Section 3, we recall existing 
concepts of HM and GHM operators and also discuss their basic properties. In Section 4, 
we utilize the basic operations of HM operators to introduce some new AOs such as 
CPFHM and CPFWHM operators with their characteristics. In Section 5, we also present 
some new AOs of CPFGHM and CPFWGHM operators. We also present some numerical 
examples to find the feasibility of our proposed approaches. In Section 6, we establish a 
strategy for the MADM process under the system of CPFSs. We also provide an applica-
tion in the framework of VMS. To check the competitiveness and flexibility of our pro-
posed AOs, we illustrate a numerical example based on CPF information. In Section 7, to 
find the validity and rationality of our proposed work, we make comparison results of 
our proposed approaches with some existing AOs. In Section 8, we summarize the whole 
article in a paragraph. 

2. Preliminaries 
This section aims to recall notions of PFSs, CPFSs, and their basic operational laws. 

We applied these operational laws to develop our proposed methodology. First, we want 
to define the meaning of some symbols and letters in Table 1, as follows. 

Table 1. Symbols and their meanings. 

Symbols Meanings Symbols Meanings Ǖ Universal set 𝜙  Falsity Index of phase term 𝜚 Element belonging to Universal set Ŝ Score function ὕ  Truth Index/ (TI) of amplitude term Ą Accuracy function ἒ  Abstinence Index /(AI) of amplitude 
term 

𝔑  Weight vector Ὗ  Falsity Index/(FI) of amplitude term 𝐶ɰ Binomial Coefficient 𝔈 CPFS  √−1 Unit circle 𝜓  Truth Index of phase term ŕ𝔈 Hesitancy Index 𝜑  Abstinence Index of phase term 𝐼 ̅ Complement of CPFV 

The concepts of PFSs were developed by Cuong [8] and is given as follows: 

Definition 1. [8] Consider Ǖ to be an empty set. A PFS ƴ is defined as: ƴ = 𝜚, ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 |𝜚  

where ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 ∈ [0,1]. Truth index is denoted (TI) by the ὕ 𝜚 , abstinence index (AI) 
is denoted by the ἒ 𝜚 , and falsity index (FI) is denoted by the Ὗ 𝜚 , such that: 0 < ὕ 𝜚 + ἒ 𝜚 + Ὗ 𝜚 < 1 

A picture fuzzy value (PFV) represented by 𝒯 = ὕ 𝜚 , ἒ 𝜚 , Ὗ 𝜚 . 

The theory of the following Definition was proposed by Akram et al. [39]. 

Definition 2. [39] A CPFS is formed as: 𝔈 = 𝜚, ὕ 𝜚 𝑒 , ἒ 𝜚 𝑒 , Ὗ 𝜚 𝑒 |𝜚 ∈ Ǖ , 𝑖 = √−1 

Aj
($)
))) 1
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Proof of this theorem is given in Appendix A. 
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
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Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 
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(6)

Proof of this theorem is given in Appendix A. 
We established a numerical example to support the CPFWHM operator by using the 

methodology of the Definition 12. 

Example 2. Let  𝐼 = 0.28𝑒 . , 0.36𝑒 . , 0.33𝑒 . , 𝐼 =0.15𝑒 . , 0.52𝑒 . , 0.15𝑒 . , 𝐼 = 0.64𝑒 . , 0.09𝑒 . , 0.16𝑒 .  
are three CPFVs with corresponding weight vectors 𝔑 = 0.45, 0.35, 20 , suppose that ɰ = 2. 
Then, 

(I1, I2, . . . , In) ≤ I+

�
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