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Abstract: Developing countries have had numerous obstacles in diagnosing the COVID-19 worldwide
pandemic since its emergence. One of the most important ways to control the spread of this disease
begins with early detection, which allows that isolation and treatment could perhaps be started.
According to recent results, chest X-ray scans provide important information about the onset of
the infection, and this information may be evaluated so that diagnosis and treatment can begin
sooner. This is where artificial intelligence collides with skilled clinicians’ diagnostic abilities. The
suggested study’s goal is to make a contribution to battling the worldwide epidemic by using a simple
convolutional neural network (CNN) model to construct an automated image analysis framework for
recognizing COVID-19 afflicted chest X-ray data. To improve classification accuracy, fully connected
layers of simple CNN were replaced by the efficient extreme gradient boosting (XGBoost) classifier,
which is used to categorize extracted features by the convolutional layers. Additionally, a hybrid
version of the arithmetic optimization algorithm (AOA), which is also developed to facilitate proposed
research, is used to tune XGBoost hyperparameters for COVID-19 chest X-ray images. Reported
experimental data showed that this approach outperforms other state-of-the-art methods, including
other cutting-edge metaheuristics algorithms, that were tested in the same framework. For validation
purposes, a balanced X-ray images dataset with 12,000 observations, belonging to normal, COVID-
19 and viral pneumonia classes, was used. The proposed method, where XGBoost was tuned
by introduced hybrid AOA, showed superior performance, achieving a classification accuracy of
approximately 99.39% and weighted average precision, recall and F1-score of 0.993889, 0.993887 and
0.993887, respectively.

Keywords: convolutional neural networks; COVID-19; metaheuristics; optimization; arithmetic
optimization algorithm; sine cosine algorithm; XGBoost

1. Introduction

The COVID-19 pandemic has resulted in a huge worldwide catastrophe and has had a
substantial impact on many lives across the world. The first instance of this deadly virus
was reported in December 2019 from Wuhan, a Chinese province in [1]. After emergence,
the virus quickly became a worldwide epidemic, impacting many nations across the globe.
Reverse transcription-polymerase chain reaction (RT PCR) is one of the most often utilized
methods in the diagnosis of COVID-19. However, since PCR has a diagnostic sensitivity
of about 60–70%, radiological imaging techniques including computed tomography (CT)
and X-ray have been critical in the early detection of this disease [2]. Therefore, the COVID-
19 diagnosis from CT and X-ray images is an active and promising research domain,
and additionally, there is much more space for improvements

A few recent investigations have found alterations in X-ray and CT imaging scans in
individuals with COVID-19 symptoms. For example, Zhao et al. [3] discovered dilatation
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and consolidation, as well as ground-glass opacities, in COVID-19 patients. The fast
increase in the number of positive COVID-19 instances has heightened the necessity for
researchers to use artificial intelligence (AI) alongside expert opinion to aid doctors in their
work. Deep learning (DL) models have begun to gain traction in this respect. Due to a
scarcity of radiologists in hospitals, AI-based diagnostic models may be useful in providing
timely assistance to patients. Numerous research studies based on these approaches have
been published in the literature; however, only the notable ones are mentioned here.
Hemdan et al. [4] suggested seven convolutional neural network (CNN) models, including
enhanced VGG19 and Google MobileNet, to diagnose COVID-19 from X-ray pictures.
Wang et al. [5] classified COVID-19 pictures from normal and viral pneumonia patients with
an accuracy of 92.4%. Similarly, Ioannis et al. [6] attained a class accuracy of 93.48% using
224 COVID-19 pictures. The Opconet, an optimized CNN, was proposed in [7] utilizing
a total of 2700 pictures, giving an accuracy score of 92.8%. Apostolopoulous et al. [8]
created a MobileNet CNN model utilizing extricated features. In [9], three different CNN
models, namely inception v3, ResNet50, and Inception-ResNet V2, were employed for
classification. In [10], a transfer learning-based method was utilized to classify COVID
and non-COVID chest X-ray pictures utilizing three models such as ResNet18, ResNet50,
SqueezeNet, and DenseNet121.

Although all of the above-mentioned state-of-the-art approaches use CNN, the meth-
ods do not take into consideration the spatial connections between picture pixels when
training the models. As a result, when the pictures are rotated, certain resizing opera-
tions are performed, and data augmentation is executed owing to the availability of lower
dataset sizes, the generated CNN models fail to properly distinguish COVID-19 instances,
viral pneumonia, and normal chest X-ray scans. Although some degree of inaccuracy
in recognizing viral pneumonia cases is acceptable, the misclassification of COVID-19
patients as normal or viral pneumonia might confuse doctors, leading to failure of early
COVID-19 detection.

One of the promising ways for establishing an efficient COVID-19 detection model
based on DL is to generate a network with proper architecture for each COVID-19 dataset.
The no free lunch theorem (NFL) [11], which claims that the universal method for tack-
ling all real-world problems does not exist, proved as right in the DL domain [12] and
consequently standard DL model cannot render performance as good as models specifi-
cally tuned for COVID-19 diagnosis. The challenge of finding appropriate CNN and DL
structures for each particular task is known in the literature as CNN (DL) hyperparameters
tuning (optimization), and a good way to do it is by using an automated approach guided
by metaheuristics optimizers [12–20]. The metaheuristics-driven CNN tuning has also been
successfully applied to COVID-19 diagnostics [21–24].

However, the CNN tuning via metaheuristics is extremely time consuming because
every function evaluation requires a generated network to be trained on large datasets
for measuring solutions’ quality (fitness). Additionally, the CNN training process with
standard algorithms, e.g., gradient descent (GD) [25], conjugate gradienton (CG) [26],
Krylov subspace descent (KSD) [27], etc., itself is very slow, and it can take hours to obtain
feedback. Taking into account that the COVID-19 diagnostics is critical and that the efficient
network needs to be established in almost real time, more approaches for COVID-19 early
detection from X-ray and CT images are required.

With the goal of shortening training time, while performing automated feature extrac-
tion, research presented in this manuscript adapts a sequential, two-phase hybrid machine
learning model for COVID-19 detection from X-ray images. In the first phase, a well-known
simple architecture alike LeNet-5 CNN [28] is used as the feature extraction to reduce
structural complexities within images. The second phase uses extreme gradient boosting
(XGBoost) for performing classification, where outputs from the flatten layer of the LeNet-5
structure are used as XGBoost inputs. In other words, LeNet-5 fully connected (FC) layers
are replaced with XGBoost to perform almost real-time classification. The LeNet structure



Electronics 2022, 11, 3798 3 of 30

is trained only once, shortening execution time substantially more than in the case of CNN
tuned approaches.

However, according to the NFL, the XGBoost, which efficiency depends on many
hyperparameters, also needs to be tuned for specific problems. Consequently, this study
also proposes metaheuristics to improve XGBoost performance for COVID-19 X-ray images
classification. For the purpose of this study, modified arithmetic optimization algorithm
(AOA) [29], that represents a low-level hybrid between AOA and sine cosine algorithm
(SCA) [30], is developed and adapted for XGBoost optimization. The observed drawbacks
of basic AOA are analyzed, and a method that outscores the original approach is developed.
This particular metaheuristics is chosen because it shows great potential in solving varieties
of real-world challenges [31,32]; however, since it relatively recenty emerged, it is still not
investigated enough, and there are still many open spaces for its improvements .

The proposed two-phases hybrid method for COVID-19 X-ray diagnosis is validated
against the COVID-19 radiography database set of images, which was retrieved from the
Kaggle repository [33,34]. The classification is performed against three classes, namely
normal, COVID-19 and viral pneumonia. The viral pneumonia X-rays are also taken
because only subtle differences with COVID-19 X-ray images exist. However, since the
source of the COVID-19 X-ray diagnosis dataset is imbalanced toward the normal class and
the aim of the proposed research is not oriented toward addressing imbalanced datasets,
the COVID-19 and viral pneumonia images are augmented, while the normal images
are contracted from the original repository, and at the end each class, they contained
4000 observations.

The performance of the proposed methodology is compared with other standard DL
methods as well as with XGBoost classifiers tuned with other well-known metaheuristics.
Additionally, the proposed modified AOA, before being adopted for XGBoost tuning for
COVID-19 classification, was first tested in optimizing challenging congress on evolutionary
computation 2017 (CEC2017) benchmark instances.

Considering the above, this manuscript proposes a method that is guided by the two
elemental problems for investigation:

• The possibility of designing a method for efficient COVID-19 diagnostics from X-ray images
based on the simple CNN and XGBoost classifier and

• The possibility of further improving the original AOA apporach by performing low-level
hybridization with SCA metaheuritiscs.

Established upon the experimental findings showed in Sections 4 and 5, the contribu-
tion of the proposed study is four-fold:

• A simple light-weight neural network has been generated that obtains a decent level
of performance on the COVID-19 dataset and executes fast;

• An enhanced version of AOA metaheuristics has been developed that specifically targets
the observed and known limitations and drawbacks of the basic AOA implementation;

• It was shown that the proposed metaheuristics is efficient in solving global optimiza-
tion tasks with combined, real and integer parameters types; and

• The proposed COVID-19 detection methodology from X-ray images that employs the
light-weight network, XGBoost and enhanced AOA obtains satisfying performance
within a reasonable amount of computational time.

The sections of the manuscript are outlined as follows: Section 2 provides a brief survey
of the AI method employed in this study with a focus on CNN applications. Section 3
explains the basic version of the AOA, points out its drawbacks and introduces the modified
AOA implementation. Bound constrained simulations of the proposed algorithm on a
challenging CEC2017 benchmark set are given in Section 4. The experimental findings of
the COVID-19 early diagnostics from X-ray images with the proposed methodology are
provided in Section 5, while the final remarks, proposed future work and conclusions are
given in Section 6.
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2. Background and Preliminaries

The following section aims to give a theoretical background for the used methods and
to elaborate the workings of the proposed method, which is described later on. Firstly,
the deep neural networks (DNN) will be explained alongside an emphasis on CNN. After-
wards, the XGBoost architecture is described followed by the metaheuristic optimization.

2.1. Deep Neural Networks

The application of deep learning models to the analysis of X-ray captures is widely
applied [35–37]. The performance of CNN is distinguished among deep learning models,
and that is the case for X-ray image classification as well [38,39]. Input is transformed
through many layers of the CNN and the application of narrow filters. The types of
CNNs are various, and some of interest for this research are: ResNet [40], AlexNet [41],
ZFNet [42], VGGNet [43], GoogLeNet [44], and LeNet-5 [45]. Considering the prolonged
evolutionary process of the metaheuristics optimizer that is suggested for this part of the
solution, the contribution of large networks can be considerable in terms of computational
costs [46]. Nevertheless, operating with large networks can result in overfitting [47].

Black and white as well as grayscale images are best used with the models such as
LeNet, with advantages that include simplicity alongside effectiveness. To increase the
real-time processing capabilities, the authors propose the use of simple network structure
such as LeNet as the primary classifier, for the structural complexity reduction and out
of consideration to the previously mentioned limitations. Introduced by Yann Le-Cun,
the LeNet-5 [28] is considered the simplest from the family of CNNs, and its architecture
is presented in the Figure 1. This network includes only two convolutional and average
pooling layers, while it uses three fully connected layers for output classification/regression.

Figure 1. The design of LeNet-5 CNN.

The visual tasks heavily employ the CNN technology [48], with contemporary progress
in the field of facial recognition [49,50], analysis of documents [51,52], classification of med-
ical images and diagnostics [53–55], as well as a paramount task of climate change analysis
and severe weather conditions [56,57] including various other applications. In spite of the
diversity of its practical implementation, the CNNs are not perfect. A considerable task
is the overfitting issue and methods to avoid it. The popular solutions are regularization
and dropout, early stopping, model simplification, and data augmentation [58–62]. The ap-
proach that the authors focused on is the dropout [63,64]. The principle of removing a unit
from a layer including its connections is referred to as dropping. The selection of units to
be dropped is random, and they are temporarily removed during the process of training.
The neurons are detached so the network would achieve better generalization, and it does
so as a result of desensitization to the neurons weights. To achieve an optimal weight set in
a polynomial time is an NP-hard problem [15,65].

The architecture of the CNNs is a layer based on the goal of mimicking the human
visual cortex. The types of these layers are convolutional, pooling and dense. The input goes
through all layers in a specific order, which results in a high level of features allowing for
high-precision image classification and optimization. The loss function has to be optimized
during the weight learning of network training, and some of the optimizers are adadelta,
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adagrad, adamax, Adam, rmsprop, stochastic gradient descent, and momentum [66–68].
Non-linear output is mapped through the transfer (activation) function, and examples
of such functions are rectified linear unit (ReLU) [69], tanh, and sigmoid. The de facto
standard has been achieved by the ReLu transfer unction with a value amounting to
f (x) = max(x, 0).

Hyperparameters heavily influence the accuracy of the model and are a key subject
of optimization [13]. The number of kernels and kernel size of each convolutional layer,
the learning rate, the batch size, the number of convolutional and fully connected (dense)
layers, the weight regularization in the dense layers, the activation function, the dropout
rate, and so on are some examples of hyperparameters. Hyperparameter optimization is
not a process that can be universally solved across all problems; hence, the “trial and error”
approach is necessary. Such methods can be time exhaustive and do not guarantee results.
This process is deemed as NP-hard. Metaheuristic methods have yielded results with such
endeavors [70–72].

The detailed CNN mathematical formulation is provided in [73], and a more recent
study on the same topic is given in [74].

2.2. The XGBoost Algorithm

An adaptive training method is used by the XGBoost algorithm for objective function
optimization. Consequentially, every step in the optimization process depends on the
previous step in terms of the result. The mathematical expression of the objective function
of the XGBoost model is listed below:

Fo
i = ∑n

k=1 l
(

yk, ŷi−1
k + fi(xk)

)
+ R( fi) + C, (1)

where the t-th iteration loss term is given as l, the constant term is C, and the regularization
parameter R of the model is additionally described as:

R( fi) = γTi +
λ
2 ∑T

j=1 w2
j (2)

Generally, the simplicitty of the tree structure is proportional to the value of γ and
λ customization parameters. The larger the value of the parameters is, the simpler the
tree structure. First and second derivatives of the model, g and h, respectively, are given
as follows:

gj = ∂ŷi−1
k

l
(

yj, ŷi−1
k

)
(3)

hj = ∂2
ŷi−1

k
l
(

yj, ŷi−1
k

)
(4)

The following formulas are used for obtaining the solution:

w∗j = − ∑ gt
∑ ht+λ (5)

Fo
∗ = −1

2

T

∑
j=1

(∑ g)2

∑ h + λ
+ γT, (6)

where the loss function score is given as Fo
∗, while the solution weights are given as w∗j .

2.3. Metaheuristic Optimization

Metaheuristics optimization algorithms are stochastic approaches that can be utilized
to solve NP-hard problems where deterministic algorithms cannot obtain the solution in
a reasonable amount of time with a reasonable amount of resources. Several families of
algorithms exist in this group; however, different authors classify them in a different way.
One of the most commonly used taxonomies divides metaheuristics with respect to the
type of phenomena that was used to model the search mechanism of the algorithm [75–77].
This categorization divides metaheuristics approaches into swarm intelligence and genetic



Electronics 2022, 11, 3798 6 of 30

algorithms (both being inspired by the nature and a variety of behavior exhibited by animals
in large groups), algorithms inspired by physical processes (such as gravitational search,
water waves or electromagnetism), human-based algorithms (social network behavior,
teaching, learning, and brainstorming process for example) and the most recent group of
algorithms inspired by the mathematical properties (sine, cosine, arithmetic operations and
so on).

The field of swarm intelligence belongs to the group of metaheuristic algorithms that
apply the behavior of animals that live in swarms to the algorithms that are used in the
domain of artificial intelligence [78,79]. This type of algorithm has proven efficient in
tackling NP-hard problems for a large variety of applications. The true potential of swarm
intelligence algorithms is accomplished through the process of hybridization. With the use
of this method, the convergence speed can be substantially increased. The foundation is
the stochastic methodology with the search mechanism for global optima. This results in
heavy reliance on the amount of iterations. The search process recognizes two different
phases alike with the training and testing phases in machine learning. These two phases
are exploration, which is focused on searching locally, and exploitation, which is directed
toward global search. The problem is balancing these two phases. Swarm algorithms are
not expected to provide the certainly best solution but rather a very close one to it referred
to as sub-optimal. Evolutionary principles immensely improve the search process if applied
to the algorithm. The idea is to transfer the information from the current population to
the following one. Evolution recognizes three different operations: selection, mutation,
and crossover. The simplest one is the selection of the best units and using them in their
original form in the next population. The same is completed with the mutation process but
with some changes to the value that the unit carries over. Finally, the crossover operation
combines two units. The most acclaimed SI solutions consist of ant colony optimization
(ACO) [80], bat algorithm (BA) [81,82], (PSO) [83], artificial bee colony (ABC) [84], firefly
algorithm (FA) [85], and a more recent quantum-based avian navigation optimizer [86].

Even though the mentioned algorithms have individual high performance, the hybrid
solutions still outperform them. The trend of hybridization is increasing, and the researchers
gravitate toward modified solutions. Noteworthy examples of these algorithms are the
ABC-BA [87], interactive search algorithm (ISA) [88], Swarm-TWSVM [89], and two-stage
GA-PSO-ACO algorithm [90].

The most recent group of metaheuristics algorithms draws inspiration from the math-
ematical processes and laws. Two of the most significant representatives of this group are
the sine–cosine algorithm (SCA) [30] and arithmetic optimization algoritm (AOA) [29].
The SCA algorithm is inspired by mathematical fluctuations of the sine and cosine func-
tions, while the AOA utilizes fundamental mathematical operators, and both of them
were utilized in the approach suggested in this paper. There are also other recently pro-
posed algorithms that fall into this group, including golden sine algorithm (Gold-SA) [91],
for example.

The main obstacle with the use of population-based algorithms is natural to the
machine learning field to which they belong, and that is that there is no universally best
solution for all problems. The no free lunch (NFL) theorem provides the theory to support
this claim [11]. Hence, the high diversity in algorithms and their versions so that every use
case has the best adapted solution.

The real-life application of the population-based metaheuristics algorithms is various,
and some of them are cloud computing [92–94], cloud-edge computing [95], wireless
sensor networks [96–99], COVID-19 case number prediction [100,101], feature selection
problem [102,103], classification of glioma MRI images [17], global optimization problems
and engineering optimization [104–106], credit card frauds detection [107,108], pollution
prediction [109] as well as general machine learning optimization [110,111].

The tuning of deep neural networks is an additional trend that has emerged in the
field of swarm intelligence. As already mentioned, these algorithms have proven excellent
performance in solving NP-hard problems. This problem with the DNN emerges with
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hyperparameter optimization, and the swarm algorithms have solved this problem in
countless different cases [4–6].

The XGBoost method used in this work also had its fair share of improvements through
metaheuristic optimization. Notable cases of these types of solutions are: [112], which tests
the classification of different metaheuristic approaches alongside XGBoost, ref. [113] applies
PSO to the problem of network intrusion, and [114] for stock price prediction utilizing
XGBoost and genetic algorithm (GA). Additionally, XGBoost tuned by the metaheuristics
was used in intrusion detection and network security models [115–118].

3. Proposed Methodology

This section first shows a brief overview of original AOA metaheuristics, which is
followed by its observed drawbacks and devised modified hybrid metaheuristics approach
for the purpose of this study. Finally, this section concludes with a presentation of the
two-phase sequential DL and XGboost method, which is used for COVID-19 X-ray im-
ages categorization.

3.1. Arithmetic Optimization Algorithm

A novel method called arithmetic optimization algorithm (AOA) is a metaheuristic
method which draw inspiration from mathematics fundamental operators introduced by
Abuligah et al. [29].

The optimization process of AOA initializes with X, a randomly generated matrix,
for which the single solution is represented as Xij, 1 ≤ i ≤ N, and 1 ≤ j ≤ n, which
represents the initial optimization space for solutions. The best-obtained solution is decided
after each iteration and is considered a candidate for the best solution. The operations
subtraction, addition, division, and multiplication control the computation of the near-
optimal solution areas. The search phase selection is calculated according to the Math
Optimizer Accelerated (MOA) function applied during both phases:

MOA(t) = Min + t×
(

Max−Min
T

)
(7)

where the t-th iteration function value is given as MOA(t), while the range is 1 to the
maximum iterations number T in which the current iteration is signified as t. Min and
Max, respectively, represent the minimum and maximum accelerated function values.

The search space is randomly explored with the use of division (D) and multiplication
(M) operators during the exploration phase. This mechanism is given with Equation (8).
When the condition r1 > MOA is satisfied, the search is limited by the MOA for the current
phase. The operator (M) will not be applied until the first operator (D) does not finish
its task conditioned by r2 < 0.5 as the first rule of Equation (8). Otherwise, operator D is
substituted by the (M) operator for the completion of the same task.

Xi,j(t + 1) =
{

best
(
Xj
)
÷ (MOP + ε)×

((
UBj − LBj

)
× µ + LBj

)
, r2 < 0.5

best
(
Xj
)
×MOP×

((
UBj − LBj

)
× µ + LBj

)
, otherwise

(8)

where the arbitrary small integer is ε, the fixed control parameter is µ, the i-th solution of
the next iteration is Xi,j(t + 1), the current location j of the current iteration’s i-th solution
is Xi,j(t), and the current best solution’s j-th position is best(Xj). Standardly, the lower and
upper boundaries of the j-th position are LBj and UBj.

MOP(t) = 1− t1/α

T1/α
(9)

where the t-th iteration function value is denoted as the Math Optimizer Probability
MOP(t), the current iteration is t, the maximum iterations number is T, and the fixed
parameter is α with the purpose of measuring the accuracy of exploitation over iterations.
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The deep search of the search space for exploitation is afterwards performed by the
search strategies employed with addition (A) and subtraction (S) operators. This process is
provided in Equation (10). The bounds of the first rule of Equation (10) are r3 < 0.5 which
similarly links the operator (A) to the operator (S) as in the previous phase as (M) to (D).
Furthermore, (S) is substituted by (A) to finish the task,

Xi,j(t + 1) =
{

best
(
Xj
)
−MOP×

((
UBj − LBj

)
× µ + LBj

)
, r3 < 0.5

best
(
Xj
)
+ MOP×

((
UBj − LBj

)
× µ + LBj

)
, otherwise

(10)

Conclusively, the near-optimal solution candidates tend to diverge when r1 > MOA,
while they gravitate to near-optimal solutions in case of r1 < MOA. For the stimulation
of exploration and exploitation, the values from 0.2 to 0.9 are incrementally increased for
the MOA parameter. Additionally, note that the computational complexity of AOA is
O(N × (ML + 1)) computational complexity.

3.2. Cons of Basic AOA and Introduced Modified Algorithm

The basic version of the AOA is regarded as a potent optimizer with a wide range
of practical applications, but it stills suffer from several known drawbacks in its original
implementation. These flaws are namely insufficient exploitation power and an inadequate
intensity of exploration process. This is reflected in the fact that in some cases, AOA is
susceptible to dwell in the proximity of the local optima and also to the slow converging
speed [32,119,120], as it can clearly be observed in CEC2017 simulations presented in
Section 4.

One of the root causes of these deficiencies is that the solutions’ update procedure in
basic AOA is focused on the proximity of the single current global best solution. As dis-
cussed by [119,121], it results in an extremely selective search procedure, where other
solutions depend on the solitary centralized guidance to update their position, with no
guarantees to converge to the global optimum. Hence, it is necessary to improve the
exploration capability of the basic AOA to escape the local optimums.

Due to the above-mentioned cons, during the search process, the original AOA con-
verges too fast toward the current best solution, and the population diversity is disturbed.
Since the AOA’s efficiently depends to some extent on the generated pseudo-random num-
bers due to its stochastic nature, in some runs, when the current best individual in the initial
population is close to optimum regions of the search domain, the AOA shows satisfying
performance. However, when the algorithm is “unlucky” and the initial population is
further away from optimum, the whole population quickly converges toward sub-optimum
regions, and the final results have lower quality.

Additionally, besides poor exploration, the AOA’s intensification process can be also
improved. As already noted, the search is conducted mostly in the neighborhood of the
current best individual, and exploitation around other solutions from the population is not
emphasized enough.

The enhanced AOA proposed in this manuscript addresses both observed drawbacks
by improving exploration, exploitation and its balance of the original version. For that
reason, the proposed method introduces the search procedure from another metaheuristics
and an additional control parameter that enhances exploration, but it also establishes better
intensification–diversification trade-off.

The authors were inspired by the low-level methodology of hybridization employing
the principles from SCA to the AOA. This process results in satisfactory performance
from both phases of the metheuristic solutions and a superior hybrid solution. The basic
equations for position updating with the SCA are given (11):

Xt+1
i =

{
Xt

i + r1 × sin(r2)× |r3Pt
i − Xt

i | r4 < 0.5
Xt

i + r1 × cos(r2)× |r3Pt
i − Xt

ii
| r4 ≥ 0.5

(11)



Electronics 2022, 11, 3798 9 of 30

where the current option’s setting for the i-th measurement at the t-th model is Xt
i , arbitrary

numbers r1/r2/r3, the location factor placement in the i-th dimension is Pi, and the absolute
value is given as ||.

As stated above, after conducting extensive examination of the search equations of
AOA and SCA algorithms, it was determined that AOA search equations are not sufficient
for efficient exploitation, which to a large extent depends on the current best solution,
and it is required to cover a wider search space. Hence, this research aimed to merge two
algorithms combined with using a quasi-reflection-learning based (QRL) procedure [122]
in the following way. Every solution life-cycle consists of two phases, where the solution
performs an AOA search (phase one) and SCA search (phase two), which are controlled by
the value of one additional control parameter.

Each solution is assigned a trial attribute, which is utilized to monitor the improvement
of the solutions. In the beginning, after producing the initial population, all solutions start
with an AOA search. In each iteration, if the solution was not improved, the trial parameter
is increased by 1. When trial reaches the threshold value limit (control parameter in the
proposed hybrid algorithm), that particular solution continues the search by switching to
the SCA search mechanism. Again, every time when the solution is not improved, trial
is increased by 1. If the trial reaches the 2 · limit value, that solution is removed from the
population and replaced by the quasi-reflexive-opposite solution Xqr of the solution X,
which is generated by applying Equation (12) over each component j of solution X.

Xqr = rnd
(

LB + UB
2

, X
)

, (12)

where rnd
(

LB + UB
2

, X
)

part of the equation has a role to generate a random value

derived from the uniform distribution inside
[

LB + UB
2

, X
]

, and LB and UB represent the

lower and upper limits of the search space, respectively. This procedure is executed for
each parameter of every solution X within D dimensions.

However, the replacement is not performed for the current best solution, because, prac-
tically, if the solution manages to maintain the best rank within 2 · limit iterations, there is a
great chance that this solution hits the right part of the search space. If such a replacement
would have occured, then the search process might diverge from the optimum region.

It must be noted that when replacing the solution with its opposite, additional evalu-
ation is not performed. The logic behind utilizing the quasi-reflexive opposite solutions
is based on the fact that if the original solution did not improve for a long time, it was
located far away from the optimum (or in one of the sub-optimum domains), and there is a
reasonable chance that the opposite solution will fall significantly closer to the optimum.
Discarding so-called exhausted solutions from the population ensures stable exploration
during the whole search process in the run. The novel solution starts its life-cycle as de-
scribed above, with the trial parameter reset to 0, and by conducting the AOA search first.

The value of the trial threshold was determined empirically, and it is calculated by
using the following expression: limit = T

2·N , where T denotes the maximal number of
iterations, and N is the size of the population. Therefore, there is no need for the researcher
to fine-tune this parameter.

For simplicity reasons, the introduced AOA method is named hybrid AOA (HAOA)
and its pseudo-code is provided in Algorithm 1. The introduced changes do not increase the
complexity of the original AOA algorithm; hence, the complexity of the proposed HAOA
is estimated as O(N) = N + N · T. Moreover, the HAOA introduces just one additional
control parameter (limit), and it is automatically determined as it depends on T and N.
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Algorithm 1: Hybrid arithmetic optimization algorithm.
Initialize the parameters α and µ.
Initialize solutions’ positions randomly (i = 1, ..., N).
Set trial values of each solution to 0.
Determine limit value as limit = T

2N
while t < T do

Compute the fitness function for the given solutions.
Find the best solution so far.
Update MOA and MOP values using Equations (7) and (9), respectively.
for i = 1 to Solutions do

if trial < limit then
Execute AOA search
for j = 1 to D do

Generate a random number (r1, r2, r3) in interval [0, 1].
if r1 > MOA then

Exploration phase
if r2 > 0.5 then

Apply the division operator (D, “÷”)
Update the ith solutions’ positions using the first rule in Equation (8).

else
Apply the multiplication operator (M, “×”)
Update the ith solutions’ positions using the second rule in Equation (8).

end if
else

Exploitation phase
if r3 > 0.5 then

Apply the subtraction operator (S, “−”)
Update the ith solutions’ positions using the first rule in Equation (10).

else
Apply the addition operator (A, “+”)
Update the ith solutions’ positions using the second rule in Equation (10).

end if
end if

end for
Compare the old solution and updated solution and increment trial if needed.

else if trial < 2 ∗ limit then
Execute SCA search
for j = 1 to D do

Update positions according to Equation (11).
end for
Compare old solution and updated solution and increment trial if needed.

else
if i is not the current best solution then

Remove solution Xi from the population.
Replace Xi with quasi-reflexive-opposite solution Xqr

i produced with
Equation (12).
Reset trial parameter to value 0.

end if
end if

end for
t = t + 1

end while
Return the best solution.
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3.3. Deep Learning Approach for Image Classification

As is it was already mentioned in Section 1, the proposed approach is executed in two
phases, where the first phase performs feature extraction and the second phases employs
XGBoost for performing classification.

In the first phase of the proposed approach, a simple CNN architecture, similar
to LeNet5 [28] that consists of 3 convolutional and 3 max pooling layers, followed by
3 fully-connected layers, is employed. This network structure was determined empirically
with the goal of being as simple as possible (allowing easier training and fast execution),
while achieving a decent level of performance on the COVID-19 dataset, by performing
hyperparameters optimization during the pre-research phase via a simple grid search.
The hyperparameters that were tuned included the number of convolutional layers (range
[2, 5], integer), number of cells in convolutional layers (range [3, 36], integer), number of
fully connected layers (range [2, 5], integer) and learning rate (range [0.00001, 0.1], contin-
uous). The determined network structure is as follows: the first convolutional layer uses
32 filters with 3 × 3 kernel size, while the second and third convolutional layers employ
16 filters with 3 × 3 kernels, which is followed by 3 dense layers. The complete CNN
network structure is shown in Figure 2.

All images are resized to 32× 32 pixel size and used as CNN input, where the input
size is 32 × 32 × 3. The convolutional layers’ weights are pre-trained on a COVID-19
dataset, as described in Section 5.1 with the Adam optimizer and a learning rate (η) of 0.001,
sparseCatagoricalCrossEntropy loss function and a batch size of 32 over 100 epochs. The CNN
uses a training set and validation set, which is a 10% fraction of the training data, and an
early stopping condition with respect to validation loss with patience set to 10 epochs.

Due to the stochastic nature of the Adam optimizer, the whole training process is
repeated 50 times, and the best performing pre-training model is used for the second phase.
Training and validation loss for the best model during the training is shown in Figure 3,
where it can be seen that the due to early stopping criteria, training terminated after only
60 epochs.

After determining the sub-optimal weights and biases of the used simple CNN in
the first phase, in the second phase, all fully connected layers from the CNN are removed,
and the outputs from CNN’s flatten layer are used as inputs for the XGBoost classifier.
Therefore, all CNN’s fully connected layers are replaced with XGBoost, where XGBoost
inputs represent features extracted by the convolutional and maxpooling layers of CNN.

However, as it was also pointed out in Section 1, the XGBoost should be optimized for
every particular dataset. Therefore, the proposed HAOA is used for XGBoost tuning, where
each HAOA solution is of length 6 (L = 6), with every solution’s component representing
one the XGBoost hyperparameters.

The collection of XGBoost hyperparameters that were addressed and tuned in this
research is provided below, together with their boundaries and variable types:

• Learning rate (η), limits: [0.1, 0.9], category: continuous;
• Min_child_weight, limits: [0, 10], category: continuous;
• Subsample, limits: [0.01, 1], category: continuous;
• Collsample_bytree, limits: [0.01, 1], category: continuous;
• Max_depth, limits: [3, 10], category: integer; and
• Gamma, limits: [0, 0.5], category: continuous.

The parameter count required by softprob objective function (‘num_class’:self.no_classes)
is further being passed as the parameter to XGBoost as well. All other parameters are
determined and set to default XGBoost values.

Finally, the hybrid proposed approach is named after the used models—CNN-XGBoost-
HAOA, and its flowchart is depicted in Figure 4.
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Figure 2. CNN structure used in the proposed approach.

Figure 3. The CNN training model.
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Figure 4. The CNN-XGBoost-HAOA flowchart.

4. CEC2017 Bound-Constrained Experiments

The XGBoost tuning belongs to the group of NP-hard global optimization problems
with mixed, real values and integer parameters (see Section 3.3). However, to prove the
robustness of the optimizer, it should be first tested on a larger set of global optimization
benchmark instances before being validated against the practical problem such as XGBoost
hyperparameters optimization.

Therefore, the HAOA was validated on exceedingly challenging global optimization
benchmark functions from the CEC2017 testing suite [123] with 30 parameters. The total
number of instances is 30, and they are divided into 4 groups: from F1 to F3—uni-modal,
from F4 to F10—multi-modal, hybrid functions are instances from F11 to F20, and finally,
the most challenging functions are the composite ones that include instances from F21 to
F30. The composite benchmarks exhibit all characteristics of the previous 3 groups; plus,
they have been rotated and shifted.

The F2 instance was discarded from experimentation due to its unstable behavior,
as pointed out in [124]. The full specification of benchmark functions including name, class,
parameters search range and global optimum value are shown in Table 1. More details,
such as its visual representation, can be seen in [123].

All simulations were performed with 30-dimensional CEC2017 instances (Dim = 30),
and results for obtained mean (average) and standard deviation (std) averaged over 50 sep-
arate runs are reported. These two metrics are the most representative due to the stochastic
behavior of metaheuristics. A relatively extensive evaluation of metaheuristics performance
for the CEC2017 benchmark suite is provided in [125], where state-of-the-art improved
harris hawks optimization (IHHO) was introduced; therefore, a similar experimental setup
as in [125] was used in this study.

The research proposed in [125] validated all approaches in simulations with 30 indi-
viduals in the population (N = 30) and 500 iterations (T = 500) throughout one runtime.
However, some metaheuristics spare more FFEs in one run, and setting the termination
condition in terms of iterations may not be the most objective strategy. Therefore, to com-
pare the proposed HAOA with other methods without biases, and at the same time to be
consistent with the above-mentioned study, this research uses 15,030 FFEs (N + N · T) as
the termination condition.

Additionally, most of the methods presented for validation purposes in [125] were also
implemented in this study with the same adjustments of control parameters. The compari-
son between the proposed HAOA and the following methods was performed: basic AOA,
SCA, cutting-edge IHHO [125], HHO [126], differential evolution (DE) [127], grasshopper
optimization algorithm (GOA) [128], gray wolf optimization (GWO) [129], moth flame



Electronics 2022, 11, 3798 14 of 30

optimization (MFO) [130], multi-verse optimizer (MVO) [131], particle swarm optimization
(PSO) [83] and whale optimization algorithm (WOA) [132].

Table 1. The CEC2017 benchamrk instances specifications.

ID Function’s Name Class Search Range Optimum

F1 Shifted and Rotated Bent Cigar Function Unimodal [−100, 100] 100
F2 Shifted and Rotated Sum of Different Power Function Unimodal [−100, 100] 200
F3 Shifted and Rotated Zakharov Function Unimodal [−100, 100] 300
F4 Shifted and Rotated Rosenbrock’s Function Multimodal [−100, 100] 400
F5 Shifted and Rotated Rastrigin’s Function Multimodal [−100, 100] 500
F6 Shifted and Rotated Expanded Scaffer’s Function Multimodal [−100, 100] 600
F7 Shifted and Rotated Lunacek Bi-Rastrigin Function Multimodal [−100, 100] 700
F8 Shifted and Rotated Non-Continuous Rastrigin’s Function Multimodal [−100, 100] 800
F9 Shifted and Rotated Lévy Function Multimodal [−100, 100] 900

F10 Shifted and Rotated Schwefel’s Function Multimodal [−100, 100] 1000
F11 Hybrid Function 1 (N = 3) Hybrid [−100, 100] 1100
F12 Hybrid Function 2 (N = 3) Hybrid [−100, 100] 1200
F13 Hybrid Function 3 (N = 3) Hybrid [−100, 100] 1300
F14 Hybrid Function 4 (N = 4) Hybrid [−100, 100] 1400
F15 Hybrid Function 5 (N = 4) Hybrid [−100, 100] 1500
F16 Hybrid Function 6 (N = 4) Hybrid [−100, 100] 1600
F17 Hybrid Function 6 (N = 5) Hybrid [−100, 100] 1700
F18 Hybrid Function 6 (N = 5) Hybrid [−100, 100] 1800
F19 Hybrid Function 6 (N = 5) Hybrid [−100, 100] 1900
F20 Hybrid Function 6 (N = 6) Hybrid [−100, 100] 2000
F21 Composition Function 1 (N = 3) Composition [−100, 100] 2100
F22 Composition Function 2 (N = 3) Composition [−100, 100] 2200
F23 Composition Function 3 (N = 4) Composition [−100, 100] 2300
F24 Composition Function 4 (N = 4) Composition [−100, 100] 2400
F25 Composition Function 5 (N = 5) Composition [−100, 100] 2500
F26 Composition Function 6 (N = 5) Composition [−100, 100] 2600
F27 Composition Function 7 (N = 6) Composition [−100, 100] 2700
F28 Composition Function 8 (N = 6) Composition [−100, 100] 2800
F29 Composition Function 9 (N = 3) Composition [−100, 100] 2900
F30 Composition Function 10 (N = 3) Composition [−100, 100] 3000

Results for the CEC2017 simulations are displayed in Table 2. The text in bold empha-
sizes the best results for every performance indicator and instance. In the case of equal
performance, these results are also bolded. Regardless whether the experimentation in [133]
was performed with T as the termination condition, the results reported in this study are
similar. However, due to the stohastic behavior of the optimizer, subtle differences exist.

The best mean results for 21 functions were achieved by the HAOA, and they include
F1, F3, F5, F6, F7, F8, F11, F12, F13, F15, F17, F19, F20, F21, F22, F23, F25, F26, F28, F29,
and F30. The functions are shown in Table 2. The second best approach proved the best
cutting-edge IHHO, and in some tests, the IHHO showed better performance than HAOA,
while in others, the results of HAOA and IHHO were tied. The HAOA and IHHO obtained
the same mean indicator values in the following tests: F3, F6, F19, F21, and F29. The
small number of cases in which the HAOA performed worse than the IHHO includes F4
and F14 experiments. There are also some cases where other methods achieved the best
results, e.g., the F9 instance, where MVO and PSO showed superior performance. Lastly,
the HAOA tied DE in the cases of F13 and F15 instances.

Additionally, it is very important to observe that the original AOA never beat HAOA.
Moreover, there are instances where the HAOA tremendously outscored AOA, even by
more than 1000 times, e.g., in the function F1 test. Finally, it is also significant to compare
HAOA and SCA, because the HAOA uses SCA search expressions. In all simulations,
the HAOA outperformed SCA for both indicators. Accordingly, it can be concluded that the
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HAOA successfully managed to combine the advantages of basic AOA and SCA methods
as a low-level hybrid approach.

The magnitude of results’ variances between the HAOA and every other method
implemented in CEC2017 simulations can be determined from a Friedman test [134,135]
and two-way ranks variance analysis. This was performed for the reasons of statistical
importance of an improvement’s proof that is more thorough than simply putting outcomes
into comparison. Table 3 summarizes the results of the Friedman test over 29 CEC2017
instances for 12 compared methods.

Table 2. The CEC2017 results and comparative analysis—HAOA vs. others.

Algorithm
F1 F2 F3 F4 F5

Mean STD Mean STD Mean STD Mean STD Mean STD

IHHO 1.86 · 102 26.921 n/a n/a 3.15 · 102 52.152 4.03 · 102 2.607 5.05 · 102 3.251
HHO 1.75 · 106 4.29 · 105 n/a n/a 6.71 · 102 3.24 · 102 4.37 · 102 53.631 5.35 · 102 24.927

DE 7.54 · 107 1.71 · 107 n/a n/a 4.59 · 103 1.35 · 103 4.29 · 102 8.530 5.52 · 102 6.232
GOA 1.56 · 105 5.24 · 104 n/a n/a 3.18 · 102 61.300 4.15 · 102 19.48 5.25 · 102 16.803
GWO 1.53 · 107 4.85 · 106 n/a n/a 3.57 · 103 2.77 · 103 4.09 · 102 10.705 5.19 · 102 8.543
MFO 7.17 · 106 2.18 · 107 n/a n/a 9.04 · 103 9.31 · 103 4.20 · 102 27.727 5.31 · 102 12.860
MVO 1.79 · 104 7.99 · 103 n/a n/a 3.17 · 102 46.451 4.06 · 102 1.392 5.17 · 102 9.888
PSO 9.49 · 104 8.42 · 102 n/a n/a 3.49 · 102 65.409 4.07 · 102 10.318 5.26 · 102 7.305

WOA 4.27 · 107 3.81 · 106 n/a n/a 5.16 · 103 4.22 · 102 4.61 · 102 69.033 5.51 · 102 17.46
SCA 1.15 · 108 5.91 · 107 n/a n/a 4.03 · 103 8.42 · 102 4.85 · 102 47.271 5.59 · 102 9.352
AOA 1.61 · 105 3.77 · 104 n/a n/a 3.25 · 102 54.991 4.17 · 102 18.858 5.28 · 102 19.302

HAOA 1.30 · 102 14.349 n/a n/a 3.15 · 102 28.129 4.07 · 102 2.369 4.98 · 102 3.279

Algorithm
F6 F7 F8 F9 F10

Mean STD Mean STD Mean STD Mean STD Mean STD

IHHO 6.01 · 102 0.082 7.49 · 102 10.041 8.11 · 102 6.526 1.13 · 103 85.42 1.69 · 103 1.31 · 102

HHO 6.38 · 102 12.320 7.96 · 102 18.921 8.29 · 102 5.700 1.44 · 103 1.24 · 102 2.03 · 103 3.42 · 102

DE 6.28 · 102 4.744 8.01 · 102 10.373 8.62 · 102 6.873 1.76 · 103 1.48 · 102 2.09 · 103 2.01 · 102

GOA 6.08 · 102 10.295 7.32 · 102 11.375 8.31 · 102 14.512 9.97 · 102 93.212 1.96 · 103 3.17 · 102

GWO 6.01 · 102 1.909 7.35 · 102 16.343 8.16 · 102 5.053 9.14 · 102 12.11 1.76 · 103 3.10 · 102

MFO 6.02 · 102 2.411 7.46 · 102 22.655 8.29 · 102 13.786 1.23 · 103 2.76 · 102 2.02 · 103 3.27 · 102

MVO 6.03 · 102 4.365 7.30 · 102 11.278 8.25 · 102 12.216 9.00 · 102 0.012 1.82 · 103 3.60 · 102

PSO 6.10 · 102 3.539 7.26 · 102 9.008 8.19 · 102 5.982 9.00 · 102 0.003 1.50 · 103 2.84 · 102

WOA 6.36 · 102 13.695 7.82 · 102 23.692 8.45 · 102 17.470 1.54 · 103 3.94 · 102 2.19 · 103 3.16 · 102

SCA 6.24 · 102 4.105 7.84 · 102 13.299 8.47 · 102 7.577 1.03 · 103 85.98 2.51 · 103 2.18 · 102

AOA 6.71 · 102 11.393 7.35 · 102 11.55 8.33 · 102 13.914 9.97 · 102 81.44 1.93 · 103 2.96 · 102

HAOA 6.01 · 102 0.047 7.25 · 102 11.393 8.06 · 102 5.418 9.85 · 102 42.10 1.57 · 103 1.23 · 102

Algorithm
F11 F12 F13 F14 F15

Mean STD Mean STD Mean STD Mean STD Mean STD

IHHO 1.13 · 103 13.523 4.25 · 105 3.05 · 105 4.42 · 103 2.18 · 103 1.42 · 103 1.651 2.15 · 103 5.65 · 102

HHO 1.16 · 103 45.729 2.56 · 106 1.13 · 106 1.92 · 104 1.16 · 104 1.83 · 103 2.41 · 102 8.63 · 103 5.55 · 102

DE 1.14 · 103 36.317 9.15 · 104 6.58 · 104 1.35 · 103 78.355 1.46 · 103 11.826 1.51 · 103 18.454
GOA 1.17 · 103 58.009 2.24 · 106 1.15 · 106 1.65 · 104 1.13 · 104 2.93 · 103 1.15 · 103 6.48 · 103 4.32 · 103

GWO 1.34 · 103 183.524 1.31 · 106 1.54 · 106 1.26 · 104 7.82 · 103 3.19 · 103 1.82 · 103 5.63 · 103 3.16 · 103

MFO 1.23 · 103 107.133 2.23 · 106 4.81 · 106 1.61 · 104 1.39 · 104 8.42 · 103 5.42 · 103 1.25 · 104 1.02 · 104

MVO 1.14 · 103 27.331 1.52 · 106 1.41 · 106 9.89 · 103 2.55 · 103 2.15 · 103 1.03 · 103 4.05 · 103 2.45 · 103

PSO 1.12 · 103 3.727 4.35 · 104 1.26 · 104 1.01 · 104 7.23 · 103 1.49 · 103 88.291 1.81 · 103 3.75 · 102

WOA 1.22 · 103 82.415 4.85 · 106 5.12 · 106 1.57 · 104 1.38 · 104 3.42 · 103 9.82 · 102 1.42 · 104 9.88 · 103

SCA 1.24 · 103 96.535 2.41 · 107 2.05 · 107 6.43 · 104 4.69 · 104 1.99 · 103 4.31 · 102 3.21 · 103 1.41 · 103

AOA 1.16 · 103 39.705 2.32 · 106 1.21 · 106 1.21 · 104 1.05 · 104 1.88 · 103 3.21 · 102 3.67 · 103 2.13 · 103

HAOA 1.12 · 103 1.501 3.15 · 104 2.24 · 104 1.35 · 103 20.495 1.46 · 103 21.354 1.51 · 103 10.217
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Table 2. Cont.

Algorithm
F16 F17 F18 F19 F20

Mean STD Mean STD Mean STD Mean STD Mean STD

IHHO 1.73 · 103 59.44 1.73 · 103 7.519 4.79 · 103 1.68 · 103 1.95 · 103 6.993 2.02 · 103 19.561
HHO 1.89 · 103 1.47 · 102 1.79 · 103 65.751 2.02 · 104 1.41 · 104 1.71 · 104 1.21 · 104 2.23 · 103 86.017

DE 1.69 · 103 41.15 1.77 · 103 19.514 1.84 · 103 23.298 2.75 · 103 8.35 · 102 2.05 · 103 23.711
GOA 1.78 · 103 1.76 · 102 1.83 · 103 1.21 · 102 1.63 · 104 1.31 · 104 3.25 · 103 1.95 · 103 2.15 · 103 74.824
GWO 1.79 · 103 1.11 · 102 1.77 · 103 38.759 2.55 · 104 1.84 · 104 2.75 · 104 2.38 · 104 2.09 · 103 73.994
MFO 1.85 · 103 15.23 · 102 1.78 · 103 65.311 2.21 · 104 1.39 · 104 7.81 · 103 6.15 · 103 2.13 · 103 72.321
MVO 1.80 · 103 1.44 · 102 1.80 · 103 46.126 2.03 · 104 1.25 · 104 4.63 · 103 2.62 · 103 2.12 · 103 86.303
PSO 1.65 · 103 65.364 1.72 · 103 16.123 7.63 · 103 4.46 · 103 3.13 · 103 2.05 · 103 2.06 · 103 35.410

WOA 1.96 · 103 14.92 · 102 1.82 · 103 73.459 2.13 · 104 1.95 · 102 2.07 · 105 1.16 · 105 2.19 · 103 1.11 · 102

SCA 1.73 · 103 95.425 1.80 · 103 25.303 8.77 · 104 9.23 · 102 1.15 · 104 1.44 · 103 2.14 · 103 46.855
AOA 1.79 · 103 1.73 · 102 1.82 · 103 1.15 · 102 1.67 · 104 1.45 · 104 3.18 · 103 1.59 · 103 2.12 · 103 71.303

HAOA 1.71 · 103 86.348 1.72 · 103 8.440 1.83 · 103 21.558 1.95 · 103 8.716 2.02 · 103 9.445

Algorithm
F21 F22 F23 F24 F25

Mean STD Mean STD Mean STD Mean STD Mean STD

IHHO 2.21 · 103 4.615 2.28 · 103 17.820 2.59 · 103 14.213 2.68 · 103 1.31 · 102 2.87 · 103 85.338
HHO 2.35 · 103 53.711 2.32 · 103 25.234 2.69 · 103 35.522 2.82 · 103 93.623 2.95 · 103 49.573

DE 2.25 · 103 78.104 2.29 · 103 17.513 2.63 · 103 15.163 2.66 · 103 69.502 2.91 · 103 15.543
GOA 2.30 · 103 56.877 2.38 · 103 1.08 · 102 2.64 · 103 23.536 2.73 · 103 57.833 2.93 · 103 32.598
GWO 2.30 · 103 32.884 2.31 · 103 57.573 2.62 · 103 13.862 2.74 · 103 25.132 2.94 · 103 28.256
MFO 2.32 · 103 29.255 2.35 · 103 93.557 2.63 · 103 11.327 2.75 · 103 76.435 2.96 · 103 37.776
MVO 2.32 · 103 11.839 2.33 · 103 1.11 · 102 2.65 · 103 10.445 2.74 · 103 18.246 2.92 · 103 84.256
PSO 2.27 · 103 49.783 2.33 · 103 1.03 · 102 2.60 · 103 72.300 2.70 · 103 76.143 2.90 · 103 33.735

WOA 2.34 · 103 60.021 2.48 · 103 2.45 · 102 2.66 · 103 29.838 2.77 · 103 85.902 2.98 · 103 1.03 · 102

SCA 2.29 · 103 65.229 2.41 · 103 66.636 2.67 · 103 45.449 2.78 · 103 11.548 2.98 · 103 37.291
AOA 2.29 · 103 34.701 2.36 · 103 1.10 · 102 2.62 · 103 17.452 2.72 · 103 1.05 · 102 2.93 · 103 47.019

HAOA 2.21 · 103 8.551 2.25 · 103 13.041 2.56 · 103 21.928 2.67 · 103 1.71 · 102 2.80 · 103 95.426

Algorithm
F26 F27 F28 F29 F30

Mean STD Mean STD Mean STD Mean STD Mean STD

IHHO 2.93 · 103 1.66 · 102 3.19 · 103 33.657 3.30 · 103 48.694 3.20 · 103 28.982 2.30 · 104 1.45 · 104

HHO 3.62 · 103 5.39 · 102 3.18 · 103 51.306 3.41 · 103 1.02 · 102 3.39 · 103 85.653 1.43 · 106 1.31 · 106

DE 2.95 · 103 95.929 3.07 · 103 2.558 3.28 · 103 27.035 3.21 · 103 35.216 3.65 · 105 2.31 · 105

GOA 3.01 · 103 3.65 · 102 3.11 · 103 25.326 3.31 · 103 1.53 · 102 3.27 · 103 75.411 5.29 · 105 3.89 · 105

GWO 3.36 · 103 5.05 · 102 3.10 · 103 13.541 3.42 · 103 1.33 · 102 3.22 · 103 49.822 6.17 · 105 4.88 · 105

MFO 3.05 · 103 1.13 · 102 3.09 · 103 5.722 3.21 · 103 93.459 3.26 · 103 55.593 6.36 · 105 5.93 · 105

MVO 3.15 · 103 2.77 · 102 3.10 · 103 21.875 3.36 · 103 1.23 · 102 3.26 · 103 75.139 4.62 · 105 4.07 · 105

PSO 2.95 · 103 2.55 · 102 3.12 · 103 31.830 3.32 · 103 1.35 · 102 3.21 · 103 62.374 1.13 · 106 1.09 · 106

WOA 3.37 · 103 2.92 · 102 3.17 · 103 48.124 3.46 · 103 1.65 · 102 3.46 · 103 1.21 · 102 1.29 · 106 7.53 · 105

SCA 3.15 · 103 1.82 · 102 3.13 · 103 13.152 3.38 · 103 89.259 3.25 · 103 48.339 1.49 · 106 9.77 · 105

AOA 3.02 · 103 2.03 · 102 3.10 · 103 27.015 3.32 · 103 1.17 · 102 3.26 · 103 31.117 4.71 · 105 4.02 · 105

HAOA 2.84 · 103 2.46 · 102 3.09 · 103 48.691 3.11 · 103 2.53 · 102 3.20 · 103 27.909 2.21 · 104 1.42 · 104

Observing Table 3, the HAOA undoubtedly performs better than any of the other
11 algorithms taken into account for comparative analysis. As expected, the second best
approach is IHHO, while the original AOA and SCA take the ranks of 6 and 11, respectively.
Additionally, the calculated Friedman statistics χ2

r is 21.672, and as such, it is greater than the
χ2 critical value with 11 degrees of freedom (1.9675× 101) at the threshold level of α = 0.05.
The conclusion of this analysis is that the null hypothesis (H0) can be rejected, implying
that the HAOA achieved results which are substantially better than other algorithms.

The convergence speed visual difference between the proposed HAOA and AOA, SCA,
as well as between the other three best-performing metaheuristics, IHHO, DE and PSO for F4, F6,
F11, F17, F22 and F28 instances, is shown in Figure 5. From the sample functions convergence
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graphs, it can be observed that the HAOA converges on average faster than other methods, which
is particularly emphasized in cases of F4, F6 and F11 instance. It can also be seen that the results’
quality generated by HAOA is much higher than its base algorithms, AOA and SCA.

Table 3. Friedman test ranks for the compared algorithms over 29 CEC2017 functions.

Function IHHO HHO DE GOA GWO MFO MVO PSO WOA SCA AOA HAOA

F1 2 7 11 5 9 8 3 4 10 12 6 1
F3 1.5 7 10 3.5 8 12 3.5 6 11 9 5 1
F4 1 10 9 6 5 8 3 4 11 12 7 2
F5 2 9 11 5 4 8 3 6 10 12 7 1
F6 1.5 11 9 6 3 4 5 7 10 8 12 1.5
F7 8 11 12 4 5.5 7 3 2 9 10 5.5 1
F8 2 6.5 12 8 3 6.5 5 4 10 11 9 1
F9 8 10 12 5.5 3 9 1.5 1.5 11 7 5.5 4

F10 3 9 10 7 4 8 5 1 11 12 6 2
F11 3 6.5 4.5 8 12 10 4.5 1.5 9 11 6.5 1.5
F12 4 10 3 8 5 7 6 2 11 12 9 1
F13 3 11 1.5 10 7 9 4 5 8 12 6 1.5
F14 1 5 3 9 10 12 8 4 11 7 6 2
F15 4 10 1.5 9 8 11 7 3 12 5 6 1.5
F16 5.5 11 3 1 7.5 10 9 2 12 5.5 7.5 4
F17 3 7 4.5 12 4.5 6 8.5 2 10.5 8.5 10.5 1
F18 3 7 1 5 11 10 8 4 9 12 6 2
F19 1.5 10 3 6 11 8 7 4 12 9 5 1.5
F20 2 12 3 10 5 8 6.5 4 11 9 6.5 1
F21 1.5 12 3 7.5 7.5 9.5 9.5 4 11 5.5 5.5 1.5
F22 2 5 3 10 4 8 6.5 6.5 12 11 9 1
F23 2 12 6.5 8 4.5 6.5 9 3 10 11 4.5 1
F24 3 12 1 6 7.5 9 7.5 4 10 11 5 2
F25 2 9 4 6.5 8 10 5 3 11.5 11.5 6.5 1
F26 2 12 3.5 5 10 7 8.5 3.5 11 8.5 6 1
F27 12 11 1 7 5 3 5 8 10 9 5 2
F28 4 10 3 5 11 2 8 6.5 12 9 6.5 1
F29 1.5 11 3.5 10 5 8 8 3.5 12 6 8 1.5
F30 2 11 3 6 7 8 4 9 10 12 5 1

Average Ranking 3.138 9.483 5.362 6.862 6.724 8.017 5.914 4.069 10.621 9.603 6.655 1.552
Rank 2 10 4 8 7 9 5 3 12 11 6 1

Figure 5. Cont.
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Figure 5. CEC 2017 experiments convergence speed graphs for F4, F6, F11, F17, F22 and F28
benchmarks for some approaches

5. The COVID-19 X-ray Images Classification Findings

This section first provides an overview of datasets used in experiments, which is
followed by details of experimental setup and comparative analysis. This section concludes
with the validation of experimental findings.

5.1. Dataset Description

The majority of images for the dataset employed in this research is taken from the
COVID-19 radiography database, which can be retreived from the following URL: https:
//www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database (accessed
on 25 October 2022). The lung opacity images are excluded, and the remaining three groups
are taken for experiments. The images are categorized as follows: normal (class 0), COVID-
19 (class 1) and viral pneumonia (class 2). The retrieved dataset includes sets of 3616,
10,192 and 1345 images for COVID-19, normal and viral pneumonia classes, respectively.
The COVID-19 radiography database images were also employed in other research [33,34].
Random sample images from the COVID-19 radiography database are shown in Figure 6.
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Figure 6. Sample X-ray images for normal, COVID-19 and pneumonia taken from the COVID-19
radiography database.

https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database
https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database
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According to the above description, the COVID-19 radiography repository is unbal-
anced, containing a majority of non-infected (normal) lung images. Since the area of the
proposed research is not related to addressing imbalanced datasets, the utilized dataset is
balanced so that each class has 4000 images. The balancing is performed in the following
way: a random subset of 4000 normal images is taken from the original set, and the COVID-
19 images are supplemented up to 4000 by taking some X-ray COVID-19 images from the
Augmented COVID-19 X-ray Images Dataset [136] and by generated dedicated augmented
images for this research, while 2655 viral pneumonia additional figures are generated by
performing geometric augmentation of the original ones.

Samples for COVID-19 and viral pneumonia generated augmented images for the
purpose of this research are shown in Figure 7, while the classes distribution of the origi-
nal (imbalanced) COVID-19 radiography repository and artificially generated (balanced)
dataset used in this research are presented in Figure 8.

Figure 7. Sample X-ray images for augmented COVID-19 and viral pneumonia classes generated for
this research.

, , , , , , , , , , , ,

Figure 8. Distribution of classes in original and augmented COVID-19 radiography dataset.

5.2. Experimental Setup, Comparative Analysis Reports and Discussion

The research shown in this paper uses a similar experimental setup as in [137], where
chimp optimization algorithm (ChOA) was used to determine initial weights and biases for
extreme learning machine (ELM) which is used to classify features extracted from simple
CNN for smaller COVID-19 X-ray images dataset. Converserly to [137], this research
uses even simpler CNN for feature extraction and XGBoost classifier and a much larger
COVID-19 X-ray image set.
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To establish the performance of the CNN–XGBoost–HAOA proposed approach, a com-
parative analysis with other evolved XGBoost structures by using eight other metaheuristics
is performed. The comparative analysis considered the following metaheuristics: basic
AOA, SCA, IHHO [125], HHO [126], PSO [83], DE [127], teaching–learning-based optimiza-
tion (TLB) [138] and ChOA [139]. Therefore, besides AOA and SCA as baseline methods
for HAOA, the algorithm set for comparative analysis also included three best-performing
approaches in CEC2017 simulations (Section 4), as well as a few other metaheuristics. It is
noted that in the results’ tables, as well as figures, for readability reasons, the XGBoost is
abbreviated as XG.

All methods were tested under the same experimental condition. The COVID-19 X-ray
dataset is first split by using a stratified train_test_split method in proportions of 70%, 30%
for the train and test sets, respectively. Afterwards, simple CNN, as shown in Figure 2 is
trained on the training set and tested on the testing set in the first phase of the proposed
methodology, as described in Section 3.3. Afterwards, outputs from the CNN’s flatten layer
were extracted separately for training and testing sets, and those sets were used as inputs
for XGBoost, which is then tuned by metaheurisitcs.

All methods were tested with 20 solutions in the population (N = 20), and XGBoost
structures were tuned throughout 30 iterations (T = 30) and 15 separated runs (R = 15).
The classification error rate for the training set is used as an objective function. After com-
pleting one runtime, the best-performing XGBoost model was validated against the testing
set, and this was reported as the best solution in the run. Afterwards, the best, mean, worst,
median, standard deviation and variance metrics of the best solutions’ testing set objective
(error rate) for each metaheuristics over 15 runs are captured and reported in Table 4.

Table 4. The best, worst, mean, median, standard deviation and variance of classification error rate
for 15 independent runs—CNN–XGBoost–HAOA vs. others.

Method Best Worst Mean Median Std Var

CNN–XG–HAOA 6.11 · 10−3 8.61 · 10−3 7.81 · 10−3 7.92 · 10−3 6.39 · 10−4 4.08 · 10−7

CNN–XG–AOA 7.78 · 10−3 9.45 · 10−3 8.42 · 10−3 8.34 · 10−3 4.66 · 10−4 2.17 · 10−7

CNN–XG–SCA 7.78 · 10−3 9.17 · 10−3 8.53 · 10−3 8.61 · 10−3 4.31 · 10−4 1.86 · 10−7

CNN–XG–IHHO 7.22 · 10−3 8.89 · 10−3 8.25 · 10−3 8.34 · 10−3 4.66 · 10−4 2.17 · 10−7

CNN–XG–HHO 7.78 · 10−3 9.45 · 10−3 8.70 · 10−3 8.61 · 10−3 4.66 · 10−4 2.17 · 10−7

CNN–XG–PSO 8.06 · 10−3 8.89 · 10−3 8.56 · 10−3 8.61 · 10−3 2.99 · 10−4 8.96 · 10−8

CNN–XG–DE 7.50 · 10−3 9.17 · 10−3 8.31 · 10−3 8.47 · 10−3 5.19 · 10−4 2.69 · 10−7

CNN–XG–TLB 8.06 · 10−3 9.72 · 10−3 8.92 · 10−3 9.03 · 10−3 5.04 · 10−4 2.54 · 10−7

CNN–XG–ChOA 8.34 · 10−3 9.72 · 10−3 9.09 · 10−3 9.17 · 10−3 3.94 · 10−4 1.55 · 10−7

As shown in Table 4, the proposed CNN–XGBoost–HAOA approach obtained predom-
inant results by achieving the best values for best, worst, mean and median metrics, while
CNN–XGBoost–IHHO finished second. Both baseline methods, CNN–XGBoost–AOA and
CNN–XGBoost–SCA, obtained average results, and were far behind the hybrid approach
proposed in this research. The best values for std and var metrics were obtained by CNN–
XGBoost–PSO, indicating that this approach delivers the most stable results (consistent,
but even the best score obtained by the CNN–XGBoost–PSO was behind the mean result of
the proposed algorithm).

Additionally, detailed metrics in terms of precision, recall and F1-score per classes along
with accuracy and micro weighted metrics are also captured for the best-performing meta-
heuristics solution and for the CNN structure introduced in Section 3.3 and shown in Figure 2,
which was used for feature extraction. These results are presented in Table 5. For clarity
reasons, the prefix ‘CNN-XGBoost’ is omitted in the header of the detailed results table.
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Table 5. Detailed metrics for best-performing solution and baseline CNN.

Methods HAOA AOA SCA IHHO HHO PSO DE TLB ChOA CNN

Acc. (%) 99.3887 99.2220 99.2220 99.2776 99.2220 99.1942 99.2498 99.1942 99.1664 97.5000
Precision 0 0.990826 0.989975 0.989983 0.993272 0.992450 0.989958 0.991632 0.989158 0.991604 0.958983
Precision 1 0.994176 0.991694 0.990041 0.987603 0.989247 0.990864 0.990871 0.990033 0.986777 0.978796
Precision 2 0.996661 0.994992 0.996656 0.997500 0.994992 0.995000 0.994996 0.996656 0.996661 0.987521
M.Avg. Pr. 0.993889 0.992221 0.992227 0.992792 0.992229 0.991941 0.992500 0.991950 0.991681 0.975100
Recall 0 0.990826 0.988324 0.989158 0.984987 0.986656 0.986656 0.988324 0.989158 0.984987 0.974167
Recall 1 0.995833 0.995000 0.994167 0.995833 0.996667 0.994167 0.995000 0.993333 0.995000 0.961667
Recall 2 0.995000 0.993333 0.993333 0.997500 0.993333 0.995000 0.994167 0.993333 0.995000 0.989167
M.Avg. Rec 0.993887 0.992220 0.992220 0.992776 0.992220 0.991942 0.992498 0.991942 0.991664 0.975000
F1-score 0 0.990826 0.989149 0.989570 0.989112 0.989544 0.988304 0.989975 0.989158 0.988285 0.966515
F1-score 1 0.995004 0.993344 0.992100 0.991701 0.992943 0.992512 0.992931 0.991681 0.990871 0.970156
F1-score 2 0.995830 0.994162 0.994992 0.997500 0.994162 0.995000 0.994581 0.994992 0.995830 0.988343
M.Avg. F1 0.993887 0.992219 0.992221 0.992772 0.992217 0.991940 0.992497 0.991944 0.991663 0.975005

From Table 5, the first thing that is interesting to emphasize is that all metaheuristics
performed much better than the CNN used for feature extraction. Therefore, the XGBoost
showed better performance for the classification of extracted features than standard fully
connected layers of the CNN. When analyzing the performance level of metaheuristics-
based models, the proposed CNN–XGBoost–HAOA obtained the best results for eight out
of thirteen metrics, while the CNN–XBGBoost–IHHO finished second by obtaining the best
scores for four metrics. The highest accuracy of almost 99.4% was also achieved by the CNN–
XGBoost–HAOA method. Again, it is worth noting that the hybrid algorithm significantly
outperformed both baseline metaherustics (AOA and SCA) in all observed categories.

Additionally, the results of the best-performing solutions in terms of true positives
(TP), true negatives (TN), false positives (FP) and false negatives (FN), true positive rate
(TPR, sensitivity or recall), true negative rate (TPR, specificity), positive predicted values
(PPV, precision), negative predictive values (NPV), false positive rate (FPR), false negative
rate (FNR) and false discovery rate (FDR) are shown in Table 6.

The set of hyperparameters’ values for best evolved XGBoost structures is shown in Table 7.
The convergence speed graph for the best quality CNN-XGBoost metaheuristics

solutions along with diversity over 15 runs are visualized in Figure 9. It can be noticed that
the proposed CNN–XGboost–HAOA establishes fastest convergence and how it performs
a search with huge improvements—for some iterations, it becomes stuck in sub-optimal
regions; however, it eventually manages to get away and converge toward optimum.
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Figure 9. Convergence speed graph for best-quality CNN-XGBoost metaheuristics solution and
solutions’ diversity over 15 runs.
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Table 6. Results of the best-performing solutions of each algorithm.

Class FP FN TP TN TPR TNR PPV NPV FPR FNR FDR

CNN–XG–HAOA
Normal 11 11 1188 2389 0.991 0.995 0.991 0.995 0.005 0.009 0.009
COVID-19 7 5 1195 2392 0.996 0.997 0.994 0.998 0.003 0.004 0.006
Pneumonia 4 6 1194 2395 0.995 0.998 0.997 0.998 0.002 0.005 0.003

CNN–XG–AOA
Normal 12 14 1185 2388 0.988 0.995 0.99 0.994 0.005 0.012 0.010
COVID-19 10 6 1194 2389 0.995 0.996 0.992 0.997 0.004 0.005 0.008
Pneumonia 6 8 1192 2393 0.993 0.997 0.995 0.997 0.003 0.007 0.005

CNN–XG–SCA
Normal 12 13 1186 2388 0.989 0.995 0.99 0.995 0.005 0.011 0.010
COVID-19 12 7 1193 2387 0.994 0.995 0.99 0.997 0.005 0.006 0.010
Pneumonia 4 8 1192 2395 0.993 0.998 0.997 0.997 0.002 0.007 0.003

CNN–XG–IHHO
Normal 8 18 1181 2392 0.985 0.997 0.993 0.993 0.003 0.015 0.007
COVID-19 15 5 1195 2384 0.996 0.994 0.988 0.998 0.006 0.004 0.012
Pneumonia 3 3 1197 2396 0.998 0.999 0.998 0.999 0.001 0.002 0.002

CNN–XG–HHO
Normal 9 16 1183 2391 0.987 0.996 0.992 0.993 0.004 0.013 0.008
COVID-19 13 4 1196 2386 0.997 0.995 0.989 0.998 0.005 0.003 0.011
Pneumonia 6 8 1192 2393 0.993 0.997 0.995 0.997 0.003 0.007 0.005

CNN–XG–PSO
Normal 12 16 1183 2388 0.987 0.995 0.99 0.993 0.005 0.013 0.010
COVID-19 11 7 1193 2388 0.994 0.995 0.991 0.997 0.005 0.006 0.009
Pneumonia 6 6 1194 2393 0.995 0.997 0.995 0.997 0.003 0.005 0.005

CNN–XG–DE
Normal 10 14 1185 2390 0.988 0.996 0.992 0.994 0.004 0.012 0.008
COVID-19 11 6 1194 2388 0.995 0.995 0.991 0.997 0.005 0.005 0.009
Pneumonia 6 7 1193 2393 0.994 0.997 0.995 0.997 0.003 0.006 0.005

CNN–XG–TLB
Normal 13 13 1186 2387 0.989 0.995 0.989 0.995 0.005 0.011 0.011
COVID-19 12 8 1192 2387 0.993 0.995 0.99 0.997 0.005 0.007 0.010
Pneumonia 4 8 1192 2395 0.993 0.998 0.997 0.997 0.002 0.007 0.003

CNN–XG–ChOA
Normal 10 18 1181 2390 0.985 0.996 0.992 0.993 0.004 0.015 0.008
COVID-19 16 6 1194 2383 0.995 0.993 0.987 0.997 0.007 0.005 0.013
Pneumonia 4 6 1194 2395 0.995 0.998 0.997 0.998 0.002 0.005 0.003

Table 7. Best solutions’ XGBoost hyperparameters value.

l.r. (µ) max_child_weight Subsample collsample_bytree max_depth Gamma

CNN–XG–HAOA 0.900000 1.590710 1.000000 0.282676 10 0.000000
CNN–XG–AOA 0.900000 1.042019 0.761057 0.437239 6 0.394364
CNN–XG–SCA 0.662726 1.000000 1.000000 0.696119 8 0.000000
CNN–XG–IHHO 0.691881 1.453556 1.000000 0.222989 8 0.000000
CNN–XG–HHO 0.884780 1.000000 0.887372 0.391540 10 0.088580
CNN–XG–PSO 0.889012 7.076648 1.000000 0.610577 7 0.038919
CNN–XG–DE 0.900000 6.335094 1.000000 0.628815 10 0.000000
CNN–XG–TLB 0.900000 1.173684 0.904359 0.390759 10 0.018695
CNN–XG–ChOA 0.900000 1.000000 1.000000 0.297912 10 0.746814

Finally, to better visualize the performance of CNN–XGBoost–HAOA, the confusion
matrix, receiver operating characteristics (ROC) and precision–recall (PR) curves along
with ROC all vs. rest (OvR) for the best solution are visualized in Figure 10.

To validate the findings from COVID-19 X-ray simulations, the best values for each
of the 15 independent runs are taken for comparison for every metaheuristics method,
and all algorithms were compared by using a non-parametric test. However, prior to
rendering the decision of using a non-parametric test, the safe use of parametric tests,
which includes the independence, normality, and homoscedasticity of the data variances,
was checked [140]. The condition of independence is satisfied because each run starts with
different pseudo-random number seeds. The homoscedasticity is validated by performing
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Levene’s test [141], and the p-value of 0.67 is obtained in all cases, rendering the conclusion
that the homoscedasticity is satisfied.
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Figure 10. Convergence speed graph for best-quality CNN–XGBoost metaheuristics solution and
solutions’ diversity over 15 runs.

Finally, the Shapiro–Wilk test for single-problem analysis [142] was conducted to check
whether or not the results from independent runs originated from normal distribution in the
following way: results series that include the best solution in each run are constructed for
each metaheuristics, and Shapiro–Wilk p-values are calculated for each method separately.
The obtained p-value for each algorithm was lower than 0.05, allowing the conclusion that
the H0 hypothesis was rejected for both alpha = 0.1 and alpha = 0.05. This means that the
results are not originated from the normal distribution. The results of the Shapiro test are
briefly summarized in Table 8.

Therefore, since the normality condition was not satisfied, it was proceeded with a non-
parametric Wilcoxon signed-rank test [143] with the same data series containing the best
values obtained in each run. The proposed HAOA was used as the control algorithm, and a
Wilcoxon signed-rank test was executed on the above-mentioned data series. The obtained
p-value in all cases was less than 0.05, (p-values were namely 0.03 vs. IHHO, 0.025 vs.
HHO, 0.022 vs. SCA, 0.025 vs. AOA, 0.018 vs. PSO, 0.017 vs. DE, 0.026 vs. TLB, and finally,
0.028 vs. ChOA). It is possible therefore to conclude that the proposed HAOA method
is statistically significantly better out of all the contending algorithms for both threshold
values alpha = 0.1 and alpha = 0.05. The results of the Wilcoxon test are summarized in
Table 9.

Table 8. Shapiro–Wilk test results.

Methods HAOA AOA SCA IHHO HHO PSO DE TLB ChOA

p-value 0.031 0.028 0.034 0.033 0.032 0.042 0.034 0.036 0.039
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Table 9. Wilcoxon signed-rank test results.

Methods HAOA AOA SCA IHHO HHO PSO DE TLB ChOA

p-value N/A 0.025 0.022 0.03 0.025 0.018 0.017 0.026 0.028

6. Conclusions

Fast diagnostics is crucial in modern medicine. The ongoing COVID-19 epidemic has
shown how important it is to quickly determine whether or not a patient has been infected,
and fast treatment is often the key factor to saving lives. This paper introduces a novel early
diagnostics method to detect the disease from lungs X-ray images. The proposed model
utilizes a novel HAOA metaheuristics algorithm, which was created by hybridizing AOA
and SCA algorithms with a goal to overcome the deficiencies of the basic variants. The so-
lutions in the proposed hybrid algorithm start by performing an AOA search procedure,
and if the solution does not improve over the iterations, it will switch to the SCA search
mechanism (controlled by the additional trial parameter). If the solution still does not
improve, ultimately, it will be replaced by a quasi-reflective opposite solution, as defined
by the QRL procedure.

The HAOA algorithm was put to test on a set of hard CEC2017 benchmark functions
and compared to the results of the basic AOA and SCA and another cutting-edge meta-
heuristics algorithm. It can be concluded that the HAOA undoubtedly achieves a higher
level of performance than the other eleven tested algorithms. After proving the superior
performance on the benchmark functions, the algorithm was employed in the machine
learning framework, consisting of the simple CNN used for feature extraction and an XG-
Boost classifier, where HAOA was used to tune the XGBoost hyperparameters. The model
was named CNN–XGBoost–HAOA, tested on a large COVID-19 X-ray images benchmark
dataset, and compared to eight other metaheuristics algorithms used to evolve the XGBoost
structure. The proposed CNN–XGBoost–HAOA obtained predominant accuracy of almost
99.4% on this dataset, leaving behind all other observed models.

The contribution of the proposed research can be defined on three levels. First—
a simple light-weight network was generated, that is easy to train, operates fast and
achieves decent performance on the COVID-19 dataset, where the XGBoost classifier was
used instead of fully connected layers. Second—AOA metaheuristics was improved and
used in the model. Finally, the whole model has been adapted to the COVID-19 dataset.
The limitations of the proposed work are closely bound to these three levels of contributions.
First, it was possible to execute more detailed experiments with the hyperparameters of the
simple neural network to begin with, and it was also possible obtain another light structure
that could have an even better level of performance; however, this was out of the scope of
this work. Second, each metaheuristics algorithm can be modified in an infinite number of
theoretically possible improvements (minor modifications and/or hybridization), leading
to the conclusion that in theory, the level of improvements of the basic AOA could be even
higher without increasing the complexity of the algorithm. It was also possible to include
other XGBoost parameters to the tuning process, as there are many of them, but it was not
possible to cover all this with just one study. Finally, experiments were executed with just
one dataset, which has been balanced. The experiments with imbalanced datasets were not
executed, because addressing imbalanced datasets was not goal of presented study.

Based on these encouraging results, the future work will be centered around gaining
even more confidence in the suggested model by testing it further on the additional real-life
COVID-19 X-ray datasets before considering the practical implementation as a part of the
system that could be used in the hospitals to help in early COVID-19 diagnostics.
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