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Abstract: Urban water plays a significant role in the urban ecosystem, but urban water extraction
is still a challenging task in automatic interpretation of synthetic aperture radar (SAR) images.
The influence of radar shadows and strong scatters in urban areas may lead to misclassification
in urban water extraction. Nevertheless, the local features captured by convolutional layers in
Convolutional Neural Networks (CNNs) are generally redundant and cannot make effective use of
global information to guide the prediction of water pixels. To effectively emphasize the identifiable
water characteristics and fully exploit the global information of SAR images, a modified Unet based
on hybrid attention mechanism is proposed to improve the performance of urban water extraction in
this paper. Considering the feature extraction ability and the global modeling capability in SAR image
segmentation, the Channel and Spatial Attention Module (CSAM) and the Multi-head Self-Attention
Block (MSAB) are both introduced into the proposed Hybrid Attention Unet (HA-Unet). In this
work, Resnet50 is adopted as the backbone of HA-Unet to extract multi-level features of SAR images.
During the feature extraction process, CSAM based on local attention is adopted to enhance the
meaningful water features and ignore unnecessary features adaptively in feature maps of two shallow
layers. In the last two layers of the backbone, MSAB is introduced to capture the global information
of SAR images to generate global attention. In addition, two global attention maps generated by
MSAB are aggregated together to reconstruct the spatial feature relationship of SAR images from
high-resolution feature maps. The experimental results on Sentinel-1A SAR images show that the
proposed urban water extraction method has a strong ability to extract water bodies in the complex
urban areas. The ablation experiment and visualization results vividly indicate that both CSAM and
MSAB contribute significantly to extracting urban water accurately and effectively.

Keywords: hybrid attention; Unet; urban water extraction; synthetic aperture radar

1. Introduction

Synthetic aperture radar (SAR) has widespread applications in remote sensing of
the environment with the advantage of all-weather and all-time observation. With the
dramatic increase in spaceborne SAR images, automatic interpretation of SAR images is a
promising technology in the earth observation and surveillance [1–4]. As a vital factor for
urban ecosystem, urban water is of great importance to urban ecological landscapes, urban
development, and flood control [5–7]. Accurate and effective urban water extraction is a
critical task in automatic interpretation of SAR images.

Various methods have been developed for the mapping of water in SAR images,
which can be divided into traditional methods and deep learning methods. However,
to our knowledge, most research pays attention to reservoirs and large lakes, and few
studies focus on the exploration of urban water bodies including urban rivers, ponds and
natural or human-made lakes [8,9]. A variety of traditional methods have achieved a
great success for suburban water extraction, but the transferability of these methods for
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urban water extraction is a critical issue [10–13]. Very recently, deep learning methods,
especially Convolutional Neural Networks (CNNs), enabled remarkable performance
in water extraction from SAR images by virtue of its powerful feature extraction ability
without auxiliary data [14,15].

SAR image segmentation with CNNs is a task that requires the integration of feature
maps from different spatial scales and a balance between local information and global
information. Representative models including fully convolutional network, Unet, and the
high-resolution network have been used to perform water segmentation [16]. Experimental
results indicate that it is feasible to extract water bodies with CNNs. Due to the influence
of radar shadow or strong scatter, prediction of urban water bodies with irregular shapes
requires more contextual information in comparison with suburban water extraction [17].
For example, other dark surfaces (such as asphalt roads) and radar shadows caused by
tall buildings in SAR images may be misclassified as water bodies while rough water
surfaces may be blanketed. In the work by Denbina et al. [18], CNNs are adopted to detect
flooding in urban areas, which suggests the potential of CNN-based urban water extraction
in SAR images. Furthermore, a dense-coordinate-feature-concatenate network (DCFNet) is
proposed to extract and fuse the water features [19]. The experimental results on Gaofen-
3 and Sentinel-1 SAR images show that DCFNet can reduce the influence of ground
interference and speckle noise to some extent. However, due to the inherent limitation of
the local receptive field in CNNs, it is difficult to extract the global information of SAR
images in these methods [20]. To solve these problems, a multiscale module is introduced
into the CNN for urban water extraction [6]. In the work by Geng et al. [21], a recurrent
layer based on long-short-term memory is introduced to extract spatial dependencies for
SAR image segmentation. These modules can provide a description of the context of spatial
locations to some extent, but the global information acquisition is still inadequate. Hence,
it is meaningful to investigate more advanced models for water extraction to promote
the application of automatic SAR image interpretation technology. Furthermore, accurate
water mapping can present flooding disasters in real time, shoreline extraction, surface
water monitoring and monitoring changes of river and lake in urban areas.

According to the above-mentioned analysis, this study aims to develop a deep learning
method to improve the accuracy of urban water extraction in SAR images. This paper pro-
poses Hybrid Attention Unet (HA-Unet) with the adaptive feature enhancement capability
and the global modeling capability by introducing the hybrid attention mechanism into the
classic Unet architecture. In the proposed HA-Unet, Resnet50 is adopted as the backbone
to extract multi-layer features, and a total of 5 layers of feature maps are processed by the
hybrid attention mechanism based on the Channel and Spatial Attention Module (CSAM)
and the Multi-head Self-Attention Block (MSAB). Given that the channel attention and
spatial attention mechanism can refine meaningful features to learn where and what to
emphasize, CSAM is adopted to enhance the recognizable water features in the first two
layers of the feature maps. Since the multi-head self-attention mechanism has the ability
to model global information, MSAB is introduced into the last two layers of the feature
maps to empower the proposed HA-Unet with a global receptive field. In addition, global
attention maps of the last two layers are combined to further encode long-range depen-
dencies of SAR images from high-resolution feature maps. The above series of operations
enable the proposed HA-Unet to self-adaptive focus on target water and pay attention to
the most semantic-relevant contextual features. Thus, the proposed HA-Unet can improve
the performance of urban water extraction in terms of accuracy and efficiency.

The remainder of this paper is organized as follows. In Section 2, related work in
this paper including Unet for water segmentation and attention mechanisms is briefly
introduced. In Section 3, the research data are presented. In Section 4, HA-Unet for urban
water extraction is proposed in detail. The experimental results based on Sentinel-1A (S1A)
SAR images are presented in Section 5. The discussion for experimental results is provided
in Section 6. Finally, the whole paper is concluded in Section 7.
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2. Related Work
2.1. Unet for Water Segmentation

Unet, a popular model in the field of segmentation, is named for a U-shaped encoder-
decoder architecture and transmits the shallow feature maps of the encoder to the deep
through skip connections [22]. In recent years, Unet has been quite a popular model for
SAR image segmentation. Many researchers have proved that the water segmentation
result of Unet is better than traditional methods [23,24]. In 2019, Unet is adopted to perform
an efficient segmentation of river [25]. After that, various improvement measures are being
introduced into the original Unet to improve the performance of water segmentation in
SAR images. The concept of inception is introduced into Unet to increase the receptive field
of the convolution operation [26]. In addition, the spatial pyramid pooling module and the
attention block are both adopted in Unet to construct a robust water extraction network [27].
The spatial pyramid pooling module fuses more contextual semantic information and the
attention block makes the model focus on water extraction. Furthermore, Ren, Y. et al.
introduce the position attention module and the channel attention module into the last layer
of the encoder in Unet, which shows a 1% accuracy improvement than the original Unet
in water segmentation [28]. However, there are still challenges in urban water extraction,
such as the coherent speckle noise and complex terrain information in SAR images.

2.2. Attention Mechanisms

In the recent few years, attention mechanisms have played an increasingly important
role in computer vision tasks. The attention mechanism can dynamically select representa-
tive features according to the importance of the input. It enables CNNs to pay attention to
specific parts of the input image and select high-value information from massive informa-
tion. Furthermore, related studies have shown that the attention mechanism is a means for
deep learning models to understand SAR images with complex scenes in terms of accuracy
and efficiency [14].

The unified model of human attention that focuses on the representative parts and
analyses these parts can be defined as

Attention = f (g(x), x), (1)

where x represents the image, g(x) represents the process of generating attention according
to the representative parts, and f (x) means the process of analyzing the image based on
the attention generated by g(x) to obtain high-value information.

The implementation of attention mechanisms in deep learning can be also divided into
two steps. At first, the attention distribution is computed based on the input information.
Then, the high-value information is output according to the attention mechanism. The
general form of attention mechanisms in deep learning is presented in Figure 1. First, the
energy score that reflects the importance of input information is obtained through the score
function g(·). The score function g(·) is a key role in the process of generating the attention
distribution. Different operations such as addition, similarity, multiplication, convolution,
etc. can yield different energy scores, which determines the name of the attention mecha-
nism. Then, the energy score is normalized between 0 and 1 by a distribution function to
obtain the attention weight. The distribution function usually corresponds to the so f tmax
function, which is defined as

So f tmax(zi) =
ezi

∑n=N
n=1 ezn

, (2)

where zi denotes the energy score, e represents Natural Constant. Finally, the product of
the attention weight and input information is calculated to generate weighted values.

The main idea behind the above-explained attention mechanisms is to give different
weights to different features. In other words, the attention mechanism enables the model
to exploit the most relevant parts of the input information flexibly. Thus, CNNs with
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attention mechanisms for water extraction can give higher weights to relevant water body
information to attract the attention of the CNN to water features.

norm

Input Information

Weighted Values

Energy Scores

Attention Weights

Score Function

Figure 1. The general form of attention mechanisms.

3. Materials
3.1. Study Area

The study area is a typical watershed-rich region in east Hangzhou, Zhejiang Province,
China. Hangzhou, the provincial capital of Zhejiang, is located in the north of Zhejiang
Province, east of Hangzhou Bay. The climate in Hangzhou is a subtropical monsoon, with
an average annual temperature of 17.8 ◦C and an annual rainfall of 1454 mm. The rainfall
usually concentrates in March and April each year. On 26 March 2022, the temperature
in Hangzhou was 11–17 ◦C, with the moderate breeze. Hangzhou is densely populated
with lakes. In particular, West Lake is the symbol of Hangzhou, as well as one of the
most beautiful sights in China and the Qiantang River flows through most of the city from
southwest to northeast. Therefore, the distribution of water bodies is of great significance
to the development of Hangzhou, and the region related to West Lake and parts of the
Qiantang River is selected as the study area. The location of the study area is shown in
Figure 2. Furthermore, the Sentinel-2A optical remote sensing image of the study area,
collected on 24 March 2022, at 2:35 UTC, is presented in Figure 3. In the optical remote
sensing image corresponding to the study area, both West Lake and Qiantang River to be
extracted are included.

3.2. Dataset

In this work, VH polarization SAR images in Ground Range Detected (GRD) format
acquired by S1A are used to generate the dataset. The Sentinel-1 satellite is C-band multi-
polarization SAR, which offers a continuity of wide area coverage, achieving higher resolu-
tion and global coverage over landmasses. It has been used in water conservancy, disaster
reduction, marine and other fields [29]. Sentinel-1 data are made available systematically
and can be downloaded from the Alaska Satellite Facility (https://search.asf.alaska.edu/,
accessed on 15 September 2022). The basic information of the data source in our experiment
is presented in Table 1.

In order to enhance the readability of SAR images, S1A SAR images are pre-processed
in this work on the SentiNel Application Platform provided by the Scientific Data Hub of
European Space Agency (ESA). First, SAR images are subjected to orbit correction. Then,
radiometric calibration is applied to reduce the radiometric irregularities. Next, range
Doppler terrain correction is conducted to reduce the influence of local terrain on backscat-
ter. Subsequently, the SAR block-matching 3D (SAR BM3D) algorithm based on non-local
approach is introduced to reduce the negative impact of speckle noise [30]. Last but not
least, the backscatter coefficient is converted to dB using a logarithmic transformation for
the readability improvement.

https://search.asf.alaska.edu/
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Study Area

Zhejiang

Hangzhou

Figure 2. The location of the study area.

Figure 3. The optical remote sensing image of the study area.
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Table 1. The basic information of the data source.

Sentinel-1A Parameter

Product format GRD
Product level Level-1
Beam mode Interferometric Wide swath
Polarization VH
Resolution 20 × 22 m

Band C
Number of looks 5 × 1

Size 2048 × 2048 pixels

To obtain comprehensive and accurate ground truths, several SAR images are labeled
manually according to OpenStreetMap (https://www.openstreetmap.org/, accessed on
20 April 2022) on the Labelme software. Then, SAR images and the ground truth are
randomly cut into a common size of 512 × 512 pixels, and a total of 522 subimages and the
corresponding labels are obtained in our experiment. The subimages and the corresponding
labels are divided into two parts: 470 training subimages (about 90%) and 52 validating
subimages (about 10%).

The tested S1A SAR image, related to the study area in east Hangzhou, was collected on
26 March 2022, at 10:03 UTC. The tested data item is a 2048 × 2048 pixel SAR image and is also
cropped into a common size of 512 × 512 pixels for water segmentation. Finally, all subimages
are returned to their original locations to obtain the final urban water extraction result.

4. Methodology
4.1. Overview

Considering the complexity of water bodies in urban areas, a modified urban water
extraction method is proposed based on HA-Unet to exploit the global information as
well as local water features. The chain of the proposed urban water extraction method is
presented in Figure 4. After data acquisition and SAR image pre-processing, the S1A SAR
images and the ground truth are fed into the proposed HA-Unet for training. Finally, the
tested SAR image related to the study area is segmented by the trained HA-Unet for the
map of urban water.

4.2. Overall Structure of the Proposed HA-Unet

Unet and its variants have been widely used in SAR image segmentation in recent
years. However, the redundancy of features captured by convolution layers in Unet may
lead to the misclassification of water pixels. Furthermore, the local receptive field of small
convolution kernels in Unet cannot leverage global interaction well [31]. To overcome the
above problems, the hybrid attention is introduced into the original Unet based on local
attention mechanism and global attention mechanism, and the proposed network is known
as HA-Unet.

As presented in Figure 5, HA-Unet for urban water extraction retains the essential
structure of Unet with Resnet50 [32] as backbone. In the encoder, the five stages of feature
maps extracted by Resnet50 are defined as f eati (i = 1, 2, 3, 4, 5). Furthermore, the feature
maps of the decoder are defined as upi (i = 1, 2, 3, 4). Based on the local attention, CSAM
is adopted at early stages to enhance the meaningful water features and filter out non-
semantic features in f eat1 and f eat2 before skipping connections. Based on the global
attention, MSAB is introduced to model long-range dependencies for CNN backbone
at late stages, and f eat4 and f eat5 activated by MSAB are aggregated to construct high-
resolution feature maps. Finally, the pixel-level water segmentation results are generated
in the decoder.

https://www.openstreetmap.org/
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Data 
Acquisition

Sentinel1-A 
SAR images Ground Truth

SAR image
pre-processing

Orbit correction 
Radiometric calibration 
Range Doppler terrain correction 
SAR BM3D 
logarithmic transformation

Model training HA-Unet

Map of urban water
Water

extraction 

Figure 4. The chain of the proposed urban water extraction method.

MSAB

MSAB

CSAM

CSAM

Local Attention

Global Attention

Keys

MaxPool 2×2 Bilinear Interpolate

Conv 3×3, BN, ReLu Conv 1×1

Skip Connection

Figure 5. Overall structure of the proposed HA-Unet.
⊕

denotes element-wise addition.
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4.2.1. Backbone

Resnet is widely used in semantic segmentation and target detection, and shows
outstanding performance in remote sensing images [33]. The key idea of Resnet is the
deep residual learning framework, and the deep residual learning framework in Resnet is
presented in Figure 6. Instead of directly fitting an underlying mapping F(x), the stacked
layers in Resnet fit a residual mapping F(x)+ x which is performed by a shortcut connection
and element-wise addition. This framework with a shortcut connection helps Resnet extend
the depth of the network to learn richer features without gradient degradation [32]. Taking
into account the number of parameters and training difficulty, Resnet50 is adopted for
water feature extraction in this work and the structure of Resnet50 backbone is presented
in Table 2.

3×3 Conv

1×1 Conv

Relu

Relu
Identity

1×1 Conv

Relu

Figure 6. The deep residual learning framework.

Table 2. The structure of Resnet50 used in this paper.

Layer Name Operator Output Name Output Size Output Dimension

conv1
7 × 7 Conv,
stride = 2,

padding = 3
f eat1 256 × 256 64

conv2x

3 × 3 Pool, stride = 2

f eat2 128 × 128 64
1× 1 Conv

3× 3 Conv
1× 1 Conv

× 3

conv3x

1× 1 Conv
3× 3 Conv
1× 1 Conv

× 3 f eat3 64 × 64 512

conv4x

1× 1 Conv
3× 3 Conv
1× 1 Conv

× 3 f eat4 32 × 32 1024

conv5x

1× 1 Conv
3× 3 Conv
1× 1 Conv

× 3 f eat5 16 × 16 2048
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4.2.2. CSAM

Identifiable and representative feature representations are essential in high accuracy
segmentation. However, these features extracted by CNNs are redundant, especially at low
stage, and they may influence the implicit representation of CNNs [34]. Thus, a feature
selecting approach is necessary for urban water extraction. In the proposed HA-Unet,
CSAM based on channel attention and spatial attention is adopted at the early stage of the
encoder for adaptive feature enhancement in complex scenes of SAR images. The schematic
of CSAM is presented in Figure 7.

Given a feature map x as input, the overall progress of CSAM can be described
as follows:

y = Ms(Mc(x)⊗ x)⊗ (Mc(x)⊗ x), (3)

Mc = sigmoid
[
mlp

(
xavgpool

)
+ mlp

(
xmaxpool

)]
, (4)

Ms = sigmoid
[
conv

(
concat

(
xavgpool, xmaxpool

))]
, (5)

where y represents the emphasized feature map, Mc and Ms denote the activation maps
after a sigmoid function generated by channel attention and spatial attention, respectively,
⊗ represents element-wise multiplication, mlp represents multi-layer perceptron, and
conv represents a convolution layer. After CSAM, salient parts of significant properties
of water in the feature maps f eat1 and f eat2 are focused on water bodies by adaptive
enhancement in both channel dimension and spatial dimension, while the unnecessary
ones are suppressed.

Multi-Layer
Perceptron

MaxPoolAvgPool

sigmoid [MaxPool,
AvgPool]

sigmoid

Conv

Input feature Emphasized feature

Figure 7. The schematic of CSAM.
⊕

and
⊗

denote element-wise addition and element-wise
multiplication, respectively.
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4.2.3. MSAB

Segmentation is a task that requires accurate pixel-level predictions. Not only fine-
grained features, but also long-range dependencies are crucial to resolving the ambiguities
of local pixel prediction [35]. In large-scene SAR images, intrinsic correlations among pixels
are beneficial to improve classification accuracy, especially for small regional segmenta-
tion [21]. Nevertheless, CNNs have difficulty in capturing the latent contextual correlations
of the whole image, since they only process a local neighborhood because of their local
receptive field. Based on self-attention, MSAB shown in Figure 8 is introduced into the
late stages of the encoder to model the long-range dependencies of SAR images. In MSAB,
the multi-head self-attention (MHSA) layer captures the multiple complex relationships
by a concatenation of outputs of n self-attention heads and 1 × 1 convolutions are used to
transform the dimensions of output feature maps.

MHSA

Conv 1×1

Conv 1×1

Input

Output

(a)

head: n=3

Position 
Embedding

concat

softmax

(b)

Figure 8. (a) The schematic of MSAB. (b) Detailed calculation process of MHSA layer, where h, w
and d denote height, width and dimension of the input feature and output feature of MHSA layer,
respectively,

⊙
denotes matrix multiplication.

Let x denote the input feature, the output feature map y of MSAB is given as

y = concat(y1, y2, . . . , yn), (6)

and the detailed calculation process in each self-attention head is given by

yi = so f tmax

(
Q · K>√

di

)
·V, (7)

Q = Wqx,K = Wkx,V = Wvx, (8)
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where yi represents the output feature map of the ith self-attention head, di = d/n denotes
the dimension of the ith self-attention head. Three different matrixes Q, K, and V, generated
by trainable 1 × 1 convolutions Wq, Wk and Wv times input x, denote queries, keys, and
values. In formula (7), attention weights of each self-attention head are generated by Q · K>
first. Then attention maps are normalized by

√
di and softmax function to obtain the

attention scores that contain global contextual information. Finally, the output yi is yielded
by assigning the values of V according to attention scores.

As shown in Figure 8, the input feature x of MHSA layer is appended with positional
embedding. With the parallel execution of n heads, the MHSA layer is able to learn the
richer non-local context. Considering the high computational complexity in MHSA, only
three MHSA layers with four heads are used to construct MSAB in our experiment. In the
late stage of the encoder, global attention maps are extracted from f eat4 and f eat5 with
MSAB, respectively, and global attention maps of different stages are aggregated together
to capture long-range dependencies from high-resolution feature maps of SAR images.

5. Experimental Results
5.1. Training

The loss function is an essential parameter for CNN training. Considering the im-
balanced categorical distribution in the training set for urban water extraction, the loss
function based on cross-entropy loss and dice loss is introduced in this work, which is
defined as

L = Lce + Ld, (9)

and

Lce = −
1
N

N

∑
i=1

yi log pi, (10)

Ld = 1− 1
N

N

∑
i=1

2yi ŷi
yi + ŷi

, (11)

where Lce and Ld represent cross-entropy loss and dice loss, respectively, yi denotes the
ground truth of each pixel, pi denotes the prediction probability of each pixel, and N
denotes the total number of pixels. Cross-entropy loss Lce may have a poor performance
since the pixel-wise error is calculated equally for each pixel in Formula (10). Nevertheless,
assuming that 0 represents the background and 1 represents water, dice loss Ld can pay
attention to water if yi ŷi = 0 in Formula (11). Therefore, the joint loss function L enables
the proposed HA-Unet to perform better for unbalanced samples.

All experiments are based on Pytorch Library, accelerated by 6GB NVIDA 2060 MAX-
Q GPU. In order to avoid the impact of hyper-parameters on the experimental results, all
hyper-parameters of different models are set as follows: optimizer Adam, initial learning
rate 1 × 10−4, epoch 300 and batch size 2. Finally, all testing samples are fed into the
well-trained model to obtain the mapping of urban water.

5.2. Results

The tested SAR image and the ground truth of water bodies are presented in Figure 9a,b.
The urban water extraction results generated by DeeplabV3+ [36], original Unet [22], and
the proposed HA-Unet are presented in Figure 9c–e. As shown in Figure 9, DeeplabV3+ is
good at the extraction of large water bodies but over-detects more radar shadow as water.
Compared with DeeplabV3+, Unet performs better in terms of over-detection but misses
more water pixels affected by strong scatters. Benefiting from the structural design of
hybrid attention, errors in the mapping of urban water generated by the proposed HA-
Unet are fewer than the original Unet and DeeplabV3+ in general. To observe the results
generated by different models in detail, regions A-C enclosed by green rectangles have been
enlarged in Figure 10. Even in complex areas, the omission errors and commission errors
in the extraction result generated by HA-Unet are fewer owing to the hybrid attention
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mechanism. For example, in the water extraction result generated by the original Unet,
more commission errors are caused by radar shadows and some of the hills are misclassified
as water bodies in Region A. Additionally, due to the interference of strong scatter, part of
water bodies near the strong scatter are misclassified as background in Region B. However,
in the water extraction result generated by HA-Unet, by means of the identifiable water
features emphasized by CSAM and the guidance of global information captured by MSAB,
both commission errors and omission errors are significantly reduced. The experimental
results intuitively indicate that HA-Unet can still locate and extract water bodies accurately
in urban areas.

(a) (b)

(c) (d)

(e) (f)

Figure 9. (a) The tested SAR image. (b)The ground truth of water bodies. Urban water extraction
results generated by (c) PSPNet, (d) DeeplabV3+, (e) original Unet and (f) the proposed HA-Unet.
Yellow denotes omission errors, red denotes commission errors and blue denotes correctly classi-
fied water.
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To quantitatively evaluate the accuracy of urban water extraction, intersection over
union (IoU) and pixel accuracy (PA) based on confusion matrix shown in Table 3 are
calculated as follows:

IoU =
TP

TP + FP + FN
, (12)

PA =
TP + TN

TP + TN + FP + FN
, (13)

where true positive (TP) indicates the number of water pixels that are correctly predicted,
false negative (FN) indicates the number of water pixels that are incorrectly predicted
as background, false positive (FP) indicates the number of background pixels that are
incorrectly predicted as water, and true negative (TN) indicates the number of background
pixels that are correctly predicted. As shown in Table 4, the proposed HA-Unet achieves
93.06% IoU and 95.35% PA, outperforming both metrics on the tested SAR image. In com-
parison with the original Unet, the proposed HA-Unet represents a 6.02% IoU improvement
and keeps 7.64% better PA, i.e., the constructed HA-Unet has a better performance in the
accuracy of urban water extraction.

Table 3. The confusion matrix.

Prediction

Flood Background

Ground Truth flood TP FN

background FP TN

re
gi

on
A

re
gi

on
B

re
gi

on
C

(a) (b) (c) (d) (e) (f)

Figure 10. (a) Enlarged versions of regions A–C in Figure 9a. (b) Ground truth of region A and region
B. Urban water extraction results of region A and region B generated by (c) PSPNet, (d) DeeplabV3+,
(e) original Unet and (f) the proposed HA-Unet.
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Table 4. Evaluation of urban water extraction.

DeeplabV3+ Unet HA-Unet

IoU(%) 88.56 87.04 93.06
PA(%) 90.05 87.71 95.35

As mentioned in Section 4, two critical attention modules, CSAM and MSAB, are
introduced into shallow layers and deep layers, respectively, in this work. To further gain
the deep insights of the improvements obtained by the proposed HA-Unet, an ablation
experiment is also performed in our work. The evaluation of ablation experiment is
presented in Table 5. In CSAM+Unet, only CSAM is adopted to refine feature maps f eat1
and f eat2. Furthermore, in MSAB+Unet, only MSAB is introduced into feature maps f eat4
and f eat5 for global information extraction. It can be seen that either attention module can
improve the accuracy of the model compared with the original Unet. In other words, the
contributions and effectiveness of the two attention modules in the proposed HA-Unet are
undeniable. Finally, combining both the two attention modules yields the best extraction
performance

Table 5. The valuation of ablation experiment.

Unet CSAM+Unet MSAB+Unet HA-Unet

IoU(%) 87.04 90.77 87.87 93.06
PA(%) 87.71 91.89 90.55 95.35

5.3. Visualization

To further explore the role of the hybrid attention mechanism in HA-Unet, the attention
maps of regions D-F enclosed by red rectangles in Figure 9a are generated with gradient-
weighted class activation mapping (Grad-CAM) [37]. It can be seen that original Unet only
pays attention to the local water bodies due to the limited receptive field. As shown in
Figure 11c, the global information in the attention map of f eat5 of the backbone can be
captured based on the long-range dependencies constructed by MSAB. Compared with
original Unet, the proposed HA-Unet places more emphasis on the water bodies in the
feature map up1 after CSAM refining the representative water features. These Grad-CAM
visualization results indicate that HA-Unet can not only capture the global information in
SAR images but also focus on identifiable water features.
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Figure 11. Grad-CAM visualization results. (a) SAR image related to regions D-F in Figure 9a. (b) The
attention map of f eat5 in original Unet. (c) The attention map of f eat5 in the proposed HA-Unet.
(d) The attention map of up1 in original Unet. (e) The attention map of up1 in the proposed HA-Unet.

6. Discussion

In this work, the study of urban water extraction in S1A SAR images is carried out.
Good results are achieved by the proposed HA-Unet based on the hybrid attention. The
proposed HA-Unet is structurally innovative, employing the channel and spatial attention
mechanism and the multi-head self-attention mechanism at the same time. First, the low
semantic features are enhanced by CSAM to improve the expression of water features.
Then, the deep feature maps after MSAB can capture more feature references for local
predictions. The urban water extraction results and the quantitative indexes indicate that
the proposed HA-Unet is more effective than the original Unet as well as DeeplabV3+ in
urban water extraction. Additionally, three enlarged regions A, B and C intuitively show
that HA-Unet with the hybrid attention has fewer omission errors and commission errors
even in complex scenes. Furthermore, the ablation experiment and visualization results
vividly show the important role of HA-Unet in urban water extraction. In comparing
the two attention modules, either of the two modules can improve the performance of
original Unet gradually in urban water extraction. Thanks to the identifiable water features
emphasized by CSAM and the long-range dependency, the proposed HA-Unet can better
understand the characteristics of water boundaries, locationsm, and shapes to improve the
urban water extraction accuracy.

Of course, there are still limitations and shortcomings to our work. Since MSAB can
model long-range dependencies of SAR images, the massive number of parameters in the
multi-head self-attention mechanism makes it difficult to meet the requirements of real-time
inferencing, in high-resolution SAR images. In this work, MSAB is performed only in the
last two stages in Resnet50 to achieve a balance between efficiency and accuracy. In the
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future, further research will be continued to explore a more efficient attention mechanism
to improve the efficiency of the water extraction algorithm.

7. Conclusions

In this paper, HA-Unet is proposed for urban water extraction in SAR images based
on hybrid attention. Considering the feature redundancy in feature maps of standard con-
volution layers, CSAM based on local attention is adopted to emphasize water features and
filter out non-semantic features at early stage of the encoder. In order to compensate for the
insufficient global information extraction in the standard convolution layer, MSAB is also
introduced to capture global information and long-range interactions of SAR images at late
stage of the encoder. In addition, feature maps of the last two stages of the encoder are ag-
gregated to construct high-resolution feature maps for further richer contextual interactions
and spatial information. The quantitative evaluations and visualization results of attention
maps both indicate that the proposed HA-Unet can extract urban water accurately and
effectively. Therefore, the proposed method has great potential in urban water extraction.
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