
Citation: Tang, W.; Zhang, P.

GPGCN: A General-Purpose Graph

Convolution Neural Network

Accelerator Based on RISC-V ISA

Extension. Electronics 2022, 11, 3833.

https://doi.org/10.3390/

electronics11223833

Academic Editor: David Defour

Received: 19 October 2022

Accepted: 16 November 2022

Published: 21 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

GPGCN: A General-Purpose Graph Convolution Neural
Network Accelerator Based on RISC-V ISA Extension
Wenkai Tang and Peiyong Zhang *

School of Micro-Nano Electronics, Zhejiang University, Hangzhou 310058, China
* Correspondence: zhangpy@zju.edu.cn

Abstract: In the past two years, various graph convolution neural networks (GCNs) accelerators have
emerged, each with their own characteristics, but their common disadvantage is that the hardware
architecture is not programmable and it is optimized for a specific network and dataset. They may not
support acceleration for different GCNs and may not achieve optimal hardware resource utilization
for datasets of different sizes. Therefore, given the above shortcomings, and according to the develop-
ment trend of traditional neural network accelerators, this paper proposes and implements GPGCN: a
general-purpose GCNs accelerator architecture based on RISC-V instruction set extension, providing
the software programming freedom to support acceleration for various GCNs, and achieving the best
acceleration efficiency for different GCNs with different datasets. Compared with traditional CPU,
and traditional CPU with vector expansion, GPGCN achieves above 1001×, 267× speedup for GCN
with the Cora dataset. Compared with dedicated accelerators, GPGCN has software programmability
and supports the acceleration of more GCNs.

Keywords: GCNs; general GCNs accelerator; RISC-V; software programmable

1. Introduction

Since the GCNs hardware accelerator HYGCN [1] was proposed in 2020, various
GCNs accelerators [1–11] have emerged, one after another, that are different in the cal-
culation method, control flow, and scheduling algorithm, with different advantages in
accelerating the GCNs [12,13], such as GCN [14], GIN [15], and GSC [16]. HYGCN [1]
proposes a GCNs accelerator composed of an aggregation phase and a combination phase.
ENGN [2] optimizes computation order for aggregation and combination to improve ac-
celeration efficiency. AWB-GCN [3] optimizes the execution unit scheduling algorithm to
balance the workload of each execution unit to improve the overall efficiency. However,
they also have hidden downsides. A common disadvantage is that the hardware architec-
ture is not programmable and it is optimized for a specific network and dataset. Their fixed
calculation process may have a good acceleration effect for specific sizes and formats of
datasets and certain GCNs, but not for other GCNs with different datasets because they do
not have freedom of programmability.

Moreover, from the experience of the development history of traditional deep learning
neural network accelerators, such as Cambricon [17], Grayskull [18] from Tenstorrent, and
RASA [19] from Intel, it is understood that a software-programmable GCNs accelerator
architecture based on instruction set is the trend of unified GCNs accelerator architecture
in the future.

Traditional GCN hardware accelerators, such as HYGCN [1], ENGN [2], and AWB-
GCN [3], which are dedicated accelerators, as shown on the right side of Figure 1, have
the advantages of high energy efficiency and high execution rate. However, they also have
less programmability or even non-programmability, which leads to the limitation of a fixed
acceleration execution mode of the network.

In the general-purpose processor architecture, there are particular SIMD instruction
set extensions for control-intensive operations with vector calculations, such as intel’s

Electronics 2022, 11, 3833. https://doi.org/10.3390/electronics11223833 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11223833
https://doi.org/10.3390/electronics11223833
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics11223833
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11223833?type=check_update&version=1

Electronics 2022, 11, 3833 2 of 22

AVX instruction set extension, ARM’s neon instruction set extension, SVE instruction
set extension, RISC-V’s vector extension, etc. Compute-intensive matrix computing also
has particular matrix instruction set extensions, such as Intel’s AMX extension, ARM’s
SME extension, etc. However, because these instruction set extensions of general-purpose
processors are designed to cover most application scenarios, they are too general, as shown
on the left of Figure 1. Although they have a high degree of programmable freedom,
they are not specially customized and optimized for the characteristics of GCNs, and the
efficiency of accelerating GCNs will not be as high as dedicated accelerators. Moreover,
the large amount of instructions introduces the problem of taking up a lot of memory
access bandwidth when fetching the instructions. At the same time, they are limited to the
architecture of general-purpose processors, where their scalability is limited.

Therefore, for the programmable GCNs accelerator design in this paper, it is necessary
to find an intermediate balance between the general-purpose processor architecture on the
left of Figure 1 and the dedicated accelerator architecture on the right to satisfy the high
degree of freedom of programmability, high execution efficiency, high energy efficiency,
and sufficient scalability requirements at the same time. In this work, we pioneeringly
propose the concept of GPGCN and design the GPGCN custom instructions based on
RISC-V ISA extension. Then, we propose a general-purpose GCNs hardware accelerator
based on the proposed GPGCN custom instructions. We design the general-purpose GCNs
hardware accelerator in RTL and evaluate it using cycle-accurate simulation. Compared
with a traditional CPU, and a traditional CPU with vector extension, GPGCN achieves
above 1001×, 267× speedup for GCN with the Cora dataset. Compared with dedicated
accelerators, such as HYGCN [1], GPGCN has software programmability and supports the
acceleration of more GCNs.

Figure 1. Differences between general-purpose processors, GPGCNs, and dedicated accelerators.
Advantages are marked in red, while disadvantages are marked in blue.

2. GCNs Analysis

Different from the traditional convolutional network, which processes data in Eu-
clidean space, GCNs process data in non-Euclidean space, such as connection graph data.
The calculation of GCNs generally consists of two phases: aggregation and combination,
as shown in Figure 2. Aggregation fuses the feature vectors of each vertex adjacent point
in some way. For example, the average sum and weighted sum are evaluated to obtain a
new feature vector, as shown in the middle part of Figure 2. After aggregation, the feature
vector of the vertex has information about its neighbor vertices. Then, combination uses the
aggregated feature vector to perform a fully connected convolution calculation to obtain a
low-dimensional feature vector, as shown in the right part of Figure 2. Combination extracts
low-dimensional information from the features of the vertex and its neighbor vertices.

Electronics 2022, 11, 3833 3 of 22

Therefore, the unified mathematical expression of most GCNs is as (1), where A is the
adjacency matrix, H is the feature matrix, and W is the weight matrix:

GCNs networks = A · H · W (1)

The process of aggregation + combination is repeated two or three times, and the final
low-dimensional vector is used to complete tasks such as classification.

A

E

C

D

B

A B

DC

E

C

B

D
E

Feature Vector

Feature Vector

Feature Vector

F
e

a
tu

re
 V

e
c
to

r
Origin graph Aggregation Combination

F
e

a
tu

re
 V

e
c
to

r

Figure 2. The calculation of most GCNs.

Most of the GCNs aggregation process can be expressed as the multiplication of the
weighted adjacency matrix A and the feature matrix H, composed of each vertex’s feature
vector. However, their respective aggregation characteristics are reflected in the adjacency
matrix A difference. The adjacency matrix of GCN is calculated by the degree matrix,
while the adjacency matrix of GAT is learned through the training process. Therefore, the
aggregation process of these GCNs can be expressed as in Equation (2):

Aggregation result = A · H (2)

Although aggregation can be uniformly expressed as matrix multiplication, due to
the characteristics of graph datasets, the adjacency matrix A is always a matrix with high
sparsity, that is, a large proportion of elements are 0. For example, as shown in Table 1,
the adjacency matrix sparsity of the Cora dataset is 99.856%; the adjacency matrix sparsity
of the Citeseer dataset is 99.918%, the adjacency matrix sparsity of the Pubmed dataset is
99.977%, and the adjacency matrix sparsity of the Nell dataset is 99.9942%. Therefore, the
process of GCNs network aggregation is actually the process of sparse matrix multiplication
sparse-GEMM.

Table 1. Sparsity differences of Cora, Citeseer, Pubmed, and Nell datasets.

Node Edge Features Classes
Feature
Matrix

Sparsity

Adjacent
Matrix

Sparsity

Cora 2708 10,556 1433 7 98.73% 99.856%
Citeseer 3327 9104 3703 6 99.15% 99.918%
Pubmed 19,717 88,648 500 3 90.00% 99.977%

Nell 65,755 251,550 61,278 186 99.99% 99.994%

Electronics 2022, 11, 3833 4 of 22

It can be seen from Table 1 that the sparsities of the adjacency matrices of the four
typical graph datasets are all above 99%. However, when the sparseness of the matrix
is large enough, even using the space-aware sparse matrix multiplication (sp-GEMM) to
calculate, it will cause the elements with a value of 0 to occupy unnecessary hardware
resources and waste time. Therefore, compared to the matrix operation, the aggregation
calculation process is not computationally intensive, but is control-intensive. For control-
intensive processing, it is more suitable to use the control logic + vector PE (process element)
to complete, as shown in the upper part of Figure 3.

A
B

C

D
E

F

G

H

D
B
H
G

Feature vector

 for D
control

intensive
Ctrl

Vector PE

Different between vertexs

A
B
C
D
E
F
G
H

Weight matrix

F

N

W

F

W

N

Computation

 intensive
P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

Vector PE

Vector PE

Vector PE

Vector PE

Figure 3. Control-intensive and computation-intensive in GCNs. Vertex D and its adjacent vertexes
are marked in green.

For such a sparse matrix operation, the correct approach is shown in Figure 4. The
adjacency matrix A with extremely high sparsity is stored in CSR format. The feature
matrix H is divided into vector format by row for operation. For the non-zero elements of
each row in the adjacency matrix, the column coordinates of the non-zero elements stored
in the CSR format are used as indexes, and the feature vector of the corresponding row of
the feature vector matrix H is taken out for the aggregation operation.

10 0 0 0 0 0 01

 aggregation

1 1

Col index

Row index

2 5

 aggregation

2 5
Col index of non-

zero element

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

Row index

0

1

2

3

4

5

6

7

8

1 4 5 7

2 3 4 7 8

5 6 8

row0

row1

row2

row3

1 3 5 6

2 3 5 6 7

5 6

1 2 7 8

row4

row5

row6

row7

Sparse matrix in

CSR format
Sparse matrix multiplication

is split into vector additions

Figure 4. The computation process of a sparse matrix.

The calculation of the combination phase of different networks is similar. Whether a
fully connected convolution or a multilayer perceptron, it is a dense matrix multiplication
operation (dense-GEMM) or a matrix with a certain degree of sparsity multiplied by a
dense matrix. It is computation-intensive and is suitable for computing with a matrix-form
computing array, as shown in the lower part of Figure 3.

Electronics 2022, 11, 3833 5 of 22

3. ISA Architecture
3.1. Basic Features of GPGCN Custom Instruction Set Architecture

GPGCN compresses the encoding of macro instruction with many operations into
RISC-V instruction, which has only 32 bits of encoding space.

The architecture registers of the vector/matrix are divided into source register (or rs
register) and destination register (or rd register), and the rs register corresponds to the rd
register one-to-one and is used together; that is to say, as long as the index of the rd register
is specified in the instruction, the rs register index is also specified. Binding a pair of rs and
rd registers together has three advantages:

• We only need to specify the index of one register to operate two registers, which saves
a lot of coding space for GPGCN custom instructions to encode other information.

• It is consistent with the computational characteristics of the aggregation process.
• It has a better scalability.

3.2. Custom CSR

Since there are two difficulties in designing macro instructions, one is to encode
many pieces of instruction operation information required in the limited RISC instruction
encoding space, and the other is to ensure the degree of programming freedom. The first
problem is to provide some common auxiliary information between instructions through
the custom CSR (current status registers) registers to solve and reduce instruction coding
pressure.

Table 2 shows the address space, the register’s name, and the specific function descrip-
tion of the custom CSR registers of the GPGCN custom instruction set.

Table 2. The custom CSR registers.

Index Address Name Description

1 0x7c2 Feature matrix base address
for aggregation The starting address of the feature matrix during aggregation calculation.

2 0x7c3 Feature vector length The number of elements of the feature vector representing a vertex in the
feature matrix.

3 0x7c4 Pre-add feature matrix base address The starting address of another special feature matrix, which will be used
when describing redundancy reduction techniques in the next chapter.

4 0x7c5 Result feature matrix base address The starting address of storing the result matrix during
aggregation calculation.

5 0x7c6 Feature matrix base address
for combination The starting address of the feature matrix during combined calculation.

6 0x7c7 Weight matrix base address The starting address of the weight matrix during combined calculation.

7 0x7c8 Da
A specific dimension of the adjacent matrix and the feature matrix when
the result matrix is evaluated in the combined calculation. It will be used

when describing the matrix type instruction below.

8 0x7c9 Combination result matrix base
address The starting address of the result matrix of the combinatorial calculation.

9 0x7ca Number of vector rd The number of vector register pairs, a fixed value, representing GPGCN
hardware size information.

10 0x7cb Number of matrix rd The number of matrix registers, a fixed value, representing GPGCN
hardware size information.

11 0x7cc SCM (scratchpad
memory) configuration

The current configuration information of scratchpad memory, which will
be described in detail when describing the configurable SCM hardware

design in the next chapter.

Electronics 2022, 11, 3833 6 of 22

Table 2. Cont.

Index Address Name Description

12 0x7cd Vector 8/16 The number of elements in the vector operated by the vector type
instruction: 0 represents 8 elements, 1 represents 16 elements.

13 0x7ce Float round mode The rounding mode for floating-point calculations.

14 0x7cf Matrix/vector mode

Indicates whether the GPGCN hardware is in the matrix instruction
mode or the vector instruction mode. The CSR register is used to

distinguish which mode the hardware is in in the case of a hardware
microarchitecture that integrates the vector and matrix registers and

execution unit resources.

3.3. Register Extension

The GPGCN instruction set architecture contains two types of register group: the
vector register group and the matrix register group. The ninth custom CSR register specifies
the number of vector register pairs in the vector register group. Each pair of vector registers
contains one vector rs register and one vector rd register, and each vector register contains
16 32-bit single-precision floating-point elements, as shown in Figure 5.

.

.

.

. . .

N
u

m
 o

f
v
e

c
to

r
rd

16 elements

.

.

.

. . .

Vector rs Vector rd

16 elements

Figure 5. The custom vector registers file.

The 10th custom CSR register specifies the number of matrix registers in the matrix
register group. Each pair of matrix registers contains two vector rs registers, one matrix rs
register, and one matrix rd register, as shown in Figure 6. The vector rs register contains 8
32-bit single-precision float point elements. The matrix rs/rd register contains 8 × 8 32-bit
single-precision float point elements to support 8 ×1 ×1 ×8 outer product operations.

...

V
e

c
to

r
rs

1

Vector rs2

Matrix rs/rd

Figure 6. The custom matrix registers file.

Electronics 2022, 11, 3833 7 of 22

Eight vector rs/rd registers can be combined into a matrix rs/rd register for use so that
vector and matrix operations multiplex register resources and improve hardware utilization
efficiency. The GPGCN hardware microarchitecture in the next chapter is also designed in
this way.

3.4. Instruction Extension

According to the common characteristics of aggregation calculation and combination
calculation in different GCNs, we designed four types of instructions extensions: vec-
tor type instructions, matrix type instructions, memory-access-related instructions, and
special instructions, which correspond to aggregation, combination, memory access, and
synchronization in the forward inferring process of different GCNs.

RISC-V provides four customizable instruction encoding spaces: custom0, custom1,
custom2, and custom3, as shown in Figure 7. The GPGCN custom instruction set is
implemented in these encoding spaces.

Figure 7. The custom instruction encoding space of RISC-V.

3.5. Vector Instruction Extension

It can be seen from Table 3 that the vector type instructions are subdivided into three
categories: the basic category, the fix-rd category, and the fixed-rs category. The following
describes the basic functions and design principles of vector-type instructions based on
these three categories.

Table 3. The vector instructions extension.

Macro op Instructions Code Class

basic

00001 loadvec8/16 vector_rd (idx) (CSR1,CSR2) custom0_rs1
00001 loadvec8/16 vector_rs (idx) (CSR1,CSR2) custom0_rs1
00001 loadvec8/16 all_vector_rs (idx) (CSR1,CSR2) custom0_rs1
00010 storevec8/16 vector_rd (idx) (CSR3,CSR2) [relu] custom0_rd_rs1, rd = 0
00010 storevec8/16 vector_rd (idx) (CSR4,CSR2) [relu] custom0_rd_rs1, rd = 0
00011 addvec8/16 vector_rd vector_rs custom0
00100 mov vector_rd 0 custom3

fixed-rd
01000 load-rs-add-rd-vec8/16 vector_rd (idx) (CSR1,CSR2) custom1_rs1
01000 load-rs-add-rd-vec8/16 vector_rd (idx) (CSR3,CSR2) custom1_rs1
01001 load-rs-add-rd-vec8/16 vector_rd (idx1) (idx2) (CSR1,CSR2) custom0_rs1_rs2
01010 load-rs-add-rd-vec8/16 vector_rd (idx) (aij) (CSR1,CSR2) custom1_rs1_rs2

fixed-rs
01100 load-rd-add-rs-store-rd-vec8/16 (idx) (CSR4,CSR2) custom1_rd_rs1, rd = 0
01101 load-rd-add-rs-store-rd-vec8/16 (idx) (aij) (CSR4,CSR2) custom2_rs1_rs2

3.5.1. Basic Vector Instructions

The basic vector instruction is similar to the traditional SIMD instruction, and defines
some basic vector load, store, add, and mov operations as the function complement of the
fixed-rd and fixed-rs vector instructions.

Unlike the traditional SIMD instruction, the basic load/store instruction specifies the
memory access address through the index stored in the RISC-V integer register. The index
means the row coordinates of the feature vector to be accessed in the entire feature matrix.

Electronics 2022, 11, 3833 8 of 22

The hardware will calculate the final memory access address through custom CSR1 (base
address of feature matrix) and custom CSR2 (feature vector length) using Formula (3).

load/store address = base_address(CSR1) + idx ∗ vector_length(CSR2) (3)

Thus, a basic vector load/store instruction is equivalent to a combination of three
traditional scalar instructions and one traditional SIMD instruction, as shown in Figure 8.

loadvec8/16 vector_rd (idx) (csr1 csr2)

mov rd1 base_address (in csr1)

mul rd2 idx vector_length(in csr2)

add rd3 rd1 rd2

loadvec8/16 vector_rd rd3

Traditional scalar instr

Traditional vector instr

Figure 8. The basic vector load/store instructions equivalent.

3.5.2. Fixed-Rd Vector Instructions

The fixed-rd and fixed-rs instructions are designed according to GCNs network aggre-
gation calculation characteristics. They characterize and complete the primary process of
aggregation calculation in the GCNs network and provide a certain degree of programming
freedom for different software schedule algorithms in the process of aggregation calculation.

The fixed-rd class vector instruction represents the fixed vector rd calculation mode in
the aggregation calculation. As shown in Figure 9, the fixed vector rd calculation mode
represents the aggregation calculation process of the feature vectors of all the neighbors
of a vertex. Because it will always reuse a vector rd to store the intermediate results of
the aggregation calculation, it needs to continuously load the feature vectors of different
neighbors to the corresponding vector rs for accumulation until the final aggregation result
of this vertex is calculated. Hence, the fixed vector rd is for multiplexing data (aggregated
intermediate results) in vector rd.

Col index 0 1 2 3 4 5 6 7

Sparse matrix multiplication

is split into vector additions

1 0 1 0 0 1 0 0 0

8

0 1 0 0 1 1 0 1 1

1 0 1 1 1 0 0 1 1

0 0 1 1 1 1 0 0 0

0 1 1 1 1 0 1 0 0

1 0 0 1 0 1 1 1 0

0 0 0 0 1 1 1 0 0

0 1 1 0 0 1 0 1 1

0

1

2

3

4

5

6

7

R
o

w
 i
n
d
e

x

0 1 1 0 0 0 0 1 1

Vector rs

Vector rs

Row index

0

1

2

3

4

5

6

7

8

Vector rd1 +=

 load-rs-add-rd-vec8/16 vector_rd1 (idx=0) (csr1,csr2)

 load-rs-add-rd-vec8/16 vector_rd1 (idx=2) (csr1,csr2)

 load-rs-add-rd-vec8/16 vector_rd1 (idx=5) (csr1,csr2)

 Vector rd1 += feature vector of idx = 0

 Vector rd1 += feature vector of idx = 2

 Vector rd1 += feature vector of idx = 5

8

Vector rs

Fixed-rd

Figure 9. The computation process of fixed-rd mode.

In the fixed-rd calculation mode, the data in the vector rd register are multiplexed. In
contrast, the data in the vector rs register are not multiplexed, so there is no need to specify
the index of the vector rs register. The vector rd is bound to the corresponding vector rs,
which is also the theoretical basis for the paired definition of vector rs/rd described in the
GPGCN custom instruction set architecture features above.

Electronics 2022, 11, 3833 9 of 22

Then, the instruction encoding only needs to specify the index of vector rd, which
saves a lot of other encoding space for the RISC-V instruction encoding. Therefore, the
remaining encoding space can be used to fuse the loadvec instruction and the addvec
instruction, making the vector instruction of GPGCN more macro and increasing the
instruction information density, and the instruction bandwidth is improved.

Therefore, a fixed-rd vector instruction is equivalent to the combined operation of
multiple traditional scalar and traditional vector instructions. As shown in Figure 10, the
operations performed by the load-rs-add-rd-vec8/16 instruction include the following:
calculate the address of the specified feature vector according to the index, then load the
feature vector from memory to the corresponding vector rs according to this address, and
then sum vector rd and vector rs and store the result into vector rd.

load-rs-add-rd-vec8/16 vector_rd (idx) (csr1,csr2)

mov rd1 base_address(in csr1)

mul rd2 idx vector_length(in csr2)

add rd3 rd1 rd2

loadvec8/16 vector_rs rd3

addvec8/16 vector_rd vector_rd vector_rs

Traditional scalar instr

Traditional vector instr

Figure 10. The load-rs-add-rd-vec8/16 instruction equivalent.

Even though the load-rs-add-rd-vec8/16 instruction already consists of multiple
operations, due to the excellent mechanism of binding vector rd and vector rs, there is
additional free coding space available, so this coding space can be used as the index of
another integer register, which stores the row index of another feature vector so that a
load-rs-add-rd-vec8/16 instruction can calculate the aggregation process of two feature
vectors, and further increase instruction density, as shown in Figure 11.

load-rs-add-rd-vec8/16 vector_rd (idx1) (idx2) (csr1,csr2)

mov rd1 base_address(in csr1)

mul rd2 idx1 vector_length(in csr2)

add rd3 rd1 rd2

loadvec8/16 vector_rs rd3

addvec8/16 vector_rd vector_rd vector_rs

mov rd1 base_address(in csr1)

mul rd2 idx2 vector_length(in csr2)

add rd3 rd1 rd2

loadvec8/16 vector_rs rd3

addvec8/16 vector_rd vector_rd vector_rs

Traditional scalar instr

Traditional scalar instr

Traditional vector instr

Traditional vector instr

Figure 11. Another load-rs-add-rd-vec8/16 instruction equivalent.

In the same way as the above principle, for the aggregation calculation process with
weight, such as the GAT network, the abovementioned extra free coding space can be
used as the index of the floating-point register, and the value of the weight is stored in this
floating-point register. There is one more floating-point multiplication operation of vector
multiplication by a scalar (weight) in the calculation process, as shown in Figure 12.

load-rs-add-rd-vec8/16 vector_rd (idx) (aij) (csr1,csr2)

mov rd1 base_address(in csr1)

mul rd2 idx vector_length(in csr2)

add rd3 rd1 rd2

loadvec8/16 vector_rs rd3

mulvec8/16 vector_rs vector_rs aij

addvec8/16 vector_rd vector_rd vector_rs

Traditional scalar instr

Traditional vector instr

Figure 12. The load-rs-add-rd-vec8/16 instruction for GAT equivalent.

The fixed-rd vector instruction also has the advantage in that the method of indexing
the feature vector corresponds to the sparse storage format of CSR, as shown in Figure 13.

Electronics 2022, 11, 3833 10 of 22

2 5

Vector rs

Vector rs

2 5 Vector rd1
Col index of non-zero

element

Row index

0

1

2

3

4

5

6

7

8

4 5 7 8

2 3 4 7 8

3 4 5

2 3 4 6

3 5 6 7

5 6

2 7 8

Sparse matrix in CSR

format

+=0

1

0

2

1

0

4

1

2 7 81

 load-rs-add-rd-vec8/16 vector_rd1 (idx=0) (csr1,csr2)

 load-rs-add-rd-vec8/16 vector_rd1 (idx=2) (csr1,csr2)

 load-rs-add-rd-vec8/16 vector_rd1 (idx=5) (csr1,csr2)

 Vector rd1 += feature vector of idx = 0

 Vector rd1 += feature vector of idx = 2

 Vector rd1 += feature vector of idx = 5

5

Vector rs

row0

row1

row2

row3

row4

row5

row6

row7

row8

Figure 13. The computation process of fixed-rd mode with CSR data format.

3.5.3. Fixed-Rs Vector Instructions

The fixed-rs vector instruction represents the calculation mode of fixed vector rs in
the aggregation calculation. Because a vertex may be a neighbor of multiple vertices, the
feature vector of this vertex will be shared by the aggregation calculation of these neighbors.
Therefore, the feature vector of this vertex is reusable in the aggregation calculation of
different neighbors. The process of aggregation calculation can fix the feature vector of this
vertex to the vector rs register and then load the intermediate results of the aggregation
calculation of different neighbors to vector rd, and perform the aggregation calculation of
these neighbors in turn, until all neighbors use the feature vector of the vertex to calculate
one round, as shown in Figure 14. Therefore, the fixed-rs vector instruction can reuse
the feature vector fixed in the vector rs register instead of reading from memory or cache
every time.

Col index 0 1 2 3 4 5 6 7

Sparse matrix multiplication

is split into vector additions

1 0 1 0 0 1 0 0 0

8

0 1 0 0 1 1 0 1 1

1 0 1 1 1 0 0 1 1

0 0 1 1 1 1 0 0 0

0 1 1 1 1 0 1 0 0

1 0 0 1 0 1 1 1 0

0 0 0 0 1 1 1 0 0

0 1 1 0 0 1 0 1 1

0

1

2

3

4

5

6

7

R
o

w
 i
n
d
e

x

0 1 1 0 0 0 0 1 1

Row index

0

1

2

3

4

5

6

7

8

+=

 loadvec8/16 all_vector_rs (idx=8) (csr1,csr2)

 load-rd-add-rs-store-rd-vec8/16 (idx=1) (csr4,csr2)

 load-rd-add-rs-store-rd-vec8/16 (idx=2) (csr4,csr2)

 load-rd-add-rs-store-rd-vec8/16 (idx=7) (csr4,csr2)

 load-rd-add-rs-store-rd-vec8/16 (idx=8) (csr4,csr2)

 Vector rd1 += feature vector of idx = 8

 Vector rd2 += feature vector of idx = 8

 Vector rd7 += feature vector of idx = 8

 Vector rd8 += feature vector of idx = 8

8

Vector rs

Vector rd8

Vector rd7

Vector rd2

Vector rd1

+=

+=

+=

Fixed-rs

Figure 14. The computation process of fixed-rs mode.

Electronics 2022, 11, 3833 11 of 22

The fixed-rs vector instruction has one characteristic that differs from the fixed-rd
instruction, which is that the vector rd instruction is no longer reused after it is calculated,
and it needs to be stored back to the original address where it was loaded. This store does
not need the extra information that occupies the coding space, so the fixed-rs instruction
directly integrates the store operation into the instruction, which further increases the
density of the instruction, as shown in Figures 15 and 16.

load-rd-add-rs-store-rd-vec8/16 (idx) (csr4,csr2)

mov rd1 base_address(in csr4)

mul rd2 idx vector_length(in csr2)

add rd3 rd1 rd2

loadvec8/16 vector_rd rd3

addvec8/16 vector_rd vector_rd vector_rs

storevec8/16 vector_rd vector_rd rd3

Traditional scalar instr

Traditional vector instr

Figure 15. The load-rd-add-rs-store-rd-vec8/16 instruction equivalent.

load-rd-add-rs-store-rd-vec8/16 (idx) (aij) (csr4,csr2)

mov rd1 base_address(in csr4)

mul rd2 idx vector_length(in csr2)

add rd3 rd1 rd2

loadvec8/16 vector_rd rd3

mulvec8/16 vector_rs vector_rs aij

addvec8/16 vector_rd vector_rd vector_rs

storevec8/16 vector_rd rd3

Traditional scalar instr

Traditional vector instr

Figure 16. The load-rd-add-rs-store-rd-vec8/16 instruction for GAT equivalent.

Corresponding to the last advantage of the fixed-rd vector instructions, the fixed-rs
instructions also have the advantage in that the method of indexing the intermediate results
of different vertices and loading them into vector rd matches the CSC sparse storage format,
as shown in Figure 17.

Row index

0

1

2

3

4

5

6

7

8

+=

 loadvec8/16 all_vector_rs (idx=8) (csr1,csr2)

 load-rd-add-rs-store-rd-vec8/16 (idx=1) (csr4,csr2)

 load-rd-add-rs-store-rd-vec8/16 (idx=2) (csr4,csr2)

 load-rd-add-rs-store-rd-vec8/16 (idx=7) (csr4,csr2)

 load-rd-add-rs-store-rd-vec8/16 (idx=8) (csr4,csr2)

 Vector rd1 += feature vector of idx = 8

 Vector rd2 += feature vector of idx = 8

 Vector rd7 += feature vector of idx = 8

 Vector rd8 += feature vector of idx = 8

Vector rs

Vector rd8

Vector rd7

Vector rd2

Vector rd1

+=

+=

+=

1 0

4 2 3 2

7 3 4 3

4 1

5 2

10

2

5

1

2

7

0

1

6 5

2

3

8 4

7

8

5 4

6

5

6

7

7

8

8

Col 0 1 2 3 4 5 6 7 8

Row index

of non-zero element

Sparse matrix in CSR

format

Figure 17. The computation process of fixed-rd mode with CSC data format.

3.6. Matrix Instruction Extension

The execution of the matrix-type instructions is closely related to the storage format of
the matrix. Here, the storage format of the matrix is introduced first. As shown in Figure 18,
the input and output matrices are divided into blocks in the combination operation of the
GCNs. The block is indexed according to the index number. For the feature matrix of the
size of a × b and the weight matrix of the size of b × c, which are also input matrices, the
size of a block is 8 × Da elements, where Da is specified by custom CSR7; for the result
matrix (output matrix) of the size of a × c, the size of a block is 8 × 8 elements.

Electronics 2022, 11, 3833 12 of 22

8

8

Da

Da

F
e

a
tu

re
 m

a
tr

ix

W
e
ig

h
t m

a
trix

R
e

s
u

lt m
a
trix

idx=4

idx=1 idx=5

id
x
=

1

id
x
=

2

id
x
=

3

idx=1

idx=2 idx=3

id
x
=

4

idx=2 ...

idx=3 ...

..
.

..
.

..
.

8

8

Figure 18. The computation process of matrix mode.

The traditional matrix instructions, such as ARM’s SME instruction set extension, are
to take the outer product of two vectors (assuming the lengths are n and m, respectively) to
produce an n × m result matrix, that is, the instruction completes n × 1 × 1 × m = n × m
vector outer product operation. In order to further increase the instruction density of
the matrix instructions, the first matrix instruction in Table 4 specifies the value of Da
through the custom CSR7 register and completes the matrix multiplication operation of
the feature matrix of 8 × Da size with the weight matrix of Da × 8 size, that is, the matrix
multiplication operation of 8 × Da × Da × 8 = 8 × 8, as shown in Figure 19.

Table 4. The matrix instructions extension.

Macro Op Instructions Code Class

Basic
10000 load-outerproduct-add-8*8 matrix_rd (idx1) (idx2) (CSR5,CSR6,CSR7) custom3_rs1_rs2
10001 storematrix8*8 matrix_rd8*8 (idx) (CSR8) [relu] custom2_rd_rs1, rd=0
10001 storematrix8*8 matrix_rs8*8 (idx) (CSR8) [relu] custom2_rd_rs1, rd=0
10010 loadmatrix8*8 matrix_rd (idx) (CSR8) custom2_rs1
10010 loadmatrix8*8 matrix_rs (idx) (CSR8) custom2_rs1
10011 addMatrix matrix_rd matrix_rs custom1

8

8

8

8

8

8

88

1

1
Da

Da

Figure 19. The difference between traditional matrix instructions and GPGCN matrix instructions.

Electronics 2022, 11, 3833 13 of 22

The (idx1) and (idx2) of this instruction specify the block index of the feature matrix
and weight matrix, respectively, which are used to calculate the starting address of the
block data to be accessed by hardware using Formulas (4) and (5):

feature matrix block addr = feature_matrix_base_addr(CSR5) + idx1 ∗ 8 ∗ Da(CSR7) (4)

weight matrix block addr = weight_matrix_base_addr(CSR6) + idx2 ∗ 8 ∗ Da(CSR7) (5)

The load-outerproduct-add-8*8 matrix_rd (idx1) (idx2) instruction is split into Da
times as follows: load one column of the feature matrix block (eight elements), load the
corresponding row of the weight matrix block (eight elements), and then perform the outer
product of 8 × 1 × 1 × 8 to obtain the 8 × 8 result matrix and sum with matrix rd, and then
store them in matrix rd, as shown in Figure 20.

load-outerproduct-add-8*8 matrix_rd (idx1) (idx2) (csr5,csr6,csr7)

for(i=0;i<8;i++){

 mov rd1 base_address(in csr5)

 mul rd2 idx1 8*Da(in csr7)

 add rd3 rd1 rd2

 add rd3 rd3 8*i

 loadvec8 vector_rs1 rd3

 mov rd1 base_address(in csr6)

 mul rd2 idx2 8*Da(in csr7)

 add rd3 rd1 rd2

 add rd3 rd3 8*i

 loadvec8 vector_rs2 rd3

 outerproduct8*8 matrix_rs8*8 vector_rs2 vector_rs1

 addmatrix8*8 matrix_rd8*8 matrix_rd8*8 matrix_rs8*8

}

Traditional scalar instr

Traditional vector instr

Traditional matrix instr

Traditional scalar instr

Traditional vector instr

Figure 20. The matrix instruction equivalent.

3.7. Memory Access Extension

The scratchpad memory-related operation instructions in Table 5 include three instruc-
tions:

The preload instruction preloads the feature matrix or weight matrix we want to access
to the corresponding storage block of the scratchpad memory in advance.

The sync-preload instruction is used to indicate that the data in a block of scratchpad
memory are no longer used and can be replaced.

The storescmback instruction is used to write a block of scratchpad memory back to
the main memory. For example, after the fixed-rs instructions calculate the final result, the
final result in scratchpad memory is written back to the main memory.

Table 5. The memory access instructions extension.

Macro Op Instructions Code Class

10101 preload block0-3 (idx) (CSR1,CSR2) (CSR3,CSR2) (CSR5,CSR7)
(CSR6,CSR7) custom3_rs1

10110 sync-preload block0-3 custom2

10111 storescmback (idx)(CSR4,CSR2)[relu] custom3_rd_rs1, rd = 0

3.8. Fence Extension

Although the CPU fetches and sends the instructions of the GPGCN accelerator, the
CPU does not know whether the GPGCN accelerator instructions have been executed in the
accelerator, nor can it detect the address correlation between the CPU load/store instruction
and the GPGCN memory access instruction. Therefore, in order to synchronize with the
CPU instruction stream, the GPGCN-fence instruction in Table 6 is specially defined here
to complete the synchronization operation between the GPGCN instruction stream and the
CPU instruction stream:

Electronics 2022, 11, 3833 14 of 22

Table 6. The fence instruction extension.

Macro Op Instructions Code Class

10100 gpgcn-fence custom2 rd = 0

The gpgcn-fence instruction is usually followed by an RISC-V fence instruction. When
all the older GPGCN instructions before gpgcn-fence are executed, the gpgcn-fence instruc-
tion is executed and can be committed in the CPU reorder buffer, otherwise the gpgcn-fence
instruction will block at the commit head of the CPU reorder buffer, preventing the commit
of subsequent CPU instructions. After the gpgcn-fence instruction is committed, the next
RISC-V fence instruction can be committed, and the subsequent load/store memory access
instructions can be executed. The memory access synchronization operation between the
GPGCN instruction and the RISC-V CPU instructions is completed.

3.9. Encoding of GPGCN Instruction Set

Figure 21 shows the encoding of all GPGCN instructions.

macro op instr code class 31-25 24-20 19-15 14-12 11-7 6-0

base

00001 loadvec8/16 vector_rd (idx) (csr1,csr2) custom0_rs1 vector_rd[5:0]+1'b0 5'bxxxxx reg for (idx)010 5'bxxxxx 0001011

00001 loadvec8/16 vector_rs (idx) (csr1,csr2) vector_rs[5:0]+1'b1 5'b0xxxx reg for (idx)010 5'bxxxxx 0001011

00001 loadvec8/16 all_vector_rs (idx) (csr1,csr2) vector_rs[5:0]+1'b1 5'b1xxxx reg for (idx)010 5'bxxxxx 0001011

00010 storevec8/16 vector_rd (idx) (csr3,csr2) [relu] custom0_rd_rs1 ,rd=0 vector_rd[5:0]+1'bx 1'b0/1+4'b0xxx reg for (idx)110 5'b00000 0001011

00010 storevec8/16 vector_rd (idx) (csr4,csr2) [relu] vector_rd[5:0]+1'bx 1'b0/1+4'b1xxx reg for (idx)110 5'b00000 0001011

00011 addvec8/16 vector_rd vector_rs custom0 vector_rd/rs[5:0]+1'bx 5'bxxxxx 5'bxxxxx 000 5'bxxxxx 0001011

00100 mov vector_rd 0 custom3 vector_rd[5:0]+1'bx 5'bxxxxx 5'bxxxxx 000 5'bxxxxx 1111011

00101 mul vector_rd (D^-1/2) custom0_rd_rs1_rs2 ,rd=0,rs1=vector_rd[5:0]+1'bx reg for (D) 5'b00000 111 5'b00000 0001011

fixed-rd

01000 load-rs-add-rd-vec8/16 vector_rd (idx) (csr1,csr2) custom1_rs1 vector_rd[5:0]+1'bx 5'bx0xxx reg for (idx)010 5'bxxxxx 0101011

01000 load-rs-add-rd-vec8/16 vector_rd (idx) (csr3,csr2) vector_rd[5:0]+1'bx 5'bx1xxx reg for (idx)010 5'bxxxxx 0101011

01001 load-rs-add-rd-vec8/16 vector_rd (idx1) (idx2) (csr1,csr2) custom0_rs1_rs2 vector_rd[5:0]+1'bx reg for (idx2) reg for (idx1011 5'bxxxxx 0001011

01010 load-rs-add-rd-vec8/16 vector_rd (idx) (aij) (csr1,csr2) custom1_rs1_rs2 vector_rd[5:0]+1'bx reg for (aij) reg for (idx)011 5'bxxxxx 0101011

fixed-rs

01100 load-rd-add-rs-store-rd-vec8/16 (idx) csr4,csr2 custom1_rd_rs1, rd=0 7'bxxxxxxx 5'bxxxxx reg for (idx)110 5'b00000 0101011

01101 load-rd-add-rs-store-rd-vec8/16 (idx) (aij) csr4,csr2) custom2_rs1_rs2 7'bxxxxxxx reg for (aij) reg for (idx)011 5'bxxxxx 1011011

matrix

10000 load-outerproduct-add-8*8 matrix_rd (idx1) (idx2) (csr5,csr6,csr7) custom3_rs1_rs2 matrix_rd[5:0]+1'bx reg for (idx2) reg for (idx1011 5'bxxxxx 1111011

10001 storematrix8*8 matrix_rd8*8 (idx) (csr8) [relu] custom2_rd_rs1, rd=0 matrix_rd[5:0]+1'b0 1'b0/1+4'bxxxx reg for (idx)110 5'b00000 1011011

10001 storematrix8*8 matrix_rs8*8 (idx) (csr8) [relu] matrix_rs[5:0]+1'b1 1'b0/1+4'bxxxx reg for (idx)110 5'b00000 1011011

10010 loadmatrix8*8 matrix_rd (idx) (csr8) custom2_rs1 matrix_rd[5:0]+1'b0 5'bxxxxx reg for (idx)010 5'bxxxxx 1011011

10010 loadmatrix8*8 matrix_rs (idx) (csr8) matrix_rs[5:0]+1'b1 5'bxxxxx reg for (idx)010 5'bxxxxx 1011011

10011 addMatrix matrix_rd matrix_rs custom1 5'bxxxxx 000 5'bxxxxx 0101011

fence

10100 gpgcn-fence (use with riscv fence) custom2 rd=0 7'bxxxxxxx 5'bxxxxx 5'bxxxxx 100 5'b00000 1011011

scm

10101 preload block0-3 (idx) (csr1,csr2) (csr3,csr2) (csr5,csr7) (csr6,csr7custom3_rs1 block[1:0]+5'bxxxxx 1'bx+csr[1:0]+2'bxx reg for (idx)010 5'bxxxxx 1111011

10110 sync-preload block0-3 finish read custom2 block[1:0]+5'bxxxxx 5'bxxxxx 5'bxxxxx 000 5'bxxxxx 1011011

10111 storescmback (idx) csr4,csr2 [relu] for fixed-rs custom3_rd_rs1, rd=0 7'bxxxxxxx 1'b0/1+4'bxxxx reg for (idx)110 5'b00000 1111011

matrix_rd[5:0]+matrix_rs[5:0]

Figure 21. The encoding of GPGCN instruction set.

4. Hardware Architecture
4.1. Overall Microarchitecture

The GPGCN hardware accelerator is coupled with the boom RISC-V cpu core through
the rocc interface, as shown in Figure 22. The GPGCN instructions are pushed to the
GPGCN accelerator for execution through the boom pipeline.

As shown in Figure 23, the hardware microarchitecture of the GPGCN accelerator
consists of two parts: fused VPU (vector process unit) and configurable VMU (vector
memory unit).

The fused VPU combines the execution units of vector instructions with the execution
units of matrix instruction, that is, the execution unit array in the VPU can be configured as
N SIMD8 vector pipelines to execute vector instructions or can be configured as M 8 × 8
array to calculate the matrix instructions, which improves the utilization efficiency of the
execution units. Among them, N is specified by the custom CSR9 register, and M is specified
by the custom CSR10 register. In implementing the GPGCN hardware microarchitecture of
this design, considering the IPC and memory access bandwidth that the single-core CPU
rocc interface can provide, the above parameters are designed as n = 8, m = 1.

Electronics 2022, 11, 3833 15 of 22

IFU

Rename

Int

Issue

Queue

Float

Issue

Queue

Ld/st

Issue

Queue

A

L

U

A

L

U

A

L

U

A

L

U

F

P

U

F

P

U

A

G

U

Decode

Dispatch

A

G

U

R

O

C

C

B

O

O

M

c

o

r

e

GPGCN

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

P

E

Ctrl

Vector PE

Vector PE

Vector PE

Vector PE

Vector PE

Figure 22. The overall architecture of GPGCN with boom cpu.

FSM

Matrix FSM

ROCC interface

Dispatch Queue

4 instr with different

vector_rd 1 instrVector instr Matrix instr

4

2

Issue queue for PE 0 Vector lane pipe 0

8

Matrix

issue queue

c

o

n

v

e

rt

e

r

4 instr

preload FSM

To L2 cache

Block3 ready label

LD/ST

hit miss

Req

To

L2

cache

queue

SCM 16bank,2or4 block

Preload queue

Configurable VMU

8

For fixed-rd

4

FSM

LD/ST LD/ST
LD

Issue queue for PE 7 Vector lane pipe 7

Decoder

LD/ST

FUSED VPU

Block2 ready label

Block1 ready label

Block0 ready label

Sync logic

Sync pulse

Figure 23. The hardware architecture of GPGCN.

Electronics 2022, 11, 3833 16 of 22

The fused VPU includes the GPGCN custom instruction decoder (decoder), dispatch
queue (dispatch queue), vector instruction issue queue (vector issue queue), matrix instruc-
tion issue queue (matrix issue queue), and an execution unit array that can be configured
as eight SIMD8 vector lane pipelines or one 8 × 8 matrix pipeline.

The VMU can be configured into three different modes according to the execution of
different instruction streams: the matrix mode, which supports the memory access mode of
matrix instructions, the fixed-rd mode that supports the memory access mode of fixed-rd
instructions in vector instructions, and the fixed-rs mode that supports the memory access
mode of fixed-rs instructions.

4.2. Microarchitecture Design Features
4.2.1. Redundant Computation Reduction

There are many hidden redundant calculations in the aggregation calculation process
of the GCNs. As shown in the dotted line box in Figure 24, vertices 1 and 2 need to
accumulate the feature vectors of vertices 7 and 8; vertices 2, 3, and 4 need to accumulate the
feature vectors of vertices 2, 3, and 4; vertices 5 and 6 need to accumulate the eigenvectors
of vertices 5 and 6; and vertices 7 and 8 need to accumulate the feature vectors of vertices 1,
2 and vertices 7, 8.

In fact, these redundant accumulation calculations only need to be calculated once:
for example, the feature vectors of vertices 7 and 8 are added in advance, and then the
pre-addition result can be directly used when the aggregation of vertices 1, 2, 7, and 8 are
calculated, which saves three vector addition operations and four vector load operations.

Col index 0 1 2 3 4 5 6 7

Sparse matrix multiplication

is split into vector additions

1 0 1 0 0 1 0 0 0

8

0 1 0 0 1 1 0 1 1

1 0 1 1 1 0 0 1 1

0 0 1 1 1 1 0 0 0

0 1 1 1 1 0 1 0 0

1 0 0 1 0 1 1 1 0

0 0 0 0 1 1 1 0 0

0 1 1 0 0 1 0 1 1

0

1

2

3

4

5

6

7

R
o

w
 i
n

d
e

x

0 1 1 0 0 0 0 1 1

Vector rs

Vector rs

Row index

0

1

2

3

4

5

6

7

8

Vector rd +=

8

Vector rs

Fixed-rd

Figure 24. The redundant computations in GCNs. The numbers in circle indicate the computation order.

The scheme to achieve redundant calculation reduction in this design is to perform
redundant calculation reduction of two consecutive vertices in the feature matrix for the
accumulation operation: first, the sum of the feature vectors of two consecutive rows in
the feature matrix is precomputed and stored in the pre-add feature matrix address space
(address space specified by custom CSR3), as shown in Figure 25.

Electronics 2022, 11, 3833 17 of 22

Feature vector 0

Feature vector 1

Feature vector 2

Feature vector 3

Feature vector 4

Feature vector 5

Feature vector 6

Feature vector 7

Feature vector 0+1

Feature vector 1+2

Feature vector 2+3

Feature vector 3+4

Feature vector 4+5

Feature vector 5+6

Feature vector 6+7

Feature vector 7

Feature matrix csr1 Pre-add feature matrix csr3

Figure 25. Pre-add for redundant computations reduction.

Then, we use the hardware logic named converter in Figure 23 to identify the fixed-
rd vector instruction: load-rs-add-rd-vec8/16 vector_rd (idx1) (idx2) (CSR1,CSR2). The
original execution step of this instruction is to retrieve the feature vector with the number
of rows in the feature matrix equal to idx1, accumulate it into the vector rd register, and
then retrieve the feature vector with the number of rows equal to idx2, and accumulate it
into the vector rd register.

When the converter recognizes this instruction and judges that idx2 = idx1+1, the con-
verter will convert load-rs-add-rd-vec8/16 vector_rd (idx1) (idx2) (CSR1,CSR2) instruction
to load-rs-add-rd-vec8/16 vector_rd (idx) (CSR3,CSR2) instruction, where idx = idx1. This
means that when two feature vectors that this instruction needs to accumulate are in two
consecutive rows in the feature matrix, it only needs to retrieve and accumulate the feature
vector specified by idx1 in the pre-add feature matrix to the vector rd register.

This way, the original two loads and two accumulation calculations are reduced to
one load and one accumulation calculation.

4.2.2. Memory Access Optimization

In the VMU configuration in fixed-rd mode, there is a module that is unavailable in
other modes: load accumulate buffer.

Since the SCM in fixed-rd mode is configured as four blocks, each block can only
provide four read ports with overlapping bank addresses, while in fixed-rd mode, eight
vector lane pipelines may access the VMU at the same time. It is possible that at the same
time, there are eight load requests to access the same block with only four read ports, so
there must be some load requests that must wait until the next cycle to successfully access.

In the fixed-rd mode, different vector lane pipelines load feature vectors from the
feature matrix, and may load the same feature vector simultaneously. There may be data
locality between load requests of different vector lane pipelines, as Figure 26 shows.

The load accumulate buffer uses the data locality hidden between load requests in the
fixed-rd mode and uses a certain memory access delay in exchange for the overall memory
access bandwidth.

The schematic diagram of the load accumulate buffer in Figure 27 is as follows:

• It contains four queues, each of which corresponds to the read port of the correspond-
ing bank of the SCM block.

• The eight load requests from the eight vector lane pipelines enter different queues for
temporary storage according to the least significant 2-bit addresses.

• Each queue has gather logic, which judges whether the memory access addresses of
up to n load requests at the head of the queue are equal, and merges load requests

Electronics 2022, 11, 3833 18 of 22

with equal memory access addresses into one load request access, then enters this load
request into the read port of the bank corresponding to the SCM block.

• When the SCM block returns the read result of the load request, it returns the result
to the vector lane pipeline corresponding to all load requests before gathering. This
process is called scatter.

Col index 0 1 2 3 4 5 6 7

Sparse matrix multiplication is

split into vector additions

1 0 1 0 0 1 0 0 0

8

0 1 0 0 1 1 0 1 1

1 0 1 1 1 0 0 1 1

0 0 1 1 1 1 0 0 0

0 1 1 1 1 0 1 0 0

1 0 0 1 0 1 1 1 0

0 0 0 0 1 1 1 0 0

0 1 1 0 0 1 0 1 1

0

1

2

3

4

5

6

7

R
o

w
 i
n

d
e

x

0 1 1 0 0 0 0 1 1

Vector rs

Vector rs

Row index

0

1

2

3

4

5

6

7

8

Vector rd +=

8

Vector rs

Fixed-rd

Figure 26. The data locality of aggregation in GCNs. The numbers in circle indicate the
computation order.

The load accumulate buffer not only converts eight load requests into four load
requests but also utilizes the locality of the access data between load requests due to the
gather mechanism so that the overall memory access bandwidth is not reduced.

Bank **00

Gather

Bank **01 Bank **10 Bank **11

8 load

8 8 8 8

n to 1

4 load

Load accumulate buffer

Figure 27. The schematic diagram of the load accumulate buffer. “*” in this image represents any
binary value.

Electronics 2022, 11, 3833 19 of 22

5. Evaluation

Experimental environment: A GPGCN hardware accelerator is designed and imple-
mented using chisel language under the chipyard [20] soc integration framework, and all
performance data are obtained by Verilog simulation accurate to the clock cycle, in which
the behavior of DDR is simulated using the dramsim2 [21] model and Micron’s DDR3
timing model.

All GCNs use a two-layer structure, the feature vector length of the hidden layer is set
to 16, and the forward calculation of all GCNs uses the calculation order of combination
first and then aggregation.

The software adaptation method of the GCNs network under the GPGCN accelerator is
that each SIMD vector lane calculates a corresponding vertex aggregation. The information
of the dataset used is shown in Table 1, and the parameter configuration of the hardware is
shown in Table 7.

Table 7. The parameter configuration of hardware.

Boom [22] Cpu Boom with
Hawacha [23] Boom with GPGCN HYGCN [1]

Compute unit 2 GHZ @ 1 core 2 GHz @ 4xSIMD4
2 GHz @ 8xSIMD8
vector lane(=8 × 8

matrix array)

1 GHz @ 32 SIMD16
cores, 8 systolic

modules (each with
4 × 128 arrays)

On-chip memory 32 KB icache + 32 KB
dcache

32 KB icache + 32 KB
dcache

32 KB icache+ 32 KB
dcache + 128 KB SCM

128 KB (Input), 2 MB
(Edge), 2 MB (Weight)

Off-chip memory
666 MHz @ 512 MB

DDR3 with 5.3 GB/s
bandwidth

666 MHz @ 512 MB
DDR3 with 5.3 GB/s

bandwidth

666 MHz @ 512 MB
DDR3 with 5.3 GB/s

bandwidth
256 GB/s @ HBM1.0

The execution latency of GCN with the Cora dataset and Citeseer dataset under
different hardware is shown in Tables 8 and 9. All latencies are normalized to cycles to
remove the effects of different frequencies.

Table 8. The GCN execution latency of different hardware with different datasets.

GCN
Cycles Boom Cpu Boom with Hawacha Boom with GPGCN HYGCN

Cora

209,380,505 cycles/comb1
395,401,881 cycles/agg1
1,395,689 cycles/comb2
197,663,198 cycles/agg2
803,841,273 cycles/total

57,996,022 cycles/comb1
101,583,962 cycles/agg1
799,722 cycles/comb2
53,797,383 cycles/agg2
214,177,089 cycles/total

293,060 cycles/comb1
229,414 cycles/agg1

138,711 cycles/comb2
141,820 cycles/agg2
803,005 cycles/total

21,000 cycles/total

Citeseer

928,041,011 cycles/comb1
832,942,404 cycles/agg1
2,393,692 cycles/comb2
416,406,467 cycles/agg2

2,179,783,574 cycles/total

203,898,801 cycles/comb1
196,764,007 cycles/agg1
1,269,727 cycles/comb2
106,222,113 cycles/agg2
508,154,648 cycles/total

621,287 cycles/comb1
204,178 cycles/agg1

174,775 cycles/comb2
124,801 cycles/agg2

1,125,041 cycles/total

300,000 cycles/total

The execution latency of GAT with the Cora dataset and the Citeseer dataset under
different hardware is shown in Tables 10 and 11.

Electronics 2022, 11, 3833 20 of 22

Table 9. The GCN execution speedup of different hardware with different datasets.

GCN Speedup Boom Cpu Boom with
Hawacha

Boom with
GPGCN HYGCN

Cora

1×/comb1
1×/agg1

1×/comb2
1×/agg2
1×/total

3.61×/comb1
3.89×/agg1

1.74×/comb2
3.67×/agg2
3.75×/total

714×/comb1
1723×/agg1
10×/comb2
1393×/agg2
1001×/total

38,278×/total

Citeseer

1×/comb1
1×/agg1

1×/comb2
1×/agg2
1×/total

4.55×/comb1
4.23×/agg1

1.88×/comb2
3.92×/agg2
4.29×/total

1493×/comb1
4079×/agg1
13×/comb2
3336×/agg2
1937×/total

7265×/total

Table 10. The GAT execution latency of different hardware with different datasets.

GAT
Cycles Boom Cpu Boom with Hawacha Boom with GPGCN HYGCN

Cora

268,836,121 cycles/comb1
611,028,937 cycles/agg1
2,028,210 cycles/comb2
287,572,614 cycles/agg2

1,169,465,882 cycles/total

64,912,288 cycles/comb1
129,569,840 cycles/agg1
1,142,922 cycles/comb2
69,073,928 cycles/agg2
264,698,978 cycles/total

310,857 cycles/comb1
254,199 cycles/agg1

141,559 cycles/comb2
165,580 cycles/agg2
872,195 cycles/total

Not Support

Citeseer

920,576,720 cycles/comb1
997,887,623 cycles/agg1
2,313,190 cycles/comb2
474,441,246 cycles/agg2

2,395,218,779 cycles/total

188,827,953 cycles/comb1
199,138,394 cycles/agg1
1,222,387 cycles/comb2
105,822,637 cycles/agg2
495,011,371 cycles/total

620,022 cycles/comb1
219,149 cycles/agg1

180,613 cycles/comb2
142,387 cycles/agg2

1,162,171 cycles/total

Not Support

Table 11. The GAT execution speedup of different hardware with different datasets.

GAT Speedup Boom Cpu Boom with
Hawacha

Boom with
GPGCN HYGCN

Cora

1×/comb1
1×/agg1

1×/comb2
1×/agg2
1×/total

4.14×/comb1
4.71×/agg1

1.77×/comb2
4.16×/agg2
4.42×/total

864×/comb1
2403×/agg1
14×/comb2
1736×/agg2
1340×/total

Not Support

Citeseer

1×/comb1
1×/agg1

1×/comb2
1×/agg2
1×/total

4.87×/comb1
5.01×/agg1

1.89×/comb2
4.48×/agg2
4.84×/total

1484×/comb1
4553×/agg1
12×/comb2
3332×/agg2
2060×/total

Not Support

Each layer of the GCNs is divided into combination and aggregation for comparison.
Compared with the traditional CPU, the execution efficiency of the GPGCN accelerator is
significantly improved in the rest of the calculation process:

• The acceleration ratio of aggregation is above 1300× for the Cora dataset and above
3300× for the Citeseer dataset.

• The acceleration ratio of combination of the first layer network is about 700× for the
Cora dataset and about 1500× for the Citeseer dataset.

• The acceleration ratio of comb2 (the combination stage of the second layer network) is
about 10× for both the Cora dataset and the Citeseer dataset.

• The total acceleration ratio is about 1001× for the Cora dataset and 1937× for the
Citeseer dataset.

Electronics 2022, 11, 3833 21 of 22

The relatively smaller acceleration ratio of comb2 is due to the fact that the data in the
combination stage of the second-layer network are relatively small, which is a dense matrix
multiplication operation of n × 16 × 16 × 8, and no sparsity can be used to bring about a
significant acceleration effeciency.

When comparing cpu with the traditional vector expansion, such as hwacha [23], al-
though the computing resources of GPGCN are four times those of hwacha, the acceleration
ratio is much more than 4×, which indicates that the GPGCN’s acceleration efficiency is
much higher:

• The total acceleration ratio is about 267× for GCN with the Cora dataset and 460× for
GCN with the Citeseer dataset.

Comparing the acceleration effects of different datasets under the same GCNs, the
acceleration ratio of GPGCN on the Citeseer dataset is higher than that of the Cora dataset,
because the Citeseer dataset has a higher sparsity that can be utilized, as shown in Table 1.

However, compared with dedicated accelerators such as HYGCN, the acceleration
efficiency of GPGCN accelerators is relatively lower because HYGCN uses a lot more
computing resources (about 72×) and larger on-chip cache and off-chip main memory
bandwidth (about 50×). However, the speedup ratio of HYGCN for the Citeseer dataset is
lower than that of the Cora dataset, indicating that HYGCN does not full use the sparsity
of the dataset as does GPGCN, and because GPGCN has software programmability, it can
accelerate the GAT network that HYGCN does not support.

6. Conclusions and Future Works

In this work, we pioneeringly propose the concept of GPGCN and design the GPGCN
custom instructions based on RISC-V ISA extension. Then, we propose a general-purpose
GCNs hardware accelerator based on the proposed GPGCN custom instructions with
various optimized designs such as redundant computation reduction and load accumu-
late buffer.

The acceleration efficiency of the GPGCN accelerator based on RISC-V instruction
extension is higher than that of CPU with traditional vector units. Compared with tradi-
tional CPU, GPGCN achieves above 1001× speedup for GCN with the Cora dataset and
1937× speedup for the Citeseer dataset. Compared with CPU with traditional vector units,
GPGCN achieves above 267× speedup for GCN with the Cora dataset and 460× speedup
for the Citeseer dataset.

Compared with dedicated accelerators, since GPGCN has better programmability and
generality, it supports accelerating the GAT network, while HYGCN [1] does not support it.

Moreover, since GPGCN provides software programmability, our future work is to
use the reorder algorithm to mine data locality in graph datasets to break the limitation of
the memory wall and further improve the acceleration efficiency of the GPGCN accelerator.

Author Contributions: Conceptualization, W.T. and P.Z.; methodology, W.T.; software, W.T.; valida-
tion, W.T.; formal analysis, W.T.; investigation, W.T.; resources, W.T.; data curation, W.T.; writing—
original draft preparation, W.T.; writing—review and editing, P.Z.; visualization, W.T.; supervision,
W.T.; project administration, W.T. All authors have read and agreed to the published version of
the manuscript.

Funding: This work is supported by the National Key R&D Program of China (2021YFB2206200).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author after publication. The data are not publicly available due to privacy or
ethical restrictions.

Acknowledgments: Thanks to Z.J.U. for providing the high-performance server to support our research.

Conflicts of Interest: The authors declare no conflict of interest.

Electronics 2022, 11, 3833 22 of 22

References
1. Yan, M.; Deng, L.; Hu, X.; Liang, L.; Feng, Y.; Ye, X.; Zhang, Z.; Fan, D.; Xie, Y. Hygcn: A gcn accelerator with hybrid architecture. In

Proceedings of the 2020 IEEE International Symposium on High Performance Computer Architecture (HPCA), San Diego, CA, USA,
22–26 February 2020; pp. 15–29.

2. Liang, S.; Wang, Y.; Liu, C.; He, L.; Huawei, L.; Xu, D.; Li, X. Engn: A high-throughput and energy-efficient accelerator for large
graph neural networks. IEEE Trans. Comput. 2020, 70, 1511–1525. [CrossRef]

3. Geng, T.; Li, A.; Shi, R.; Wu, C.; Wang, T.; Li, Y.; Haghi, P.; Tumeo, A.; Che, S.; Reinhardt, S.; et al. AWB-GCN: A graph
convolutional network accelerator with runtime workload rebalancing. In Proceedings of the 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), Athens, Greece, 17–21 October 2020; pp. 922–936.

4. Li, J.; Louri, A.; Karanth, A.; Bunescu, R. Gcnax: A flexible and energy-efficient accelerator for graph convolutional neural
networks. In Proceedings of the 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA),
Seoul, Republic of Korea, 27 February–3 March 2021; pp. 775–788.

5. You, H.; Geng, T.; Zhang, Y.; Li, A.; Lin, Y. Gcod: Graph convolutional network acceleration via dedicated algorithm and
accelerator co-design. In Proceedings of the 2022 IEEE International Symposium on High-Performance Computer Architecture
(HPCA), Seoul, Republic of Korea, 12–16 February 2022; pp. 460–474.

6. Kiningham, K.; Levis, P.; Ré, C. GRIP: A graph neural network accelerator architecture. IEEE Trans. Comput. 2022, 1–12. Early
Access. [CrossRef]

7. Kang, M.; Hwang, R.; Lee, J.; Kam, D.; Lee, Y.; Rhu, M. GROW: A Row-Stationary Sparse-Dense GEMM Accelerator for
Memory-Efficient Graph Convolutional Neural Networks. arXiv 2022, arXiv:2203.00158.

8. Tao, Z.; Wu, C.; Liang, Y.; He, L. LW-GCN: A Lightweight FPGA-based Graph Convolutional Network Accelerator. arXiv 2021,
arXiv:2111.03184.

9. Romero Hung, J.; Li, C.; Wang, P.; Shao, C.; Guo, J.; Wang, J.; Shi, G. ACE-GCN: A Fast data-driven FPGA accelerator for GCN
embedding. ACM Trans. Reconfigurable Technol. Syst. (TRETS) 2021, 14, 1–23. [CrossRef]

10. Stevens, J.R.; Das, D.; Avancha, S.; Kaul, B.; Raghunathan, A. Gnnerator: A hardware/software framework for accelerating graph
neural networks. In Proceedings of the 2021 58th ACM/IEEE Design Automation Conference (DAC), San Francisco, CA, USA,
5–9 December 2021; pp. 955–960.

11. Chen, C.; Li, K.; Zou, X.; Li, Y. DyGNN: Algorithm and Architecture Support of Dynamic Pruning for Graph Neural Networks.
In Proceedings of the 2021 58th ACM/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 5–9 December 2021;
pp. 1201–1206.

12. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. arXiv 2017, arXiv:1710.10903.
13. Miao, S. A Review on Important Issues in GCN Accelerator Design. In Proceedings of the 2021 International Conference on

Public Art and Human Development (ICPAHD 2021), Kunming, China, 24–26 December 2021; pp. 1158–1162.
14. Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907.
15. Xu, K.; Hu, W.; Leskovec, J.; Jegelka, S. How powerful are graph neural networks? arXiv 2018, arXiv:1810.00826.
16. Hamilton, W.; Ying, Z.; Leskovec, J. Inductive representation learning on large graphs. In Proceedings of the Proceedings of the

31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017.
17. Liu, S.; Du, Z.; Tao, J.; Han, D.; Luo, T.; Xie, Y.; Chen, Y.; Chen, T. Cambricon: An instruction set architecture for neural networks.

In Proceedings of the 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA), Seoul, Republic
of Korea, 18–22 June 2016; pp. 393–405.

18. Vasiljevic, J.; Bajic, L.; Capalija, D.; Sokorac, S.; Ignjatovic, D.; Bajic, L.; Trajkovic, M.; Hamer, I.; Matosevic, I.; Cejkov, A.; et al.
Compute substrate for Software 2.0. IEEE Micro 2021, 41, 50–55. [CrossRef]

19. Jeong, G.; Qin, E.; Samajdar, A.; Hughes, C.J.; Subramoney, S.; Kim, H.; Krishna, T. RASA: Efficient Register-Aware Systolic Array
Matrix Engine for CPU. In Proceedings of the 2021 58th ACM/IEEE Design Automation Conference (DAC), San Francisco, CA,
USA, 5–9 December 2021; pp. 253–258.

20. Amid, A.; Biancolin, D.; Gonzalez, A.; Grubb, D.; Karandikar, S.; Liew, H.; Magyar, A.; Mao, H.; Ou, A.; Pemberton, N.; et al.
Chipyard: Integrated design, simulation, and implementation framework for custom socs. IEEE Micro 2020, 40, 10–21. [CrossRef]

21. Rosenfeld, P.; Cooper-Balis, E.; Jacob, B. DRAMSim2: A cycle accurate memory system simulator. IEEE Comput. Archit. Lett. 2011,
10, 16–19. [CrossRef]

22. Zhao, J.; Korpan, B.; Gonzalez, A.; Asanovic, K. Sonicboom: The 3rd generation berkeley out-of-order machine. In Proceedings of
the Fourth Workshop on Computer Architecture Research with RISC-V, online, 29 May 2020; Volume 5.

23. Lee, Y.; Waterman, A.; Avizienis, R.; Cook, H.; Sun, C.; Stojanović, V.; Asanović, K. A 45nm 1.3 GHz 16.7 double-precision
GFLOPS/W RISC-V processor with vector accelerators. In Proceedings of the ESSCIRC 2014-40th European Solid State Circuits
Conference (ESSCIRC), Venice, Italy, 22–26 September 2014; pp. 199–202.

http://doi.org/10.1109/TC.2020.3014632
http://dx.doi.org/10.1109/TC.2022.3197083
http://dx.doi.org/10.1145/3470536
http://dx.doi.org/10.1109/MM.2021.3061912
http://dx.doi.org/10.1109/MM.2020.2996616
http://dx.doi.org/10.1109/L-CA.2011.4

	Introduction
	GCNs Analysis
	ISA Architecture
	Basic Features of GPGCN Custom Instruction Set Architecture
	Custom CSR
	Register Extension
	Instruction Extension
	Vector Instruction Extension
	Basic Vector Instructions
	Fixed-Rd Vector Instructions
	Fixed-Rs Vector Instructions

	Matrix Instruction Extension
	Memory Access Extension
	Fence Extension
	Encoding of GPGCN Instruction Set

	Hardware Architecture
	Overall Microarchitecture
	Microarchitecture Design Features
	Redundant Computation Reduction
	Memory Access Optimization

	Evaluation
	Conclusions and Future Works
	References

